// SPDX-License-Identifier: 0BSD
///////////////////////////////////////////////////////////////////////////////
//
/// \file microlzma_decoder.c
/// \brief Decode MicroLZMA format
//
// Author: Lasse Collin
//
///////////////////////////////////////////////////////////////////////////////
#include "lzma_decoder.h"
#include "lz_decoder.h"
typedef struct {
/// LZMA1 decoder
lzma_next_coder lzma;
/// Compressed size of the stream as given by the application.
/// This must be exactly correct.
///
/// This will be decremented when input is read.
uint64_t comp_size;
/// Uncompressed size of the stream as given by the application.
/// This may be less than the actual uncompressed size if
/// uncomp_size_is_exact is false.
///
/// This will be decremented when output is produced.
lzma_vli uncomp_size;
/// LZMA dictionary size as given by the application
uint32_t dict_size;
/// If true, the exact uncompressed size is known. If false,
/// uncomp_size may be smaller than the real uncompressed size;
/// uncomp_size may never be bigger than the real uncompressed size.
bool uncomp_size_is_exact;
/// True once the first byte of the MicroLZMA stream
/// has been processed.
bool props_decoded;
} lzma_microlzma_coder;
static lzma_ret
microlzma_decode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_microlzma_coder *coder = coder_ptr;
// Remember the in start position so that we can update comp_size.
const size_t in_start = *in_pos;
// Remember the out start position so that we can update uncomp_size.
const size_t out_start = *out_pos;
// Limit the amount of input so that the decoder won't read more than
// comp_size. This is required when uncomp_size isn't exact because
// in that case the LZMA decoder will try to decode more input even
// when it has no output space (it can be looking for EOPM).
if (in_size - *in_pos > coder->comp_size)
in_size = *in_pos + (size_t)(coder->comp_size);
// When the exact uncompressed size isn't known, we must limit
// the available output space to prevent the LZMA decoder from
// trying to decode too much.
if (!coder->uncomp_size_is_exact
&& out_size - *out_pos > coder->uncomp_size)
out_size = *out_pos + (size_t)(coder->uncomp_size);
if (!coder->props_decoded) {
// There must be at least one byte of input to decode
// the properties byte.
if (*in_pos >= in_size)
return LZMA_OK;
lzma_options_lzma options = {
.dict_size = coder->dict_size,
.preset_dict = NULL,
.preset_dict_size = 0,
.ext_flags = 0, // EOPM not allowed when size is known
.ext_size_low = UINT32_MAX, // Unknown size by default
.ext_size_high = UINT32_MAX,
};
if (coder->uncomp_size_is_exact)
lzma_set_ext_size(options, coder->uncomp_size);
// The properties are stored as bitwise-negation
// of the typical encoding.
if (lzma_lzma_lclppb_decode(&options, ~in[*in_pos]))
return LZMA_OPTIONS_ERROR;
++*in_pos;
// Initialize the decoder.
lzma_filter_info filters[2] = {
{
.id = LZMA_FILTER_LZMA1EXT,
.init = &lzma_lzma_decoder_init,
.options = &options,
}, {
.init = NULL,
}
};
return_if_error(lzma_next_filter_init(&coder->lzma,
allocator, filters));
// Pass one dummy 0x00 byte to the LZMA decoder since that
// is what it expects the first byte to be.
const uint8_t dummy_in = 0;
size_t dummy_in_pos = 0;
if (coder->lzma.code(coder->lzma.coder, allocator,
&dummy_in, &dummy_in_pos, 1,
out, out_pos, out_size, LZMA_RUN) != LZMA_OK)
return LZMA_PROG_ERROR;
assert(dummy_in_pos == 1);
coder->props_decoded = true;
}
// The rest is normal LZMA decoding.
lzma_ret ret = coder->lzma.code(coder->lzma.coder, allocator,
in, in_pos, in_size,
out, out_pos, out_size, action);
// Update the remaining compressed size.
assert(coder->comp_size >= *in_pos - in_start);
coder->comp_size -= *in_pos - in_start;
if (coder->uncomp_size_is_exact) {
// After successful decompression of the complete stream
// the compressed size must match.
if (ret == LZMA_STREAM_END && coder->comp_size != 0)
ret = LZMA_DATA_ERROR;
} else {
// Update the amount of output remaining.
assert(coder->uncomp_size >= *out_pos - out_start);
coder->uncomp_size -= *out_pos - out_start;
// - We must not get LZMA_STREAM_END because the stream
// shouldn't have EOPM.
// - We must use uncomp_size to determine when to
// return LZMA_STREAM_END.
if (ret == LZMA_STREAM_END)
ret = LZMA_DATA_ERROR;
else if (coder->uncomp_size == 0)
ret = LZMA_STREAM_END;
}
return ret;
}
static void
microlzma_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_microlzma_coder *coder = coder_ptr;
lzma_next_end(&coder->lzma, allocator);
lzma_free(coder, allocator);
return;
}
static lzma_ret
microlzma_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
uint64_t comp_size,
uint64_t uncomp_size, bool uncomp_size_is_exact,
uint32_t dict_size)
{
lzma_next_coder_init(µlzma_decoder_init, next, allocator);
lzma_microlzma_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_microlzma_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = µlzma_decode;
next->end = µlzma_decoder_end;
coder->lzma = LZMA_NEXT_CODER_INIT;
}
// The public API is uint64_t but the internal LZ decoder API uses
// lzma_vli.
if (uncomp_size > LZMA_VLI_MAX)
return LZMA_OPTIONS_ERROR;
coder->comp_size = comp_size;
coder->uncomp_size = uncomp_size;
coder->uncomp_size_is_exact = uncomp_size_is_exact;
coder->dict_size = dict_size;
coder->props_decoded = false;
return LZMA_OK;
}
extern LZMA_API(lzma_ret)
lzma_microlzma_decoder(lzma_stream *strm, uint64_t comp_size,
uint64_t uncomp_size, lzma_bool uncomp_size_is_exact,
uint32_t dict_size)
{
lzma_next_strm_init(microlzma_decoder_init, strm, comp_size,
uncomp_size, uncomp_size_is_exact, dict_size);
strm->internal->supported_actions[LZMA_RUN] = true;
strm->internal->supported_actions[LZMA_FINISH] = true;
return LZMA_OK;
}