aboutsummaryrefslogtreecommitdiff
path: root/src/liblzma/subblock/subblock_encoder.c
blob: e1af4a454cdb8954ee3a47cf87ef6607639fc62b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
///////////////////////////////////////////////////////////////////////////////
//
/// \file       subblock_encoder.c
/// \brief      Encoder of the Subblock filter
//
//  Copyright (C) 2007 Lasse Collin
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2.1 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////

#include "subblock_encoder.h"
#include "raw_encoder.h"


#define REPEAT_COUNT_MAX (1U << 28)

/// Number of bytes the data chunk being repeated must be before we care
/// about alignment. This is somewhat arbitrary. It just doesn't make sense
/// to waste bytes for alignment when the data chunk is very small.
///
/// TODO Rename and use this also for Subblock Data?
#define RLE_MIN_SIZE_FOR_ALIGN 3

#define write_byte(b) \
do { \
	out[*out_pos] = b; \
	++*out_pos; \
	++coder->alignment.out_pos; \
} while (0)


struct lzma_coder_s {
	lzma_next_coder next;
	bool next_finished;

	enum {
		SEQ_FILL,
		SEQ_FLUSH,
		SEQ_RLE_COUNT_0,
		SEQ_RLE_COUNT_1,
		SEQ_RLE_COUNT_2,
		SEQ_RLE_COUNT_3,
		SEQ_RLE_SIZE,
		SEQ_RLE_DATA,
		SEQ_DATA_SIZE_0,
		SEQ_DATA_SIZE_1,
		SEQ_DATA_SIZE_2,
		SEQ_DATA_SIZE_3,
		SEQ_DATA,
		SEQ_SUBFILTER_INIT,
		SEQ_SUBFILTER_FLAGS,
	} sequence;

	lzma_options_subblock *options;

	lzma_vli uncompressed_size;

	size_t pos;
	uint32_t tmp;

	struct {
		uint32_t multiple;
		uint32_t in_pending;
		uint32_t in_pos;
		uint32_t out_pos;
	} alignment;

	struct {
		uint8_t *data;
		size_t size;
		size_t limit;
	} subblock;

	struct {
		uint8_t buffer[LZMA_SUBBLOCK_RLE_MAX];
		size_t size;
		lzma_vli count;
	} rle;

	struct {
		enum {
			SUB_NONE,
			SUB_SET,
			SUB_RUN,
			SUB_FINISH,
			SUB_END_MARKER,
		} mode;

		bool got_input;

		uint8_t *flags;
		uint32_t flags_size;

		lzma_next_coder subcoder;

	} subfilter;

	struct {
		size_t pos;
		size_t size;
		uint8_t buffer[LZMA_BUFFER_SIZE];
	} temp;
};


/// \brief      Aligns the output buffer
///
/// Aligns the output buffer so that after skew bytes the output position is
/// a multiple of coder->alignment.multiple.
static bool
subblock_align(lzma_coder *coder, uint8_t *restrict out,
		size_t *restrict out_pos, size_t out_size, uint32_t skew)
{
	assert(*out_pos < out_size);

	const uint32_t target = coder->alignment.in_pos
			% coder->alignment.multiple;

	while ((coder->alignment.out_pos + skew)
			% coder->alignment.multiple != target) {
		// Zero indicates padding.
		write_byte(0x00);

		// Check if output buffer got full and indicate it to
		// the caller.
		if (*out_pos == out_size)
			return true;
	}

	coder->alignment.in_pos += coder->alignment.in_pending;
	coder->alignment.in_pending = 0;

	// Output buffer is not full.
	return false;
}


/// \brief      Checks if buffer contains repeated data
///
/// \param      needle      Buffer containing a single repeat chunk
/// \param      needle_size Size of needle in bytes
/// \param      buf         Buffer to search for repeated needles
/// \param      buf_chunks  Buffer size is buf_chunks * needle_size.
///
/// \return     True if the whole buf is filled with repeated needles.
///
static bool
is_repeating(const uint8_t *restrict needle, size_t needle_size,
		const uint8_t *restrict buf, size_t buf_chunks)
{
	while (buf_chunks-- != 0) {
		if (memcmp(buf, needle, needle_size) != 0)
			return false;

