// SPDX-License-Identifier: 0BSD
///////////////////////////////////////////////////////////////////////////////
//
/// \file message.c
/// \brief Printing messages
//
// Authors: Lasse Collin
// Jia Tan
//
///////////////////////////////////////////////////////////////////////////////
#include "private.h"
#include <stdarg.h>
/// Number of the current file
static unsigned int files_pos = 0;
/// Total number of input files; zero if unknown.
static unsigned int files_total;
/// Verbosity level
static enum message_verbosity verbosity = V_WARNING;
/// Filename which we will print with the verbose messages
static const char *filename;
/// True once the a filename has been printed to stderr as part of progress
/// message. If automatic progress updating isn't enabled, this becomes true
/// after the first progress message has been printed due to user sending
/// SIGINFO, SIGUSR1, or SIGALRM. Once this variable is true, we will print
/// an empty line before the next filename to make the output more readable.
static bool first_filename_printed = false;
/// This is set to true when we have printed the current filename to stderr
/// as part of a progress message. This variable is useful only if not
/// updating progress automatically: if user sends many SIGINFO, SIGUSR1, or
/// SIGALRM signals, we won't print the name of the same file multiple times.
static bool current_filename_printed = false;
/// True if we should print progress indicator and update it automatically
/// if also verbose >= V_VERBOSE.
static bool progress_automatic = false;
/// True if message_progress_start() has been called but
/// message_progress_end() hasn't been called yet.
static bool progress_started = false;
/// This is true when a progress message was printed and the cursor is still
/// on the same line with the progress message. In that case, a newline has
/// to be printed before any error messages.
static bool progress_active = false;
/// Pointer to lzma_stream used to do the encoding or decoding.
static lzma_stream *progress_strm;
/// This is true if we are in passthru mode (not actually compressing or
/// decompressing) and thus cannot use lzma_get_progress(progress_strm, ...).
/// That is, we are using coder_passthru() in coder.c.
static bool progress_is_from_passthru;
/// Expected size of the input stream is needed to show completion percentage
/// and estimate remaining time.
static uint64_t expected_in_size;
// Use alarm() and SIGALRM when they are supported. This has two minor
// advantages over the alternative of polling gettimeofday():
// - It is possible for the user to send SIGINFO, SIGUSR1, or SIGALRM to
// get intermediate progress information even when --verbose wasn't used
// or stderr is not a terminal.
// - alarm() + SIGALRM seems to have slightly less overhead than polling
// gettimeofday().
#ifdef SIGALRM
const int message_progress_sigs[] = {
SIGALRM,
#ifdef SIGINFO
SIGINFO,
#endif
#ifdef SIGUSR1
SIGUSR1,
#endif
0
};
/// The signal handler for SIGALRM sets this to true. It is set back to false
/// once the progress message has been updated.
static volatile sig_atomic_t progress_needs_updating = false;
/// Signal handler for SIGALRM
static void
progress_signal_handler(int sig lzma_attribute((__unused__)))
{
progress_needs_updating = true;
return;
}
#else
/// This is true when progress message printing is wanted. Using the same
/// variable name as above to avoid some ifdefs.
static bool progress_needs_updating = false;
/// Elapsed time when the next progress message update should be done.
static uint64_t progress_next_update;
#endif
extern void
message_init(void)
{
// If --verbose is used, we use a progress indicator if and only
// if stderr is a terminal. If stderr is not a terminal, we print
// verbose information only after finishing the file. As a special
// exception, even if --verbose was not used, user can send SIGALRM
// to make us print progress information once without automatic
// updating.
progress_automatic = is_tty(STDERR_FILENO);
#ifdef SIGALRM
// Establish the signal handlers which set a flag to tell us that
// progress info should be updated.
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sa.sa_handler = &progress_signal_handler;
for (size_t i = 0; message_progress_sigs[i] != 0; ++i)
if (sigaction(message_progress_sigs[i], &sa, NULL))
message_signal_handler();
#endif
return;
}
extern void
message_verbosity_increase(void)
{
if (verbosity < V_DEBUG)
++verbosity;
return;
}
extern void
message_verbosity_decrease(void)
{
if (verbosity > V_SILENT)
--verbosity;
return;
}
extern enum message_verbosity
message_verbosity_get(void)
{
return verbosity;
}
extern void
message_set_files(unsigned int files)
{
files_total = files;
return;
}
/// Prints the name of the current file if it hasn't been printed already,
/// except if we are processing exactly one stream from stdin to stdout.
