// SPDX-License-Identifier: 0BSD
///////////////////////////////////////////////////////////////////////////////
//
/// \file test_filter_str.c
/// \brief Tests Filter string functions
//
// Author: Jia Tan
//
///////////////////////////////////////////////////////////////////////////////
#include "tests.h"
static void
test_lzma_str_to_filters(void)
{
lzma_filter filters[LZMA_FILTERS_MAX + 1];
int error_pos;
// Test with NULL string.
assert_true(lzma_str_to_filters(NULL, &error_pos, filters, 0,
NULL) != NULL);
// Test with NULL filter array.
assert_true(lzma_str_to_filters("lzma2", &error_pos, NULL, 0,
NULL) != NULL);
// Test with unsupported flags.
assert_true(lzma_str_to_filters("lzma2", &error_pos, filters,
UINT32_MAX, NULL) != NULL);
assert_true(lzma_str_to_filters("lzma2", &error_pos, filters,
LZMA_STR_NO_SPACES << 1, NULL) != NULL);
assert_true(lzma_str_to_filters("lzma2", &error_pos, filters,
LZMA_STR_NO_SPACES, NULL) != NULL);
// Test with empty string.
assert_true(lzma_str_to_filters("", &error_pos,
filters, 0, NULL) != NULL);
assert_int_eq(error_pos, 0);
// Test with invalid filter name and missing filter name.
assert_true(lzma_str_to_filters("lzma2 abcd", &error_pos,
filters, 0, NULL) != NULL);
assert_int_eq(error_pos, 6);
assert_true(lzma_str_to_filters("lzma2--abcd", &error_pos,
filters, 0, NULL) != NULL);
assert_int_eq(error_pos, 7);
assert_true(lzma_str_to_filters("lzma2--", &error_pos,
filters, 0, NULL) != NULL);
assert_int_eq(error_pos, 7);
// Test LZMA_STR_ALL_FILTERS flag (should work with LZMA1 if built).
#if defined(HAVE_ENCODER_LZMA1) || defined(HAVE_DECODER_LZMA1)
// Using LZMA1 as a Filter should fail without LZMA_STR_ALL_FILTERS.
assert_true(lzma_str_to_filters("lzma1", &error_pos, filters,
0, NULL) != NULL);
assert_int_eq(error_pos, 0);
assert_true(lzma_str_to_filters("lzma1", &error_pos, filters,
LZMA_STR_ALL_FILTERS, NULL) == NULL);
// Verify Filters array IDs are correct. The array should contain
// only two elements:
// 1. LZMA1 Filter
// 2. LZMA_VLI_UNKNOWN filter array terminator
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA1);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
lzma_filters_free(filters, NULL);
#endif
// Test LZMA_STR_NO_VALIDATION flag. This should allow having the
// same Filter multiple times in the chain and having a non-last
// Filter like lzma2 appear before another Filter.
// Without the flag, "lzma2 lzma2" must fail.
assert_true(lzma_str_to_filters("lzma2 lzma2", &error_pos, filters,
0, NULL) != NULL);
assert_true(lzma_str_to_filters("lzma2 lzma2", &error_pos, filters,
LZMA_STR_NO_VALIDATION, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[2].id, LZMA_VLI_UNKNOWN);
lzma_filters_free(filters, NULL);
// Should fail with invalid Filter options (lc + lp must be <= 4).
assert_true(lzma_str_to_filters("lzma2:lc=3,lp=3", &error_pos, filters,
LZMA_STR_NO_VALIDATION, NULL) != NULL);
// Test invalid option name.
assert_true(lzma_str_to_filters("lzma2:foo=1,bar=2", &error_pos,
filters, 0, NULL) != NULL);
assert_int_eq(error_pos, 6);
// Test missing option value.
assert_true(lzma_str_to_filters("lzma2:lc=", &error_pos,
filters, 0, NULL) != NULL);
assert_int_eq(error_pos, 9);
assert_true(lzma_str_to_filters("lzma2:=,pb=1", &error_pos,
filters, 0, NULL) != NULL);
assert_int_eq(error_pos, 6);
// Test unsupported preset value.
