// SPDX-License-Identifier: 0BSD
///////////////////////////////////////////////////////////////////////////////
//
/// \file test_filter_flags.c
/// \brief Tests Filter Flags coders
//
// Authors: Jia Tan
// Lasse Collin
//
///////////////////////////////////////////////////////////////////////////////
#include "tests.h"
// FIXME: This is from src/liblzma/common/common.h but it cannot be
// included here. This constant is needed in only a few files, perhaps
// move it to some other internal header or create a new one?
#define LZMA_FILTER_RESERVED_START (LZMA_VLI_C(1) << 62)
#if defined(HAVE_ENCODERS)
// No tests are run without encoders, so init the global filters
// only when the encoders are enabled.
static lzma_filter lzma1_filter = { LZMA_FILTER_LZMA1, NULL };
static lzma_filter lzma2_filter = { LZMA_FILTER_LZMA2, NULL };
static lzma_filter delta_filter = { LZMA_FILTER_DELTA, NULL };
static lzma_filter bcj_filters_encoders[] = {
#ifdef HAVE_ENCODER_X86
{ LZMA_FILTER_X86, NULL },
#endif
#ifdef HAVE_ENCODER_POWERPC
{ LZMA_FILTER_POWERPC, NULL },
#endif
#ifdef HAVE_ENCODER_IA64
{ LZMA_FILTER_IA64, NULL },
#endif
#ifdef HAVE_ENCODER_ARM
{ LZMA_FILTER_ARM, NULL },
#endif
#ifdef HAVE_ENCODER_ARM64
{ LZMA_FILTER_ARM64, NULL },
#endif
#ifdef HAVE_ENCODER_ARMTHUMB
{ LZMA_FILTER_ARMTHUMB, NULL },
#endif
#ifdef HAVE_ENCODER_SPARC
{ LZMA_FILTER_SPARC, NULL },
#endif
#ifdef HAVE_ENCODER_RISCV
{ LZMA_FILTER_RISCV, NULL },
#endif
};
// HAVE_ENCODERS ifdef not terminated here because decoders are
// only used if encoders are, but encoders can still be used
// even if decoders are not.
#ifdef HAVE_DECODERS
static lzma_filter bcj_filters_decoders[] = {
#ifdef HAVE_DECODER_X86
{ LZMA_FILTER_X86, NULL },
#endif
#ifdef HAVE_DECODER_POWERPC
{ LZMA_FILTER_POWERPC, NULL },
#endif
#ifdef HAVE_DECODER_IA64
{ LZMA_FILTER_IA64, NULL },
#endif
#ifdef HAVE_DECODER_ARM
{ LZMA_FILTER_ARM, NULL },
#endif
#ifdef HAVE_DECODER_ARM64
{ LZMA_FILTER_ARM64, NULL },
#endif
#ifdef HAVE_DECODER_ARMTHUMB
{ LZMA_FILTER_ARMTHUMB, NULL },
#endif
#ifdef HAVE_DECODER_SPARC
{ LZMA_FILTER_SPARC, NULL },
#endif
#ifdef HAVE_DECODER_RISCV
{ LZMA_FILTER_RISCV, NULL },
#endif
};
#endif
#endif
static void
test_lzma_filter_flags_size(void)
{
#ifndef HAVE_ENCODERS
assert_skip("Encoder support disabled");
#else
// For each supported filter, test that the size can be calculated
// and that the size calculated is reasonable. A reasonable size
// must be greater than 0, but less than the maximum size for the
// block header.
uint32_t size = 0;
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA1)) {
assert_lzma_ret(lzma_filter_flags_size(&size,
&lzma1_filter), LZMA_PROG_ERROR);
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
assert_lzma_ret(lzma_filter_flags_size(&size,
&lzma2_filter), LZMA_OK);
assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX);
}
// Do not use macro ARRAY_SIZE() in the for loop condition directly.