/// I think it looks nicer to not print "(stdin)" when --verbose is used
/// in a pipe and no other files are processed.
static void
print_filename(void)
{
if (!opt_robot && (files_total != 1 || filename != stdin_filename)) {
signals_block();
FILE *file = opt_mode == MODE_LIST ? stdout : stderr;
// If a file was already processed, put an empty line
// before the next filename to improve readability.
if (first_filename_printed)
fputc('\n', file);
first_filename_printed = true;
current_filename_printed = true;
// If we don't know how many files there will be due
// to usage of --files or --files0.
if (files_total == 0)
fprintf(file, "%s (%u)\n", filename,
files_pos);
else
fprintf(file, "%s (%u/%u)\n", filename,
files_pos, files_total);
signals_unblock();
}
return;
}
extern void
message_filename(const char *src_name)
{
// Start numbering the files starting from one.
++files_pos;
filename = src_name;
if (verbosity >= V_VERBOSE
&& (progress_automatic || opt_mode == MODE_LIST))
print_filename();
else
current_filename_printed = false;
return;
}
extern void
message_progress_start(lzma_stream *strm, bool is_passthru, uint64_t in_size)
{
// Store the pointer to the lzma_stream used to do the coding.
// It is needed to find out the position in the stream.
progress_strm = strm;
progress_is_from_passthru = is_passthru;
// Store the expected size of the file. If we aren't printing any
// statistics, then is will be unused. But since it is possible
// that the user sends us a signal to show statistics, we need
// to have it available anyway.
expected_in_size = in_size;
// Indicate that progress info may need to be printed before
// printing error messages.
progress_started = true;
// If progress indicator is wanted, print the filename and possibly
// the file count now.
if (verbosity >= V_VERBOSE && progress_automatic) {
// Start the timer to display the first progress message
// after one second. An alternative would be to show the
// first message almost immediately, but delaying by one
// second looks better to me, since extremely early
// progress info is pretty much useless.
#ifdef SIGALRM
// First disable a possibly existing alarm.
alarm(0);
progress_needs_updating = false;
alarm(1);
#else
progress_needs_updating = true;
progress_next_update = 1000;
#endif
}
return;
}
/// Make the string indicating completion percentage.
static const char *
progress_percentage(uint64_t in_pos)
{
// If the size of the input file is unknown or the size told us is
// clearly wrong since we have processed more data than the alleged
// size of the file, show a static string indicating that we have
// no idea of the completion percentage.
if (expected_in_size == 0 || in_pos > expected_in_size)
return "--- %";
// Never show 100.0 % before we actually are finished.
double percentage = (double)(in_pos) / (double)(expected_in_size)
* 99.9;
// Use big enough buffer to hold e.g. a multibyte decimal point.
static char buf[16];
snprintf(buf, sizeof(buf), "%.1f %%", percentage);
return buf;
}
/// Make the string containing the amount of input processed, amount of
/// output produced, and the compression ratio.
static const char *
progress_sizes(uint64_t compressed_pos, uint64_t uncompressed_pos, bool final)
{
// Use big enough buffer to hold e.g. a multibyte thousand separators.
static char buf[128];
char *pos = buf;
size_t left = sizeof(buf);
// Print the sizes. If this the final message, use more reasonable
// units than MiB if the file was small.
const enum nicestr_unit unit_min = final ? NICESTR_B : NICESTR_MIB;
my_snprintf(&pos, &left, "%s / %s",
uint64_to_nicestr(compressed_pos,
unit_min, NICESTR_TIB, false, 0),
uint64_to_nicestr(uncompressed_pos,
unit_min, NICESTR_TIB, false, 1));
// Avoid division by zero. If we cannot calculate the ratio, set
// it to some nice number greater than 10.0 so that it gets caught
// in the next if-clause.
const double ratio = uncompressed_pos > 0
? (double)(compressed_pos) / (double)(uncompressed_pos)
: 16.0;
// If the ratio is very bad, just indicate that it is greater than
// 9.999. This way the length of the ratio field stays fixed.
if (ratio > 9.999)
snprintf(pos, left, " > %.3f", 9.999);
else
snprintf(pos, left, " = %.3f", ratio);
return buf;
}
/// Make the string containing the processing speed of uncompressed data.