assert_true(lzma_str_to_filters("-10", &error_pos,
filters, 0, NULL) != NULL);
assert_int_eq(error_pos, 2);
assert_true(lzma_str_to_filters("-5f", &error_pos,
filters, 0, NULL) != NULL);
assert_int_eq(error_pos, 2);
// Test filter chain too long.
assert_true(lzma_str_to_filters("lzma2 lzma2 lzma2 lzma2 lzma2",
&error_pos, filters, LZMA_STR_NO_VALIDATION,
NULL) != NULL);
assert_int_eq(error_pos, 24);
#if defined(HAVE_ENCODER_LZMA1) || defined(HAVE_DECODER_LZMA1)
// Should fail with a Filter not supported in the .xz format (lzma1).
assert_true(lzma_str_to_filters("lzma1", &error_pos, filters,
LZMA_STR_NO_VALIDATION, NULL) != NULL);
#endif
// Test setting options with the "=" format.
assert_true(lzma_str_to_filters("lzma2=dict=4096,lc=2,lp=2,pb=1,"
"mode=fast,nice=3,mf=hc3,depth=10", &error_pos,
filters, 0, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
lzma_options_lzma *opts = filters[0].options;
assert_uint_eq(opts->dict_size, 4096);
assert_uint_eq(opts->lc, 2);
assert_uint_eq(opts->lp, 2);
assert_uint_eq(opts->pb, 1);
assert_uint_eq(opts->mode, LZMA_MODE_FAST);
assert_uint_eq(opts->nice_len, 3);
assert_uint_eq(opts->mf, LZMA_MF_HC3);
assert_uint_eq(opts->depth, 10);
lzma_filters_free(filters, NULL);
#if defined(HAVE_ENCODER_X86) || defined(HAVE_DECODER_X86)
// Test BCJ Filter options.
assert_true(lzma_str_to_filters("x86:start=16", &error_pos, filters,
LZMA_STR_NO_VALIDATION, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_X86);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
lzma_options_bcj *bcj_opts = filters[0].options;
assert_uint_eq(bcj_opts->start_offset, 16);
lzma_filters_free(filters, NULL);
#endif
#if defined(HAVE_ENCODER_DELTA) || defined(HAVE_DECODER_DELTA)
// Test Delta Filter options.
assert_true(lzma_str_to_filters("delta:dist=20", &error_pos, filters,
LZMA_STR_NO_VALIDATION, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_DELTA);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
lzma_options_delta *delta_opts = filters[0].options;
assert_uint_eq(delta_opts->dist, 20);
lzma_filters_free(filters, NULL);
#endif
// Test skipping leading spaces.
assert_true(lzma_str_to_filters(" lzma2", &error_pos, filters,
0, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
lzma_filters_free(filters, NULL);
// Test skipping trailing spaces.
assert_true(lzma_str_to_filters("lzma2 ", &error_pos, filters,
0, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
lzma_filters_free(filters, NULL);
// Test with "--" instead of space separating.
assert_true(lzma_str_to_filters("lzma2--lzma2", &error_pos, filters,
LZMA_STR_NO_VALIDATION, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[2].id, LZMA_VLI_UNKNOWN);
lzma_filters_free(filters, NULL);
// Test preset with and without leading "-", and with "e".
assert_true(lzma_str_to_filters("-3", &error_pos, filters,
0, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
lzma_filters_free(filters, NULL);
assert_true(lzma_str_to_filters("4", &error_pos, filters,
0, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
lzma_filters_free(filters, NULL);
assert_true(lzma_str_to_filters("9e", &error_pos, filters,
0, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
lzma_filters_free(filters, NULL);
// Test using a preset as an lzma2 option.
assert_true(lzma_str_to_filters("lzma2:preset=9e", &error_pos, filters,
0, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
lzma_filters_free(filters, NULL);
// Test setting dictionary size with invalid modifier suffix.
assert_true(lzma_str_to_filters("lzma2:dict=4096ZiB", &error_pos, filters,
0, NULL) != NULL);
assert_true(lzma_str_to_filters("lzma2:dict=4096KiBs", &error_pos, filters,
0, NULL) != NULL);
// Test option that cannot have multiplier modifier.