// If the BCJ filters are not configured and built, then ARRAY_SIZE()
// will return 0 and cause a warning because the for loop will never
// execute since any unsigned number cannot be < 0 (-Werror=type-limits).
const uint32_t bcj_array_size = ARRAY_SIZE(bcj_filters_encoders);
for (uint32_t i = 0; i < bcj_array_size; i++) {
assert_lzma_ret(lzma_filter_flags_size(&size,
&bcj_filters_encoders[i]), LZMA_OK);
assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX);
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
assert_lzma_ret(lzma_filter_flags_size(&size,
&delta_filter), LZMA_OK);
assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX);
}
// Test invalid Filter IDs
lzma_filter bad_filter = { 2, NULL };
assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter),
LZMA_OPTIONS_ERROR);
bad_filter.id = LZMA_VLI_MAX;
assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter),
LZMA_PROG_ERROR);
bad_filter.id = LZMA_FILTER_RESERVED_START;
assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter),
LZMA_PROG_ERROR);
#endif
}
// Helper function for test_lzma_filter_flags_encode.
// The should_encode parameter represents if the encoding operation
// is expected to fail.
// Avoid data -> encode -> decode -> compare to data.
// Instead create expected encoding and compare to result from
// lzma_filter_flags_encode.
// Filter Flags in .xz are encoded as:
// |Filter ID (VLI)|Size of Properties (VLI)|Filter Properties|
#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
static void
verify_filter_flags_encode(lzma_filter *filter, bool should_encode)
{
uint32_t size = 0;
// First calculate the size of Filter Flags to know how much
// memory to allocate to hold the encoded Filter Flags
assert_lzma_ret(lzma_filter_flags_size(&size, filter), LZMA_OK);
uint8_t *encoded_out = tuktest_malloc(size * sizeof(uint8_t));
size_t out_pos = 0;
if (!should_encode) {
assert_false(lzma_filter_flags_encode(filter, encoded_out,
&out_pos, size) == LZMA_OK);
return;
}
// Next encode the Filter Flags for the provided filter
assert_lzma_ret(lzma_filter_flags_encode(filter, encoded_out,
&out_pos, size), LZMA_OK);
assert_uint_eq(size, out_pos);
// Next decode the VLI for the Filter ID and verify it matches
// the expected Filter ID
size_t filter_id_vli_size = 0;
lzma_vli filter_id = 0;
assert_lzma_ret(lzma_vli_decode(&filter_id, NULL, encoded_out,
&filter_id_vli_size, size), LZMA_OK);
assert_uint_eq(filter->id, filter_id);
// Next decode the Size of Properties and ensure it equals
// the expected size.
// Expected size should be:
// total filter flag length - size of filter id VLI + size of
// property size VLI
// Not verifying the contents of Filter Properties since
// that belongs in a different test
size_t size_of_properties_vli_size = 0;
lzma_vli size_of_properties = 0;
assert_lzma_ret(lzma_vli_decode(&size_of_properties, NULL,
encoded_out + filter_id_vli_size,
&size_of_properties_vli_size, size), LZMA_OK);
assert_uint_eq(size - (size_of_properties_vli_size +
filter_id_vli_size), size_of_properties);
}
#endif
static void
test_lzma_filter_flags_encode(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
assert_skip("Encoder or decoder support disabled");
#else
// No test for LZMA1 since the .xz format does not support LZMA1
// and so the flags cannot be encoded for that filter
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
// Test with NULL options that should fail
lzma_options_lzma *options = lzma2_filter.options;
lzma2_filter.options = NULL;
verify_filter_flags_encode(&lzma2_filter, false);
// Place options back in the filter, and test should pass
lzma2_filter.options = options;
verify_filter_flags_encode(&lzma2_filter, true);
}
// NOTE: Many BCJ filters require that start_offset is a multiple
// of some power of two. The Filter Flags encoder and decoder don't
// completely validate the options and thus 257 passes the tests
// with all BCJ filters. It would be caught when initializing
// a filter chain encoder or decoder.