static const char *
progress_speed(uint64_t uncompressed_pos, uint64_t elapsed)
{
// Don't print the speed immediately, since the early values look
// somewhat random.
if (elapsed < 3000)
return "";
// The first character of KiB/s, MiB/s, or GiB/s:
static const char unit[] = { 'K', 'M', 'G' };
size_t unit_index = 0;
// Calculate the speed as KiB/s.
double speed = (double)(uncompressed_pos)
/ ((double)(elapsed) * (1024.0 / 1000.0));
// Adjust the unit of the speed if needed.
while (speed > 999.0) {
speed /= 1024.0;
if (++unit_index == ARRAY_SIZE(unit))
return ""; // Way too fast ;-)
}
// Use decimal point only if the number is small. Examples:
// - 0.1 KiB/s
// - 9.9 KiB/s
// - 99 KiB/s
// - 999 KiB/s
// Use big enough buffer to hold e.g. a multibyte decimal point.
static char buf[16];
snprintf(buf, sizeof(buf), "%.*f %ciB/s",
speed > 9.9 ? 0 : 1, speed, unit[unit_index]);
return buf;
}
/// Make a string indicating elapsed time. The format is either
/// M:SS or H:MM:SS depending on if the time is an hour or more.
static const char *
progress_time(uint64_t mseconds)
{
// 9999 hours = 416 days
static char buf[sizeof("9999:59:59")];
// 32-bit variable is enough for elapsed time (136 years).
uint32_t seconds = (uint32_t)(mseconds / 1000);
// Don't show anything if the time is zero or ridiculously big.
if (seconds == 0 || seconds > ((9999 * 60) + 59) * 60 + 59)
return "";
uint32_t minutes = seconds / 60;
seconds %= 60;
if (minutes >= 60) {
const uint32_t hours = minutes / 60;
minutes %= 60;
snprintf(buf, sizeof(buf),
"%" PRIu32 ":%02" PRIu32 ":%02" PRIu32,
hours, minutes, seconds);
} else {
snprintf(buf, sizeof(buf), "%" PRIu32 ":%02" PRIu32,
minutes, seconds);
}
return buf;
}
/// Return a string containing estimated remaining time when
/// reasonably possible.
static const char *
progress_remaining(uint64_t in_pos, uint64_t elapsed)
{
// Don't show the estimated remaining time when it wouldn't
// make sense:
// - Input size is unknown.
// - Input has grown bigger since we started (de)compressing.
// - We haven't processed much data yet, so estimate would be
// too inaccurate.
// - Only a few seconds has passed since we started (de)compressing,
// so estimate would be too inaccurate.
if (expected_in_size == 0 || in_pos > expected_in_size
|| in_pos < (UINT64_C(1) << 19) || elapsed < 8000)
return "";
// Calculate the estimate. Don't give an estimate of zero seconds,
// since it is possible that all the input has been already passed
// to the library, but there is still quite a bit of output pending.
uint32_t remaining = (uint32_t)((double)(expected_in_size - in_pos)
* ((double)(elapsed) / 1000.0) / (double)(in_pos));
if (remaining < 1)
remaining = 1;
static char buf[sizeof("9 h 55 min")];
// Select appropriate precision for the estimated remaining time.
if (remaining <= 10) {
// A maximum of 10 seconds remaining.
// Show the number of seconds as is.
snprintf(buf, sizeof(buf), "%" PRIu32 " s", remaining);
} else if (remaining <= 50) {
// A maximum of 50 seconds remaining.
// Round up to the next multiple of five seconds.
remaining = (remaining + 4) / 5 * 5;
snprintf(buf, sizeof(buf), "%" PRIu32 " s", remaining);
} else if (remaining <= 590) {
// A maximum of 9 minutes and 50 seconds remaining.
// Round up to the next multiple of ten seconds.
remaining = (remaining + 9) / 10 * 10;
snprintf(buf, sizeof(buf), "%" PRIu32 " min %" PRIu32 " s",
remaining / 60, remaining % 60);
} else if (remaining <= 59 * 60) {
// A maximum of 59 minutes remaining.
// Round up to the next multiple of a minute.
remaining = (remaining + 59) / 60;
snprintf(buf, sizeof(buf), "%" PRIu32 " min", remaining);
} else if (remaining <= 9 * 3600 + 50 * 60) {
// A maximum of 9 hours and 50 minutes left.