		buf += needle_size;
	}

	return true;
}


/// \brief      Optimizes the repeating style and updates coder->sequence
static void
subblock_rle_flush(lzma_coder *coder)
{
	// The Subblock decoder can use memset() when the size of the data
	// being repeated is one byte, so we check if the RLE buffer is
	// filled with a single repeating byte.
	if (coder->rle.size > 1) {
		const uint8_t b = coder->rle.buffer[0];
		size_t i = 0;
		while (true) {
			if (coder->rle.buffer[i] != b)
				break;

			if (++i == coder->rle.size) {
				// TODO Integer overflow check maybe,
				// although this needs at least 2**63 bytes
				// of input until it gets triggered...
				coder->rle.count *= coder->rle.size;
				coder->rle.size = 1;
				break;
			}
		}
	}

	if (coder->rle.count > REPEAT_COUNT_MAX)
		coder->tmp = REPEAT_COUNT_MAX - 1;
	else
		coder->tmp = coder->rle.count - 1;

	coder->sequence = SEQ_RLE_COUNT_0;

	return;
}


/// \brief      Resizes coder->subblock.data for a new size limit
static lzma_ret
subblock_data_size(lzma_coder *coder, lzma_allocator *allocator,
		size_t new_limit)
{
	// Verify that the new limit is valid.
	if (new_limit < LZMA_SUBBLOCK_DATA_SIZE_MIN
			|| new_limit > LZMA_SUBBLOCK_DATA_SIZE_MAX)
		return LZMA_HEADER_ERROR;

	// Ff the new limit is different than the previous one, we need
	// to reallocate the data buffer.
	if (new_limit != coder->subblock.limit) {
		lzma_free(coder->subblock.data, allocator);
		coder->subblock.data = lzma_alloc(new_limit, allocator);
		if (coder->subblock.data == NULL)
			return LZMA_MEM_ERROR;
	}

	coder->subblock.limit = new_limit;

	return LZMA_OK;
}


static lzma_ret
subblock_buffer(lzma_coder *coder, lzma_allocator *allocator,
		const uint8_t *restrict in, size_t *restrict in_pos,
		size_t in_size, uint8_t *restrict out,
		size_t *restrict out_pos, size_t out_size, lzma_action action)
{
	// Verify that there is a sane amount of input.
	if (coder->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) {
		const lzma_vli in_avail = in_size - *in_pos;
		if (action == LZMA_FINISH) {
			if (in_avail != coder->uncompressed_size)
				return LZMA_DATA_ERROR;
		} else {
			if (in_avail > coder->uncompressed_size)
				return LZMA_DATA_ERROR;
		}
	}

	// Check if we need to do something special with the Subfilter.
	if (coder->options != NULL && coder->options->allow_subfilters) {
		switch (coder->options->subfilter_mode) {
		case LZMA_SUBFILTER_NONE:
			if (coder->subfilter.mode != SUB_NONE)
				return LZMA_PROG_ERROR;
			break;

		case LZMA_SUBFILTER_SET:
			if (coder->subfilter.mode != SUB_NONE)
				return LZMA_HEADER_ERROR;

			coder->subfilter.mode = SUB_SET;
			coder->subfilter.got_input = false;

			if (coder->sequence == SEQ_FILL)
				coder->sequence = SEQ_FLUSH;

			break;

		case LZMA_SUBFILTER_RUN:
			if (coder->subfilter.mode != SUB_RUN)
				return LZMA_PROG_ERROR;
			break;

		case LZMA_SUBFILTER_FINISH:
			if (coder->subfilter.mode == SUB_RUN)
				coder->subfilter.mode = SUB_FINISH;
			else if (coder->subfilter.mode != SUB_FINISH)
				return LZMA_PROG_ERROR;

			if (!coder->subfilter.got_input)
				return LZMA_PROG_ERROR;

			break;

		default:
			return LZMA_HEADER_ERROR;
		}
	}

	// Main loop
	while (*out_pos < out_size)
	switch (coder->sequence) {
	case SEQ_FILL: {
		// Grab the new Subblock Data Size and reallocate the buffer.
		if (coder->subblock.size == 0 && coder->options != NULL
				&& coder->options->subblock_data_size
					!= coder->subblock.limit)
			return_if_error(subblock_data_size(coder,
					allocator, coder->options
						->subblock_data_size));

		if (coder->subfilter.mode == SUB_NONE) {
			assert(coder->subfilter.subcoder.code == NULL);