lzma_options_bcj bcj_options = {
.start_offset = 257
};
const uint32_t bcj_array_size = ARRAY_SIZE(bcj_filters_encoders);
for (uint32_t i = 0; i < bcj_array_size; i++) {
// NULL options should pass for bcj filters
verify_filter_flags_encode(&bcj_filters_encoders[i], true);
lzma_filter bcj_with_options = {
bcj_filters_encoders[i].id, &bcj_options };
verify_filter_flags_encode(&bcj_with_options, true);
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
lzma_options_delta delta_opts_below_min = {
.type = LZMA_DELTA_TYPE_BYTE,
.dist = LZMA_DELTA_DIST_MIN - 1
};
lzma_options_delta delta_opts_above_max = {
.type = LZMA_DELTA_TYPE_BYTE,
.dist = LZMA_DELTA_DIST_MAX + 1
};
verify_filter_flags_encode(&delta_filter, true);
lzma_filter delta_filter_bad_options = {
LZMA_FILTER_DELTA, &delta_opts_below_min };
// Next test error case using minimum - 1 delta distance
verify_filter_flags_encode(&delta_filter_bad_options, false);
// Next test error case using maximum + 1 delta distance
delta_filter_bad_options.options = &delta_opts_above_max;
verify_filter_flags_encode(&delta_filter_bad_options, false);
// Next test NULL case
delta_filter_bad_options.options = NULL;
verify_filter_flags_encode(&delta_filter_bad_options, false);
}
// Test expected failing cases
lzma_filter bad_filter = { LZMA_FILTER_RESERVED_START, NULL };
size_t out_pos = 0;
size_t out_size = LZMA_BLOCK_HEADER_SIZE_MAX;
uint8_t out[LZMA_BLOCK_HEADER_SIZE_MAX];
// Filter ID outside of valid range
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos,
out_size), LZMA_PROG_ERROR);
out_pos = 0;
bad_filter.id = LZMA_VLI_MAX + 1;
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos,
out_size), LZMA_PROG_ERROR);
out_pos = 0;
// Invalid Filter ID
bad_filter.id = 2;
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos,
out_size), LZMA_OPTIONS_ERROR);
out_pos = 0;
// Out size too small
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
uint32_t bad_size = 0;
// First test with 0 output size
assert_lzma_ret(lzma_filter_flags_encode(
&lzma2_filter, out, &out_pos, 0),
LZMA_PROG_ERROR);
// Next calculate the size needed to encode and
// use less than that
assert_lzma_ret(lzma_filter_flags_size(&bad_size,
&lzma2_filter), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_encode(
&lzma2_filter, out, &out_pos,
bad_size - 1), LZMA_PROG_ERROR);
out_pos = 0;
}
// Invalid options
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
bad_filter.id = LZMA_FILTER_DELTA;
// First test with NULL options
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out,
&out_pos, out_size), LZMA_PROG_ERROR);
out_pos = 0;
// Next test with invalid options
lzma_options_delta bad_options = {
.dist = LZMA_DELTA_DIST_MAX + 1,
.type = LZMA_DELTA_TYPE_BYTE
};
bad_filter.options = &bad_options;
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out,
&out_pos, out_size), LZMA_PROG_ERROR);
}
#endif
}
// Helper function for test_lzma_filter_flags_decode.
// Encodes the filter_in without using lzma_filter_flags_encode.
// Leaves the specific assertions of filter_out options to the caller
// because it is agnostic to the type of options used in the call
#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
static void
verify_filter_flags_decode(lzma_filter *filter_in, lzma_filter *filter_out)
{
uint32_t total_size = 0;
assert_lzma_ret(lzma_filter_flags_size(&total_size, filter_in),
LZMA_OK);
assert_uint(total_size, >, 0);
uint8_t *filter_flag_buffer = tuktest_malloc(total_size);
uint32_t properties_size = 0;
size_t out_pos = 0;
size_t in_pos = 0;
assert_lzma_ret(lzma_properties_size(&properties_size, filter_in),
LZMA_OK);
assert_lzma_ret(lzma_vli_encode(filter_in->id, NULL,
filter_flag_buffer, &out_pos, total_size), LZMA_OK);
assert_lzma_ret(lzma_vli_encode(properties_size, NULL,
filter_flag_buffer, &out_pos, total_size),
LZMA_OK);
assert_lzma_ret(lzma_properties_encode(filter_in,
filter_flag_buffer + out_pos), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_decode(filter_out, NULL,
filter_flag_buffer, &in_pos, total_size),
LZMA_OK);
assert_uint_eq(filter_in->id, filter_out->id);
}
#endif
static void
test_lzma_filter_flags_decode(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
assert_skip("Encoder or decoder support disabled");
#else
// For each filter, only run the decoder test if both the encoder
// and decoder are enabled. This is because verify_filter_flags_decode
// uses lzma_filter_flags_size which requires the encoder.