// Round up to the next multiple of ten minutes.
remaining = (remaining + 599) / 600 * 10;
snprintf(buf, sizeof(buf), "%" PRIu32 " h %" PRIu32 " min",
remaining / 60, remaining % 60);
} else if (remaining <= 23 * 3600) {
// A maximum of 23 hours remaining.
// Round up to the next multiple of an hour.
remaining = (remaining + 3599) / 3600;
snprintf(buf, sizeof(buf), "%" PRIu32 " h", remaining);
} else if (remaining <= 9 * 24 * 3600 + 23 * 3600) {
// A maximum of 9 days and 23 hours remaining.
// Round up to the next multiple of an hour.
remaining = (remaining + 3599) / 3600;
snprintf(buf, sizeof(buf), "%" PRIu32 " d %" PRIu32 " h",
remaining / 24, remaining % 24);
} else if (remaining <= 999 * 24 * 3600) {
// A maximum of 999 days remaining. ;-)
// Round up to the next multiple of a day.
remaining = (remaining + 24 * 3600 - 1) / (24 * 3600);
snprintf(buf, sizeof(buf), "%" PRIu32 " d", remaining);
} else {
// The estimated remaining time is too big. Don't show it.
return "";
}
return buf;
}
/// Get how much uncompressed and compressed data has been processed.
static void
progress_pos(uint64_t *in_pos,
uint64_t *compressed_pos, uint64_t *uncompressed_pos)
{
uint64_t out_pos;
if (progress_is_from_passthru) {
// In passthru mode the progress info is in total_in/out but
// the *progress_strm itself isn't initialized and thus we
// cannot use lzma_get_progress().
*in_pos = progress_strm->total_in;
out_pos = progress_strm->total_out;
} else {
lzma_get_progress(progress_strm, in_pos, &out_pos);
}
// It cannot have processed more input than it has been given.
assert(*in_pos <= progress_strm->total_in);
// It cannot have produced more output than it claims to have ready.
assert(out_pos >= progress_strm->total_out);
if (opt_mode == MODE_COMPRESS) {
*compressed_pos = out_pos;
*uncompressed_pos = *in_pos;
} else {
*compressed_pos = *in_pos;
*uncompressed_pos = out_pos;
}
return;
}
extern void
message_progress_update(void)
{
if (!progress_needs_updating)
return;
// Calculate how long we have been processing this file.
const uint64_t elapsed = mytime_get_elapsed();
#ifndef SIGALRM
if (progress_next_update > elapsed)
return;
progress_next_update = elapsed + 1000;
#endif
// Get our current position in the stream.
uint64_t in_pos;
uint64_t compressed_pos;
uint64_t uncompressed_pos;
progress_pos(&in_pos, &compressed_pos, &uncompressed_pos);
// Block signals so that fprintf() doesn't get interrupted.
signals_block();
// Print the filename if it hasn't been printed yet.
if (!current_filename_printed)
print_filename();
// Print the actual progress message. The idea is that there is at
// least three spaces between the fields in typical situations, but
// even in rare situations there is at least one space.
const char *cols[5] = {
progress_percentage(in_pos),
progress_sizes(compressed_pos, uncompressed_pos, false),
progress_speed(uncompressed_pos, elapsed),
progress_time(elapsed),
progress_remaining(in_pos, elapsed),
};
fprintf(stderr, "\r %*s %*s %*s %10s %10s\r",
tuklib_mbstr_fw(cols[0], 6), cols[0],
tuklib_mbstr_fw(cols[1], 35), cols[1],
tuklib_mbstr_fw(cols[2], 9), cols[2],
cols[3],
cols[4]);
#ifdef SIGALRM
// Updating the progress info was finished. Reset
// progress_needs_updating to wait for the next SIGALRM.