			// No Subfilter is enabled, just copy the data as is.
			// NOTE: uncompressed_size cannot overflow because we
			// have checked/ it in the beginning of this function.
			const size_t in_used = bufcpy(in, in_pos, in_size,
					coder->subblock.data,
					&coder->subblock.size,
					coder->subblock.limit);

			if (coder->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN)
				coder->uncompressed_size -= in_used;

			coder->alignment.in_pending += in_used;

		} else {
			const size_t in_start = *in_pos;
			lzma_ret ret;

			if (coder->subfilter.mode == SUB_FINISH) {
				// Let the Subfilter write out pending data,
				// but don't give it any new input anymore.
				size_t dummy = 0;
				ret = coder->subfilter.subcoder.code(coder
						->subfilter.subcoder.coder,
						allocator, NULL, &dummy, 0,
						coder->subblock.data,
						&coder->subblock.size,
						coder->subblock.limit,
						LZMA_FINISH);
			} else {
				// Give our input data to the Subfilter. Note
				// that action can be LZMA_FINISH. In that
				// case, we filter everything until the end
				// of the input. The application isn't required
				// to separately set LZMA_SUBBLOCK_FINISH.
				ret = coder->subfilter.subcoder.code(coder
						->subfilter.subcoder.coder,
						allocator, in, in_pos, in_size,
						coder->subblock.data,
						&coder->subblock.size,
						coder->subblock.limit,
						action);
			}

			const size_t in_used = *in_pos - in_start;

			if (in_used > 0)
				coder->subfilter.got_input = true;

			// NOTE: uncompressed_size cannot overflow because we
			// have checked it in the beginning of this function.
			if (coder->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN)
				coder->uncompressed_size -= *in_pos - in_start;

			coder->alignment.in_pending += in_used;

			if (ret == LZMA_STREAM_END) {
				// We don't strictly need to do this, but
				// doing it sounds like a good idea, because
				// otherwise the Subfilter's memory could be
				// left allocated for long time, and would
				// just waste memory.
				lzma_next_coder_end(&coder->subfilter.subcoder,
						allocator);

				assert(coder->options != NULL);
				coder->options->subfilter_mode
						= LZMA_SUBFILTER_NONE;

				assert(coder->subfilter.mode == SUB_FINISH
						|| action == LZMA_FINISH);
				coder->subfilter.mode = SUB_END_MARKER;

				// Flush now. Even if coder->subblock.size
				// happens to be zero, we still need to go
				// to SEQ_FLUSH to write the Subfilter Unset
				// indicator.
				coder->sequence = SEQ_FLUSH;
				break;
			}

			// Return if an error occurred.
			if (ret != LZMA_OK)
				return ret;
		}

		// If we ran out of input before the whole buffer
		// was filled, return to application.
		if (coder->subblock.size < coder->subblock.limit
				&& action != LZMA_FINISH)
			return LZMA_OK;

		coder->sequence = SEQ_FLUSH;
	}

	// Fall through

	case SEQ_FLUSH:
		if (coder->options != NULL) {
			// Update the alignment variable.
			coder->alignment.multiple = coder->options->alignment;
			if (coder->alignment.multiple
					< LZMA_SUBBLOCK_ALIGNMENT_MIN
					|| coder->alignment.multiple
					> LZMA_SUBBLOCK_ALIGNMENT_MAX)
				return LZMA_HEADER_ERROR;

			// Run-length encoder
			//
			// First check if there is some data pending and we
			// have an obvious need to flush it immediatelly.
			if (coder->rle.count > 0
					&& (coder->rle.size
							!= coder->options->rle
						|| coder->subblock.size
							% coder->rle.size)) {
				subblock_rle_flush(coder);
				break;
			}

			// Grab the (possibly new) RLE chunk size and
			// validate it.
			coder->rle.size = coder->options->rle;
			if (coder->rle.size > LZMA_SUBBLOCK_RLE_MAX)
				return LZMA_HEADER_ERROR;

			if (coder->subblock.size != 0
					&& coder->rle.size
						!= LZMA_SUBBLOCK_RLE_OFF
					&& coder->subblock.size
						% coder->rle.size == 0) {

				// Initialize coder->rle.buffer if we don't
				// have RLE already running.
				if (coder->rle.count == 0)
					memcpy(coder->rle.buffer,
							coder->subblock.data,
							coder->rle.size);

