///////////////////////////////////////////////////////////////////////////////
//
/// \file index.c
/// \brief Handling of .xz Indexes and some other Stream information
//
// Author: Lasse Collin
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "index.h"
#include "stream_flags_common.h"
/// \brief How many Records to allocate at once
///
/// This should be big enough to avoid making lots of tiny allocations
/// but small enough to avoid too much unused memory at once.
#define INDEX_GROUP_SIZE 512
/// \brief How many Records can be allocated at once at maximum
#define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
/// \brief Base structure for index_stream and index_group structures
typedef struct index_tree_node_s index_tree_node;
struct index_tree_node_s {
/// Uncompressed start offset of this Stream (relative to the
/// beginning of the file) or Block (relative to the beginning
/// of the Stream)
lzma_vli uncompressed_base;
/// Compressed start offset of this Stream or Block
lzma_vli compressed_base;
index_tree_node *parent;
index_tree_node *left;
index_tree_node *right;
};
/// \brief AVL tree to hold index_stream or index_group structures
typedef struct {
/// Root node
index_tree_node *root;
/// Leftmost node. Since the tree will be filled sequentially,
/// this won't change after the first node has been added to
/// the tree.
index_tree_node *leftmost;
/// The rightmost node in the tree. Since the tree is filled
/// sequentially, this is always the node where to add the new data.
index_tree_node *rightmost;
/// Number of nodes in the tree
uint32_t count;
} index_tree;
typedef struct {
lzma_vli uncompressed_sum;
lzma_vli unpadded_sum;
} index_record;
typedef struct {
/// Every Record group is part of index_stream.groups tree.
index_tree_node node;
/// Number of Blocks in this Stream before this group.
lzma_vli number_base;
/// Number of Records that can be put in records[].
size_t allocated;
/// Index of the last Record in use.
size_t last;
/// The sizes in this array are stored as cumulative sums relative
/// to the beginning of the Stream. This makes it possible to
/// use binary search in lzma_index_locate().
///
/// Note that the cumulative summing is done specially for
/// unpadded_sum: The previous value is rounded up to the next
/// multiple of four before adding the Unpadded Size of the new
/// Block. The total encoded size of the Blocks in the Stream
/// is records[last].unpadded_sum in the last Record group of
/// the Stream.
///
/// For example, if the Unpadded Sizes are 39, 57, and 81, the
/// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
/// The total encoded size of these Blocks is 184.
///
/// This is a flexible array, because it makes easy to optimize
/// memory usage in case someone concatenates many Streams that
/// have only one or few Blocks.
index_record records[];
} index_group;
typedef struct {
/// Every index_stream is a node in the tree of Sreams.
index_tree_node node;
/// Number of this Stream (first one is 1)
uint32_t number;
/// Total number of Blocks before this Stream
lzma_vli block_number_base;
/// Record groups of this Stream are stored in a tree.
/// It's a T-tree with AVL-tree balancing. There are
/// INDEX_GROUP_SIZE Records per node by default.
/// This keeps the number of memory allocations reasonable
/// and finding a Record is fast.
index_tree groups;
/// Number of Records in this Stream
lzma_vli record_count;
/// Size of the List of Records field in this Stream. This is used
/// together with record_count to calculate the size of the Index
/// field and thus the total size of the Stream.
lzma_vli index_list_size;
/// Stream Flags of this Stream. This is meaningful only if
/// the Stream Flags have been told us with lzma_index_stream_flags().
/// Initially stream_flags.version is set to UINT32_MAX to indicate
/// that the Stream Flags are unknown.
lzma_stream_flags stream_flags;
/// Amount of Stream Padding after this Stream. This defaults to
/// zero and can be set with lzma_index_stream_padding().
lzma_vli stream_padding;
} index_stream;
struct lzma_index_s {
/// AVL-tree containing the Stream(s). Often there is just one
/// Stream, but using a tree keeps lookups fast even when there
/// are many concatenated Streams.
index_tree streams;
/// Uncompressed size of all the Blocks in the Stream(s)
lzma_vli uncompressed_size;
/// Total size of all the Blocks in the Stream(s)
lzma_vli total_size;
/// Total number of Records in all Streams in this lzma_index
lzma_vli record_count;
/// Size of the List of Records field if all the Streams in this
/// lzma_index were packed into a single Stream (makes it simpler to
/// take many .xz files and combine them into a single Stream).