assert_true(lzma_str_to_filters("lzma2:pb=1k", &error_pos, filters,
0, NULL) != NULL);
// Test option value too large.
assert_true(lzma_str_to_filters("lzma2:dict=4096GiB", &error_pos, filters,
0, NULL) != NULL);
// Test valid uses of multiplier modifiers (k,m,g).
assert_true(lzma_str_to_filters("lzma2:dict=4096KiB", &error_pos, filters,
0, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
opts = filters[0].options;
assert_uint_eq(opts->dict_size, 4096 << 10);
lzma_filters_free(filters, NULL);
assert_true(lzma_str_to_filters("lzma2:dict=40Mi", &error_pos, filters,
0, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
opts = filters[0].options;
assert_uint_eq(opts->dict_size, 40 << 20);
lzma_filters_free(filters, NULL);
assert_true(lzma_str_to_filters("lzma2:dict=1g", &error_pos, filters,
0, NULL) == NULL);
assert_uint_eq(filters[0].id, LZMA_FILTER_LZMA2);
assert_uint_eq(filters[1].id, LZMA_VLI_UNKNOWN);
opts = filters[0].options;
assert_uint_eq(opts->dict_size, 1 << 30);
lzma_filters_free(filters, NULL);
}
static void
test_lzma_str_from_filters(void)
{
lzma_filter filters[LZMA_FILTERS_MAX];
filters[0].id = LZMA_VLI_UNKNOWN;
char *output_str = NULL;
// Test basic NULL inputs.
assert_lzma_ret(lzma_str_from_filters(NULL, filters, 0, NULL),
LZMA_PROG_ERROR);
assert_lzma_ret(lzma_str_from_filters(&output_str, NULL, 0, NULL),
LZMA_PROG_ERROR);
// Test with empty filters array.
assert_lzma_ret(lzma_str_from_filters(&output_str, filters, 0, NULL),
LZMA_OPTIONS_ERROR);
// Create a simple filter array only containing an LZMA2 Filter.
assert_true(lzma_str_to_filters("lzma2", NULL, filters, 0, NULL)
== NULL);
// Test with bad flags.
assert_lzma_ret(lzma_str_from_filters(&output_str, filters,
LZMA_STR_ALL_FILTERS, NULL), LZMA_OPTIONS_ERROR);
assert_lzma_ret(lzma_str_from_filters(&output_str, filters,
LZMA_STR_NO_VALIDATION, NULL), LZMA_OPTIONS_ERROR);
// Test with no flags.
assert_lzma_ret(lzma_str_from_filters(&output_str, filters, 0, NULL),
LZMA_OK);
assert_str_eq(output_str, "lzma2");
free(output_str);
// Test LZMA_STR_ENCODER flag.
// Only the the return value is checked since the actual string
// may change in the future (even though it is unlikely).
// The order of options or the inclusion of new options could
// cause a change in output, so we will avoid hardcoding an
// expected result.
assert_lzma_ret(lzma_str_from_filters(&output_str, filters,
LZMA_STR_ENCODER, NULL), LZMA_OK);
free(output_str);
// Test LZMA_STR_DECODER flag.
assert_lzma_ret(lzma_str_from_filters(&output_str, filters,
LZMA_STR_DECODER, NULL), LZMA_OK);
free(output_str);
// Test LZMA_STR_GETOPT_LONG flag.
assert_lzma_ret(lzma_str_from_filters(&output_str, filters,
LZMA_STR_GETOPT_LONG, NULL), LZMA_OK);
free(output_str);
// Test LZMA_STR_NO_SPACES flag.
assert_lzma_ret(lzma_str_from_filters(&output_str, filters,
LZMA_STR_NO_SPACES, NULL), LZMA_OK);
// Check to be sure there are no spaces.
assert_true(strchr(output_str, ' ') == NULL);
free(output_str);
lzma_filters_free(filters, NULL);
#if defined(HAVE_ENCODER_X86) || defined(HAVE_DECODER_X86)
assert_true(lzma_str_to_filters("x86 lzma2", NULL, filters, 0, NULL)
== NULL);
assert_lzma_ret(lzma_str_from_filters(&output_str, filters, 0, NULL),
LZMA_OK);
assert_str_eq(output_str, "x86 lzma2");
free(output_str);
// Test setting BCJ option to NULL.