if (lzma_filter_decoder_is_supported(LZMA_FILTER_LZMA2) &&
lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
lzma_filter lzma2_decoded = { LZMA_FILTER_LZMA2, NULL };
verify_filter_flags_decode(&lzma2_filter, &lzma2_decoded);
lzma_options_lzma *expected = lzma2_filter.options;
lzma_options_lzma *decoded = lzma2_decoded.options;
// Only the dictionary size is encoded and decoded
// so only compare those
assert_uint_eq(decoded->dict_size, expected->dict_size);
// The decoded options must be freed by the caller
free(decoded);
}
const uint32_t bcj_array_size = ARRAY_SIZE(bcj_filters_decoders);
for (uint32_t i = 0; i < bcj_array_size; i++) {
if (lzma_filter_encoder_is_supported(
bcj_filters_decoders[i].id)) {
lzma_filter bcj_decoded = {
bcj_filters_decoders[i].id, NULL };
lzma_filter bcj_encoded = {
bcj_filters_decoders[i].id, NULL };
// First test without options
verify_filter_flags_decode(&bcj_encoded,
&bcj_decoded);
assert_true(bcj_decoded.options == NULL);
// Next test with offset
lzma_options_bcj options = {
.start_offset = 257
};
bcj_encoded.options = &options;
verify_filter_flags_decode(&bcj_encoded,
&bcj_decoded);
lzma_options_bcj *decoded_opts = bcj_decoded.options;
assert_uint_eq(decoded_opts->start_offset,
options.start_offset);
free(decoded_opts);
}
}
if (lzma_filter_decoder_is_supported(LZMA_FILTER_DELTA) &&
lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
lzma_filter delta_decoded = { LZMA_FILTER_DELTA, NULL };
verify_filter_flags_decode(&delta_filter, &delta_decoded);
lzma_options_delta *expected = delta_filter.options;
lzma_options_delta *decoded = delta_decoded.options;
assert_uint_eq(expected->dist, decoded->dist);
assert_uint_eq(expected->type, decoded->type);
free(decoded);
}
// Test expected failing cases
uint8_t bad_encoded_filter[LZMA_BLOCK_HEADER_SIZE_MAX];
lzma_filter bad_filter;
// Filter ID outside of valid range
lzma_vli bad_filter_id = LZMA_FILTER_RESERVED_START;
size_t bad_encoded_out_pos = 0;
size_t in_pos = 0;
assert_lzma_ret(lzma_vli_encode(bad_filter_id, NULL,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL,
bad_encoded_filter, &in_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_DATA_ERROR);
bad_encoded_out_pos = 0;
in_pos = 0;
// Invalid Filter ID
bad_filter_id = 2;
bad_encoded_out_pos = 0;
in_pos = 0;
assert_lzma_ret(lzma_vli_encode(bad_filter_id, NULL,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
// Next encode Size of Properties with the value of 0
assert_lzma_ret(lzma_vli_encode(0, NULL,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
// Decode should fail on bad Filter ID
assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL,
bad_encoded_filter, &in_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OPTIONS_ERROR);
bad_encoded_out_pos = 0;
in_pos = 0;
// Outsize too small
// Encode the LZMA2 filter normally, but then set
// the out size when decoding as too small
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2) &&
lzma_filter_decoder_is_supported(LZMA_FILTER_LZMA2)) {
uint32_t filter_flag_size = 0;
assert_lzma_ret(lzma_filter_flags_size(&filter_flag_size,
&lzma2_filter), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_encode(&lzma2_filter,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL,
bad_encoded_filter, &in_pos,
filter_flag_size - 1), LZMA_DATA_ERROR);
}
#endif
}
extern int
main(int argc, char **argv)
{
tuktest_start(argc, argv);
#ifdef HAVE_ENCODERS
// Only init filter options if encoder is supported because decoder
// tests requires encoder support, so the decoder tests will only
// run if for a given filter both the encoder and decoder are enabled.
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA1)) {
lzma_options_lzma *options = tuktest_malloc(
sizeof(lzma_options_lzma));
lzma_lzma_preset(options, LZMA_PRESET_DEFAULT);
lzma1_filter.options = options;
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
lzma_options_lzma *options = tuktest_malloc(
sizeof(lzma_options_lzma));
lzma_lzma_preset(options, LZMA_PRESET_DEFAULT);
lzma2_filter.options = options;
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
lzma_options_delta *options = tuktest_malloc(
sizeof(lzma_options_delta));
options->dist = LZMA_DELTA_DIST_MIN;
options->type = LZMA_DELTA_TYPE_BYTE;
delta_filter.options = options;
}
#endif
tuktest_run(test_lzma_filter_flags_size);
tuktest_run(test_lzma_filter_flags_encode);
tuktest_run(test_lzma_filter_flags_decode);
return tuktest_end();
}