//
// NOTE: This has to be done before alarm(1) or with (very) bad
// luck we could be setting this to false after the alarm has already
// been triggered.
progress_needs_updating = false;
if (verbosity >= V_VERBOSE && progress_automatic) {
// Mark that the progress indicator is active, so if an error
// occurs, the error message gets printed cleanly.
progress_active = true;
// Restart the timer so that progress_needs_updating gets
// set to true after about one second.
alarm(1);
} else {
// The progress message was printed because user had sent us
// SIGALRM. In this case, each progress message is printed
// on its own line.
fputc('\n', stderr);
}
#else
// When SIGALRM isn't supported and we get here, it's always due to
// automatic progress update. We set progress_active here too like
// described above.
assert(verbosity >= V_VERBOSE);
assert(progress_automatic);
progress_active = true;
#endif
signals_unblock();
return;
}
static void
progress_flush(bool finished)
{
if (!progress_started || verbosity < V_VERBOSE)
return;
uint64_t in_pos;
uint64_t compressed_pos;
uint64_t uncompressed_pos;
progress_pos(&in_pos, &compressed_pos, &uncompressed_pos);
// Avoid printing intermediate progress info if some error occurs
// in the beginning of the stream. (If something goes wrong later in
// the stream, it is sometimes useful to tell the user where the
// error approximately occurred, especially if the error occurs
// after a time-consuming operation.)
if (!finished && !progress_active
&& (compressed_pos == 0 || uncompressed_pos == 0))
return;
progress_active = false;
const uint64_t elapsed = mytime_get_elapsed();
signals_block();
// When using the auto-updating progress indicator, the final
// statistics are printed in the same format as the progress
// indicator itself.
if (progress_automatic) {
const char *cols[5] = {
finished ? "100 %" : progress_percentage(in_pos),
progress_sizes(compressed_pos, uncompressed_pos, true),
progress_speed(uncompressed_pos, elapsed),
progress_time(elapsed),
finished ? "" : progress_remaining(in_pos, elapsed),
};
fprintf(stderr, "\r %*s %*s %*s %10s %10s\n",
tuklib_mbstr_fw(cols[0], 6), cols[0],
tuklib_mbstr_fw(cols[1], 35), cols[1],
tuklib_mbstr_fw(cols[2], 9), cols[2],
cols[3],
cols[4]);
} else {
// The filename is always printed.
fprintf(stderr, _("%s: "), filename);
// Percentage is printed only if we didn't finish yet.
if (!finished) {
// Don't print the percentage when it isn't known
// (starts with a dash).
const char *percentage = progress_percentage(in_pos);
if (percentage[0] != '-')
fprintf(stderr, "%s, ", percentage);
}
// Size information is always printed.
fprintf(stderr, "%s", progress_sizes(
compressed_pos, uncompressed_pos, true));
// The speed and elapsed time aren't always shown.
const char *speed = progress_speed(uncompressed_pos, elapsed);
if (speed[0] != '\0')
fprintf(stderr, ", %s", speed);
const char *elapsed_str = progress_time(elapsed);
if (elapsed_str[0] != '\0')
fprintf(stderr, ", %s", elapsed_str);
fputc('\n', stderr);
}
signals_unblock();
return;
}
extern void
message_progress_end(bool success)
{
assert(progress_started);
progress_flush(success);
progress_started = false;
return;
}
static void
vmessage(enum message_verbosity v, const char *fmt, va_list ap)
{
if (v <= verbosity) {
signals_block();
progress_flush(false);
// TRANSLATORS: This is the program name in the beginning
// of the line in messages. Usually it becomes "xz: ".
// This is a translatable string because French needs
// a space before a colon.
fprintf(stderr, _("%s: "), progname);
#ifdef __clang__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wformat-nonliteral"
#endif
vfprintf(stderr, fmt, ap);
#ifdef __clang__
# pragma GCC diagnostic pop
#endif
fputc('\n', stderr);
signals_unblock();
}
return;
}
extern void
message(enum message_verbosity v, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vmessage(v, fmt, ap);
va_end(ap);
return;
}
extern void
message_warning(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vmessage(V_WARNING, fmt, ap);
va_end(ap);
set_exit_status(E_WARNING);
return;
}
extern void
message_error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vmessage(V_ERROR, fmt, ap);
va_end(ap);
set_exit_status(E_ERROR);
return;
}
extern void
message_fatal(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vmessage(V_ERROR, fmt, ap);
va_end(ap);
tuklib_exit(E_ERROR, E_ERROR, false);
}
extern void
message_bug(void)
{
message_fatal(_("Internal error (bug)"));
}
extern void
message_signal_handler(void)
{
message_fatal(_("Cannot establish signal handlers"));
}
extern const char *
message_strm(lzma_ret code)
{
switch (code) {
case LZMA_NO_CHECK:
return _("No integrity check; not verifying file integrity");
case LZMA_UNSUPPORTED_CHECK:
return _("Unsupported type of integrity check; "
"not verifying file integrity");
case LZMA_MEM_ERROR:
return strerror(ENOMEM);
case LZMA_MEMLIMIT_ERROR:
return _("Memory usage limit reached");
case LZMA_FORMAT_ERROR:
return _("File format not recognized");
case LZMA_OPTIONS_ERROR:
return _("Unsupported options");
case LZMA_DATA_ERROR:
return _("Compressed data is corrupt");
case LZMA_BUF_ERROR:
return _("Unexpected end of input");
case LZMA_OK:
case LZMA_STREAM_END:
case LZMA_GET_CHECK:
case LZMA_PROG_ERROR:
case LZMA_SEEK_NEEDED:
case LZMA_RET_INTERNAL1:
case LZMA_RET_INTERNAL2:
case LZMA_RET_INTERNAL3:
case LZMA_RET_INTERNAL4:
case LZMA_RET_INTERNAL5:
case LZMA_RET_INTERNAL6:
case LZMA_RET_INTERNAL7:
case LZMA_RET_INTERNAL8:
// Without "default", compiler will warn if new constants
// are added to lzma_ret, it is not too easy to forget to
// add the new constants to this function.