assert_false(filters[0].options == NULL);
free(filters[0].options);
filters[0].options = NULL;
assert_lzma_ret(lzma_str_from_filters(&output_str, filters, 0, NULL),
LZMA_OK);
assert_str_eq(output_str, "x86 lzma2");
lzma_filters_free(filters, NULL);
free(output_str);
#endif
lzma_options_lzma opts;
assert_false(lzma_lzma_preset(&opts, LZMA_PRESET_DEFAULT));
// Test with too many Filters (array terminated after 4+ filters).
lzma_filter oversized_filters[LZMA_FILTERS_MAX + 2];
for (uint32_t i = 0; i < ARRAY_SIZE(oversized_filters) - 1; i++) {
oversized_filters[i].id = LZMA_FILTER_LZMA2;
oversized_filters[i].options = &opts;
}
oversized_filters[LZMA_FILTERS_MAX + 1].id = LZMA_VLI_UNKNOWN;
oversized_filters[LZMA_FILTERS_MAX + 1].options = NULL;
assert_lzma_ret(lzma_str_from_filters(&output_str, oversized_filters,
0, NULL), LZMA_OPTIONS_ERROR);
// Test with NULL filter options (when they cannot be NULL).
filters[0].id = LZMA_FILTER_LZMA2;
filters[0].options = NULL;
filters[1].id = LZMA_VLI_UNKNOWN;
assert_lzma_ret(lzma_str_from_filters(&output_str, filters,
LZMA_STR_ENCODER, NULL), LZMA_OPTIONS_ERROR);
// Test with bad Filter ID.
filters[0].id = LZMA_VLI_UNKNOWN - 1;
assert_lzma_ret(lzma_str_from_filters(&output_str, filters,
LZMA_STR_ENCODER, NULL), LZMA_OPTIONS_ERROR);
}
static const char supported_encoders[][9] = {
"lzma2",
#ifdef HAVE_ENCODER_X86
"x86",
#endif
#ifdef HAVE_ENCODER_POWERPC
"powerpc",
#endif
#ifdef HAVE_ENCODER_IA64
"ia64",
#endif
#ifdef HAVE_ENCODER_ARM
"arm",
#endif
#ifdef HAVE_ENCODER_ARMTHUMB
"armthumb",
#endif
#ifdef HAVE_ENCODER_SPARC
"sparc",
#endif
#ifdef HAVE_ENCODER_ARM64
"arm64",
#endif
#ifdef HAVE_ENCODER_DELTA
"delta",
#endif
};
static const char supported_decoders[][9] = {
"lzma2",
#ifdef HAVE_DECODER_X86
"x86",
#endif
#ifdef HAVE_DECODER_POWERPC
"powerpc",
#endif
#ifdef HAVE_DECODER_IA64
"ia64",
#endif
#ifdef HAVE_DECODER_ARM
"arm",
#endif
#ifdef HAVE_DECODER_ARMTHUMB
"armthumb",
#endif
#ifdef HAVE_DECODER_SPARC
"sparc",
#endif
#ifdef HAVE_DECODER_ARM64
"arm64",
#endif
#ifdef HAVE_DECODER_RISCV
"riscv",
#endif
#ifdef HAVE_DECODER_DELTA
"delta",
#endif
};
static const char supported_filters[][9] = {
"lzma2",
#if defined(HAVE_ENCODER_X86) || defined(HAVE_DECODER_X86)
"x86",
#endif
#if defined(HAVE_ENCODER_POWERPC) || defined(HAVE_DECODER_POWERPC)
"powerpc",
#endif
#if defined(HAVE_ENCODER_IA64) || defined(HAVE_DECODER_IA64)
"ia64",
#endif
#if defined(HAVE_ENCODER_ARM) || defined(HAVE_DECODER_ARM)
"arm",
#endif
#if defined(HAVE_ENCODER_ARMTHUMB) || defined(HAVE_DECODER_ARMTHUMB)
"armthumb",
#endif
#if defined(HAVE_ENCODER_SPARC) || defined(HAVE_DECODER_SPARC)
"sparc",
#endif
#if defined(HAVE_ENCODER_ARM64) || defined(HAVE_DECODER_ARM64)
"arm64",
#endif
#if defined(HAVE_ENCODER_RISCV) || defined(HAVE_DECODER_RISCV)
"riscv",
#endif
#if defined(HAVE_ENCODER_DELTA) || defined(HAVE_DECODER_DELTA)
"delta",
#endif
};
static void
test_lzma_str_list_filters(void)
{
// Test with basic NULL inputs.