				// Test if coder->subblock.data is repeating.
				const size_t count = coder->subblock.size
						/ coder->rle.size;
				if (is_repeating(coder->rle.buffer,
						coder->rle.size,
						coder->subblock.data, count)) {
					if (LZMA_VLI_VALUE_MAX - count
							< coder->rle.count)
						return LZMA_PROG_ERROR;

					coder->rle.count += count;
					coder->subblock.size = 0;

				} else if (coder->rle.count > 0) {
					// It's not repeating or at least not
					// with the same byte sequence as the
					// earlier Subblock Data buffers. We
					// have some data pending in the RLE
					// buffer already, so do a flush.
					// Once flushed, we will check again
					// if the Subblock Data happens to
					// contain a different repeating
					// sequence.
					subblock_rle_flush(coder);
					break;
				}
			}
		}

		// If we now have some data left in coder->subblock, the RLE
		// buffer is empty and we must write a regular Subblock Data.
		if (coder->subblock.size > 0) {
			assert(coder->rle.count == 0);
			coder->tmp = coder->subblock.size - 1;
			coder->sequence = SEQ_DATA_SIZE_0;
			break;
		}

		// Check if we should enable Subfilter.
		if (coder->subfilter.mode == SUB_SET) {
			if (coder->rle.count > 0)
				subblock_rle_flush(coder);
			else
				coder->sequence = SEQ_SUBFILTER_INIT;
			break;
		}

		// Check if we have just finished Subfiltering.
		if (coder->subfilter.mode == SUB_END_MARKER) {
			if (coder->rle.count > 0) {
				subblock_rle_flush(coder);
				break;
			}

			write_byte(0x50);
			coder->subfilter.mode = SUB_NONE;
			if (*out_pos == out_size)
				return LZMA_OK;
		}

		// Check if we have already written everything.
		if (action == LZMA_FINISH && *in_pos == in_size
				&& coder->subfilter.mode == SUB_NONE) {
			if (coder->rle.count > 0) {
				subblock_rle_flush(coder);
				break;
			}

			if (coder->uncompressed_size
					== LZMA_VLI_VALUE_UNKNOWN) {
				// NOTE: No need to use write_byte() here
				// since we are finishing.
				out[*out_pos] = 0x10;
				++*out_pos;
			} else if (coder->uncompressed_size != 0) {
				return LZMA_DATA_ERROR;
			}

			return LZMA_STREAM_END;
		}

		// Otherwise we have more work to do.
		coder->sequence = SEQ_FILL;
		break;

	case SEQ_RLE_COUNT_0:
		// Make the Data field properly aligned, but only if the data
		// chunk to be repeated isn't extremely small. We have four
		// bytes for Count and one byte for Size, thus the number five.
		if (coder->rle.size >= RLE_MIN_SIZE_FOR_ALIGN
				&& subblock_align(
					coder, out, out_pos, out_size, 5))
			return LZMA_OK;

		assert(coder->rle.count > 0);

		write_byte(0x30 | (coder->tmp & 0x0F));

		coder->sequence = SEQ_RLE_COUNT_1;
		break;

	case SEQ_RLE_COUNT_1:
		write_byte(coder->tmp >> 4);
		coder->sequence = SEQ_RLE_COUNT_2;
		break;

	case SEQ_RLE_COUNT_2:
		write_byte(coder->tmp >> 12);
		coder->sequence = SEQ_RLE_COUNT_3;
		break;

	case SEQ_RLE_COUNT_3:
		write_byte(coder->tmp >> 20);

		if (coder->rle.count > REPEAT_COUNT_MAX)
			coder->rle.count -= REPEAT_COUNT_MAX;
		else
			coder->rle.count = 0;

		coder->sequence = SEQ_RLE_SIZE;
		break;

	case SEQ_RLE_SIZE:
		assert(coder->rle.size >= LZMA_SUBBLOCK_RLE_MIN);
		assert(coder->rle.size <= LZMA_SUBBLOCK_RLE_MAX);
		write_byte(coder->rle.size - 1);
		coder->sequence = SEQ_RLE_DATA;
		break;

	case SEQ_RLE_DATA:
		bufcpy(coder->rle.buffer, &coder->pos, coder->rle.size,
				out, out_pos, out_size);
		if (coder->pos < coder->rle.size)
			return LZMA_OK;