break;
}
return _("Internal error (bug)");
}
extern void
message_mem_needed(enum message_verbosity v, uint64_t memusage)
{
if (v > verbosity)
return;
// Convert memusage to MiB, rounding up to the next full MiB.
// This way the user can always use the displayed usage as
// the new memory usage limit. (If we rounded to the nearest,
// the user might need to +1 MiB to get high enough limit.)
memusage = round_up_to_mib(memusage);
uint64_t memlimit = hardware_memlimit_get(opt_mode);
// Handle the case when there is no memory usage limit.
// This way we don't print a weird message with a huge number.
if (memlimit == UINT64_MAX) {
message(v, _("%s MiB of memory is required. "
"The limiter is disabled."),
uint64_to_str(memusage, 0));
return;
}
// With US-ASCII:
// 2^64 with thousand separators + " MiB" suffix + '\0' = 26 + 4 + 1
// But there may be multibyte chars so reserve enough space.
char memlimitstr[128];
// Show the memory usage limit as MiB unless it is less than 1 MiB.
// This way it's easy to notice errors where one has typed
// --memory=123 instead of --memory=123MiB.
if (memlimit < (UINT32_C(1) << 20)) {
snprintf(memlimitstr, sizeof(memlimitstr), "%s B",
uint64_to_str(memlimit, 1));
} else {
// Round up just like with memusage. If this function is
// called for informational purposes (to just show the
// current usage and limit), we should never show that
// the usage is higher than the limit, which would give
// a false impression that the memory usage limit isn't
// properly enforced.
snprintf(memlimitstr, sizeof(memlimitstr), "%s MiB",
uint64_to_str(round_up_to_mib(memlimit), 1));
}
message(v, _("%s MiB of memory is required. The limit is %s."),
uint64_to_str(memusage, 0), memlimitstr);
return;
}
extern void
message_filters_show(enum message_verbosity v, const lzma_filter *filters)
{
if (v > verbosity)
return;
char *buf;
const lzma_ret ret = lzma_str_from_filters(&buf, filters,
LZMA_STR_ENCODER | LZMA_STR_GETOPT_LONG, NULL);
if (ret != LZMA_OK)
message_fatal("%s", message_strm(ret));
fprintf(stderr, _("%s: Filter chain: %s\n"), progname, buf);
free(buf);
return;
}
extern void
message_try_help(void)
{
// Print this with V_WARNING instead of V_ERROR to prevent it from
// showing up when --quiet has been specified.
message(V_WARNING, _("Try '%s --help' for more information."),
progname);
return;
}
extern void
message_version(void)
{
// It is possible that liblzma version is different than the command
// line tool version, so print both.
if (opt_robot) {
printf("XZ_VERSION=%" PRIu32 "\nLIBLZMA_VERSION=%" PRIu32 "\n",
LZMA_VERSION, lzma_version_number());
} else {
printf("xz (" PACKAGE_NAME ") " LZMA_VERSION_STRING "\n");
printf("liblzma %s\n", lzma_version_string());
}
tuklib_exit(E_SUCCESS, E_ERROR, verbosity != V_SILENT);
}
extern void
message_help(bool long_help)
{
printf(_("Usage: %s [OPTION]... [FILE]...\n"
"Compress or decompress FILEs in the .xz format.\n\n"),
progname);
// NOTE: The short help doesn't currently have options that
// take arguments.