assert_lzma_ret(lzma_str_list_filters(NULL, LZMA_VLI_UNKNOWN, 0,
NULL), LZMA_PROG_ERROR);
char *str = NULL;
// Test with bad flags.
assert_lzma_ret(lzma_str_list_filters(&str, LZMA_VLI_UNKNOWN,
LZMA_STR_NO_VALIDATION , NULL), LZMA_OPTIONS_ERROR);
assert_lzma_ret(lzma_str_list_filters(&str, LZMA_VLI_UNKNOWN,
LZMA_STR_NO_SPACES, NULL), LZMA_OPTIONS_ERROR);
// Test with bad Filter ID.
assert_lzma_ret(lzma_str_list_filters(&str, LZMA_VLI_UNKNOWN - 1,
0, NULL), LZMA_OPTIONS_ERROR);
// Test LZMA_STR_ENCODER flag.
assert_lzma_ret(lzma_str_list_filters(&str, LZMA_VLI_UNKNOWN,
LZMA_STR_ENCODER, NULL), LZMA_OK);
for (uint32_t i = 0; i < ARRAY_SIZE(supported_encoders); i++)
assert_str_contains(str, supported_encoders[i]);
free(str);
// Test LZMA_STR_DECODER flag.
assert_lzma_ret(lzma_str_list_filters(&str, LZMA_VLI_UNKNOWN,
LZMA_STR_DECODER, NULL), LZMA_OK);
for (uint32_t i = 0; i < ARRAY_SIZE(supported_decoders); i++)
assert_str_contains(str, supported_decoders[i]);
free(str);
// Test LZMA_STR_GETOPT_LONG flag.
assert_lzma_ret(lzma_str_list_filters(&str, LZMA_VLI_UNKNOWN,
LZMA_STR_GETOPT_LONG, NULL), LZMA_OK);
free(str);
// Test LZMA_STR_ALL_FILTERS flag.
assert_lzma_ret(lzma_str_list_filters(&str, LZMA_VLI_UNKNOWN,
LZMA_STR_ALL_FILTERS, NULL), LZMA_OK);
#if defined(HAVE_ENCODER_LZMA1) || defined(HAVE_DECODER_LZMA1)
// With the flag, the string should contain the LZMA1 Filter.
assert_str_contains(str, "lzma1");
free(str);
// If a non .xz filter is specified, it should still list the Filter.
assert_lzma_ret(lzma_str_list_filters(&str, LZMA_FILTER_LZMA1,
0, NULL), LZMA_OK);
assert_str_eq(str, "lzma1");
#endif
free(str);
// Test with no flags.
assert_lzma_ret(lzma_str_list_filters(&str, LZMA_VLI_UNKNOWN,
0, NULL), LZMA_OK);
for (uint32_t i = 0; i < ARRAY_SIZE(supported_filters); i++)
assert_str_contains(str, supported_filters[i]);
assert_str_doesnt_contain(str, "lzma1");
free(str);
// Test providing a Filter ID.
assert_lzma_ret(lzma_str_list_filters(&str, LZMA_FILTER_LZMA2,
LZMA_STR_ALL_FILTERS, NULL), LZMA_OK);
assert_str_eq(str, "lzma2");
free(str);
}
extern int
main(int argc, char **argv)
{
tuktest_start(argc, argv);
tuktest_run(test_lzma_str_to_filters);
tuktest_run(test_lzma_str_from_filters);
tuktest_run(test_lzma_str_list_filters);
return tuktest_end();
}