		coder->alignment.out_pos += coder->rle.size;

		coder->pos = 0;
		coder->sequence = SEQ_FLUSH;
		break;

	case SEQ_DATA_SIZE_0:
		// We need four bytes for the Size field.
		if (subblock_align(coder, out, out_pos, out_size, 4))
			return LZMA_OK;

		write_byte(0x20 | (coder->tmp & 0x0F));
		coder->sequence = SEQ_DATA_SIZE_1;
		break;

	case SEQ_DATA_SIZE_1:
		write_byte(coder->tmp >> 4);
		coder->sequence = SEQ_DATA_SIZE_2;
		break;

	case SEQ_DATA_SIZE_2:
		write_byte(coder->tmp >> 12);
		coder->sequence = SEQ_DATA_SIZE_3;
		break;

	case SEQ_DATA_SIZE_3:
		write_byte(coder->tmp >> 20);
		coder->sequence = SEQ_DATA;
		break;

	case SEQ_DATA:
		bufcpy(coder->subblock.data, &coder->pos,
				coder->subblock.size, out, out_pos, out_size);
		if (coder->pos < coder->subblock.size)
			return LZMA_OK;

		coder->alignment.out_pos += coder->subblock.size;

		coder->subblock.size = 0;
		coder->pos = 0;
		coder->sequence = SEQ_FLUSH;
		break;

	case SEQ_SUBFILTER_INIT: {
		assert(coder->subblock.size == 0);
		assert(coder->rle.count == 0);
		assert(coder->subfilter.mode == SUB_SET);
		assert(coder->options != NULL);

		// There must be a filter specified.
		if (coder->options->subfilter_options.id
				== LZMA_VLI_VALUE_UNKNOWN)
			return LZMA_HEADER_ERROR;

		// Initialize a raw encoder to work as a Subfilter.
		lzma_options_filter options[2];
		options[0] = coder->options->subfilter_options;
		options[1].id = LZMA_VLI_VALUE_UNKNOWN;

		return_if_error(lzma_raw_encoder_init(
				&coder->subfilter.subcoder, allocator,
				options, LZMA_VLI_VALUE_UNKNOWN, false));

		// Encode the Filter Flags field into a buffer. This should
		// never fail since we have already successfully initialized
		// the Subfilter itself. Check it still, and return
		// LZMA_PROG_ERROR instead of whatever the ret would say.
		lzma_ret ret = lzma_filter_flags_size(
				&coder->subfilter.flags_size, options);
		assert(ret == LZMA_OK);
		if (ret != LZMA_OK)
			return LZMA_PROG_ERROR;

		coder->subfilter.flags = lzma_alloc(
				coder->subfilter.flags_size, allocator);
		if (coder->subfilter.flags == NULL)
			return LZMA_MEM_ERROR;

		// Now we have a big-enough buffer. Encode the Filter Flags.
		// Like above, this should never fail.
		size_t dummy = 0;
		ret = lzma_filter_flags_encode(coder->subfilter.flags,
				&dummy, coder->subfilter.flags_size, options);
		assert(ret == LZMA_OK);
		assert(dummy == coder->subfilter.flags_size);
		if (ret != LZMA_OK || dummy != coder->subfilter.flags_size)
			return LZMA_PROG_ERROR;

		// Write a Subblock indicating a new Subfilter.
		write_byte(0x40);

		coder->options->subfilter_mode = LZMA_SUBFILTER_RUN;
		coder->subfilter.mode = SUB_RUN;
		coder->sequence = SEQ_SUBFILTER_FLAGS;
	}

	// Fall through

	case SEQ_SUBFILTER_FLAGS:
		// Copy the Filter Flags to the output stream.
		bufcpy(coder->subfilter.flags, &coder->pos,
				coder->subfilter.flags_size,
				out, out_pos, out_size);
		if (coder->pos < coder->subfilter.flags_size)
			return LZMA_OK;

		lzma_free(coder->subfilter.flags, allocator);
		coder->subfilter.flags = NULL;

		coder->pos = 0;
		coder->sequence = SEQ_FILL;
		break;