if (long_help)
puts(_("Mandatory arguments to long options are mandatory "
"for short options too.\n"));
if (long_help)
puts(_(" Operation mode:\n"));
puts(_(
" -z, --compress force compression\n"
" -d, --decompress force decompression\n"
" -t, --test test compressed file integrity\n"
" -l, --list list information about .xz files"));
if (long_help)
puts(_("\n Operation modifiers:\n"));
puts(_(
" -k, --keep keep (don't delete) input files\n"
" -f, --force force overwrite of output file and (de)compress links\n"
" -c, --stdout write to standard output and don't delete input files"));
// NOTE: --to-stdout isn't included above because it's not
// the recommended spelling. It was copied from gzip but other
// compressors with gzip-like syntax don't support it.
if (long_help) {
puts(_(
" --single-stream decompress only the first stream, and silently\n"
" ignore possible remaining input data"));
puts(_(
" --no-sparse do not create sparse files when decompressing\n"
" -S, --suffix=.SUF use the suffix '.SUF' on compressed files\n"
" --files[=FILE] read filenames to process from FILE; if FILE is\n"
" omitted, filenames are read from the standard input;\n"
" filenames must be terminated with the newline character\n"
" --files0[=FILE] like --files but use the null character as terminator"));
}
if (long_help) {
puts(_("\n Basic file format and compression options:\n"));
puts(_(
" -F, --format=FMT file format to encode or decode; possible values are\n"
" 'auto' (default), 'xz', 'lzma', 'lzip', and 'raw'\n"
" -C, --check=CHECK integrity check type: 'none' (use with caution),\n"
" 'crc32', 'crc64' (default), or 'sha256'"));
puts(_(
" --ignore-check don't verify the integrity check when decompressing"));
}
puts(_(
" -0 ... -9 compression preset; default is 6; take compressor *and*\n"
" decompressor memory usage into account before using 7-9!"));
puts(_(
" -e, --extreme try to improve compression ratio by using more CPU time;\n"
" does not affect decompressor memory requirements"));
puts(_(
" -T, --threads=NUM use at most NUM threads; the default is 0 which uses\n"
" as many threads as there are processor cores"));
if (long_help) {
puts(_(
" --block-size=SIZE\n"
" start a new .xz block after every SIZE bytes of input;\n"
" use this to set the block size for threaded compression"));
puts(_(
" --block-list=BLOCKS\n"
" start a new .xz block after the given comma-separated\n"
" intervals of uncompressed data; optionally, specify a\n"
" filter chain number (0-9) followed by a ':' before the\n"
" uncompressed data size"));
puts(_(
" --flush-timeout=TIMEOUT\n"
" when compressing, if more than TIMEOUT milliseconds has\n"
" passed since the previous flush and reading more input\n"
" would block, all pending data is flushed out"
));
puts(_( // xgettext:no-c-format
" --memlimit-compress=LIMIT\n"
" --memlimit-decompress=LIMIT\n"
" --memlimit-mt-decompress=LIMIT\n"
" -M, --memlimit=LIMIT\n"
" set memory usage limit for compression, decompression,\n"
" threaded decompression, or all of these; LIMIT is in\n"
" bytes, % of RAM, or 0 for defaults"));
puts(_(
" --no-adjust if compression settings exceed the memory usage limit,\n"
" give an error instead of adjusting the settings downwards"));
}
if (long_help) {
puts(_(
"\n Custom filter chain for compression (alternative for using presets):"));
puts(_(
"\n"
" --filters=FILTERS set the filter chain using the liblzma filter string\n"
" syntax; use --filters-help for more information"
));
puts(_(
" --filters1=FILTERS ... --filters9=FILTERS\n"
" set additional filter chains using the liblzma filter\n"
" string syntax to use with --block-list"
));
puts(_(
" --filters-help display more information about the liblzma filter string\n"
" syntax and exit."
));
#if defined(HAVE_ENCODER_LZMA1) || defined(HAVE_DECODER_LZMA1) \
|| defined(HAVE_ENCODER_LZMA2) || defined(HAVE_DECODER_LZMA2)
// TRANSLATORS: The word "literal" in "literal context bits"
// means how many "context bits" to use when encoding
// literals. A literal is a single 8-bit byte. It doesn't
// mean "literally" here.
puts(_(
"\n"
" --lzma1[=OPTS] LZMA1 or LZMA2; OPTS is a comma-separated list of zero or\n"
" --lzma2[=OPTS] more of the following options (valid values; default):\n"
" preset=PRE reset options to a preset (0-9[e])\n"
" dict=NUM dictionary size (4KiB - 1536MiB; 8MiB)\n"
" lc=NUM number of literal context bits (0-4; 3)\n"
" lp=NUM number of literal position bits (0-4; 0)\n"
" pb=NUM number of position bits (0-4; 2)\n"
" mode=MODE compression mode (fast, normal; normal)\n"
" nice=NUM nice length of a match (2-273; 64)\n"
" mf=NAME match finder (hc3, hc4, bt2, bt3, bt4; bt4)\n"
" depth=NUM maximum search depth; 0=automatic (default)"));
#endif
puts(_(
"\n"
" --x86[=OPTS] x86 BCJ filter (32-bit and 64-bit)\n"
" --arm[=OPTS] ARM BCJ filter\n"
" --armthumb[=OPTS] ARM-Thumb BCJ filter\n"
" --arm64[=OPTS] ARM64 BCJ filter\n"
" --powerpc[=OPTS] PowerPC BCJ filter (big endian only)\n"
" --ia64[=OPTS] IA-64 (Itanium) BCJ filter\n"
" --sparc[=OPTS] SPARC BCJ filter\n"
" --riscv[=OPTS] RISC-V BCJ filter\n"
" Valid OPTS for all BCJ filters:\n"
" start=NUM start offset for conversions (default=0)"));
#if defined(HAVE_ENCODER_DELTA) || defined(HAVE_DECODER_DELTA)
puts(_(
"\n"
" --delta[=OPTS] Delta filter; valid OPTS (valid values; default):\n"
" dist=NUM distance between bytes being subtracted\n"
" from each other (1-256; 1)"));
#endif
}
if (long_help)
puts(_("\n Other options:\n"));
puts(_(
" -q, --quiet suppress warnings; specify twice to suppress errors too\n"
" -v, --verbose be verbose; specify twice for even more verbose"));
if (long_help) {
puts(_(
" -Q, --no-warn make warnings not affect the exit status"));
puts(_(
" --robot use machine-parsable messages (useful for scripts)"));
puts("");
puts(_(
" --info-memory display the total amount of RAM and the currently active\n"
" memory usage limits, and exit"));
puts(_(
" -h, --help display the short help (lists only the basic options)\n"
" -H, --long-help display this long help and exit"));
} else {
puts(_(
" -h, --help display this short help and exit\n"
" -H, --long-help display the long help (lists also the advanced options)"));
}
puts(_(
" -V, --version display the version number and exit"));
puts(_("\nWith no FILE, or when FILE is -, read standard input.\n"));
// TRANSLATORS: This message indicates the bug reporting address
// for this package. Please add _another line_ saying
// "Report translation bugs to <...>\n" with the email or WWW
// address for translation bugs. Thanks.
printf(_("Report bugs to <%s> (in English or Finnish).\n"),
PACKAGE_BUGREPORT);
printf(_("%s home page: <%s>\n"), PACKAGE_NAME, PACKAGE_URL);
#if LZMA_VERSION_STABILITY != LZMA_VERSION_STABILITY_STABLE
puts(_(
"THIS IS A DEVELOPMENT VERSION NOT INTENDED FOR PRODUCTION USE."));
#endif
tuklib_exit(E_SUCCESS, E_ERROR, verbosity != V_SILENT);
}
extern void
message_filters_help(void)
{
char *encoder_options;
if (lzma_str_list_filters(&encoder_options, LZMA_VLI_UNKNOWN,
LZMA_STR_ENCODER, NULL) != LZMA_OK)
message_bug();
if (!opt_robot) {
puts(_(
"Filter chains are set using the --filters=FILTERS or\n"
"--filters1=FILTERS ... --filters9=FILTERS options. Each filter in the chain\n"
"can be separated by spaces or '--'. Alternatively a preset <0-9>[e] can be\n"
"specified instead of a filter chain.\n"
));
puts(_("The supported filters and their options are:"));
}
puts(encoder_options);
tuklib_exit(E_SUCCESS, E_ERROR, verbosity != V_SILENT);
}