	default:
		return LZMA_PROG_ERROR;
	}

	return LZMA_OK;
}


static lzma_ret
subblock_encode(lzma_coder *coder, lzma_allocator *allocator,
		const uint8_t *restrict in, size_t *restrict in_pos,
		size_t in_size, uint8_t *restrict out,
		size_t *restrict out_pos, size_t out_size, lzma_action action)
{
	if (coder->next.code == NULL)
		return subblock_buffer(coder, allocator, in, in_pos, in_size,
				out, out_pos, out_size, action);

	while (*out_pos < out_size
			&& (*in_pos < in_size || action == LZMA_FINISH)) {
		if (!coder->next_finished
				&& coder->temp.pos == coder->temp.size) {
			coder->temp.pos = 0;
			coder->temp.size = 0;

			const lzma_ret ret = coder->next.code(coder->next.coder,
					allocator, in, in_pos, in_size,
					coder->temp.buffer, &coder->temp.size,
					LZMA_BUFFER_SIZE, action);
			if (ret == LZMA_STREAM_END) {
				assert(action == LZMA_FINISH);
				coder->next_finished = true;
			} else if (coder->temp.size == 0 || ret != LZMA_OK) {
				return ret;
			}
		}

		const lzma_ret ret = subblock_buffer(coder, allocator,
				coder->temp.buffer, &coder->temp.pos,
				coder->temp.size, out, out_pos, out_size,
				coder->next_finished ? LZMA_FINISH : LZMA_RUN);
		if (ret == LZMA_STREAM_END) {
			assert(action == LZMA_FINISH);
			assert(coder->next_finished);
			return LZMA_STREAM_END;
		}

		if (ret != LZMA_OK)
			return ret;
	}

	return LZMA_OK;
}


static void
subblock_encoder_end(lzma_coder *coder, lzma_allocator *allocator)
{
	lzma_next_coder_end(&coder->next, allocator);
	lzma_next_coder_end(&coder->subfilter.subcoder, allocator);
	lzma_free(coder->subblock.data, allocator);
	lzma_free(coder->subfilter.flags, allocator);
	return;
}


extern lzma_ret
lzma_subblock_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
		const lzma_filter_info *filters)
{
	if (next->coder == NULL) {
		next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
		if (next->coder == NULL)
			return LZMA_MEM_ERROR;

		next->code = &subblock_encode;
		next->end = &subblock_encoder_end;

		next->coder->next = LZMA_NEXT_CODER_INIT;
		next->coder->subblock.data = NULL;
		next->coder->subblock.limit = 0;
		next->coder->subfilter.subcoder = LZMA_NEXT_CODER_INIT;
	} else {
		lzma_next_coder_end(&next->coder->subfilter.subcoder,
				allocator);
		lzma_free(next->coder->subfilter.flags, allocator);
	}

	next->coder->subfilter.flags = NULL;

	next->coder->next_finished = false;
	next->coder->sequence = SEQ_FILL;
	next->coder->options = filters[0].options;
	next->coder->uncompressed_size = filters[0].uncompressed_size;
	next->coder->pos = 0;

	next->coder->alignment.in_pending = 0;
	next->coder->alignment.in_pos = 0;
	next->coder->alignment.out_pos = 0;
	next->coder->subblock.size = 0;
	next->coder->rle.count = 0;
	next->coder->subfilter.mode = SUB_NONE;

	next->coder->temp.pos = 0;
	next->coder->temp.size = 0;

	// Grab some values from the options structure if it is available.
	size_t subblock_size_limit;
	if (next->coder->options != NULL) {
		if (next->coder->options->alignment
					< LZMA_SUBBLOCK_ALIGNMENT_MIN
				|| next->coder->options->alignment
					> LZMA_SUBBLOCK_ALIGNMENT_MAX) {
			subblock_encoder_end(next->coder, allocator);
			return LZMA_HEADER_ERROR;
		}
		next->coder->alignment.multiple
				= next->coder->options->alignment;
		subblock_size_limit = next->coder->options->subblock_data_size;
	} else {
		next->coder->alignment.multiple
				= LZMA_SUBBLOCK_ALIGNMENT_DEFAULT;
		subblock_size_limit = LZMA_SUBBLOCK_DATA_SIZE_DEFAULT;
	}

	return_if_error(subblock_data_size(next->coder, allocator,
				subblock_size_limit));

	return lzma_next_filter_init(
			&next->coder->next, allocator, filters + 1);
}