///
/// This value together with record_count is needed to calculate
/// Backward Size that is stored into Stream Footer.
lzma_vli index_list_size;
/// How many Records to allocate at once in lzma_index_append().
/// This defaults to INDEX_GROUP_SIZE but can be overriden with
/// lzma_index_prealloc().
size_t prealloc;
/// Bitmask indicating what integrity check types have been used
/// as set by lzma_index_stream_flags(). The bit of the last Stream
/// is not included here, since it is possible to change it by
/// calling lzma_index_stream_flags() again.
uint32_t checks;
};
static void
index_tree_init(index_tree *tree)
{
tree->root = NULL;
tree->leftmost = NULL;
tree->rightmost = NULL;
tree->count = 0;
return;
}
/// Helper for index_tree_end()
static void
index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
void (*free_func)(void *node, const lzma_allocator *allocator))
{
// The tree won't ever be very huge, so recursion should be fine.
// 20 levels in the tree is likely quite a lot already in practice.
if (node->left != NULL)
index_tree_node_end(node->left, allocator, free_func);
if (node->right != NULL)
index_tree_node_end(node->right, allocator, free_func);
if (free_func != NULL)
free_func(node, allocator);
lzma_free(node, allocator);
return;
}
/// Free the meory allocated for a tree. If free_func is not NULL,
/// it is called on each node before freeing the node. This is used
/// to free the Record groups from each index_stream before freeing
/// the index_stream itself.
static void
index_tree_end(index_tree *tree, const lzma_allocator *allocator,
void (*free_func)(void *node, const lzma_allocator *allocator))
{
if (tree->root != NULL)
index_tree_node_end(tree->root, allocator, free_func);
return;
}
/// Add a new node to the tree. node->uncompressed_base and
/// node->compressed_base must have been set by the caller already.
static void
index_tree_append(index_tree *tree, index_tree_node *node)
{
node->parent = tree->rightmost;
node->left = NULL;
node->right = NULL;
++tree->count;
// Handle the special case of adding the first node.
if (tree->root == NULL) {
tree->root = node;
tree->leftmost = node;
tree->rightmost = node;
return;
}
// The tree is always filled sequentially.
assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
assert(tree->rightmost->compressed_base < node->compressed_base);
// Add the new node after the rightmost node. It's the correct
// place due to the reason above.
tree->rightmost->right = node;
tree->rightmost = node;
// Balance the AVL-tree if needed. We don't need to keep the balance
// factors in nodes, because we always fill the tree sequentially,
// and thus know the state of the tree just by looking at the node
// count. From the node count we can calculate how many steps to go
// up in the tree to find the rotation root.
uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
if (up != 0) {
// Locate the root node for the rotation.
up = ctz32(tree->count) + 2;
do {
node = node->parent;
} while (--up > 0);
// Rotate left using node as the rotation root.
index_tree_node *pivot = node->right;
if (node->parent == NULL) {
tree->root = pivot;
} else {
assert(node->parent->right == node);
node->parent->right = pivot;
}
pivot->parent = node->parent;
node->right = pivot->left;
if (node->right != NULL)
node->right->parent = node;
pivot->left = node;
node->parent = pivot;
}
return;
}
/// Get the next node in the tree. Return NULL if there are no more nodes.
static void *
index_tree_next(const index_tree_node *node)
{
if (node->right != NULL) {
node = node->right;
while (node->left != NULL)
node = node->left;
return (void *)(node);
}
while (node->parent != NULL && node->parent->right == node)
node = node->parent;
return (void *)(node->parent);
}
/// Locate a node that contains the given uncompressed offset. It is
/// caller's job to check that target is not bigger than the uncompressed
/// size of the tree (the last node would be returned in that case still).
static void *
index_tree_locate(const index_tree *tree, lzma_vli target)
{
const index_tree_node *result = NULL;
const index_tree_node *node = tree->root;
assert(tree->leftmost == NULL
|| tree->leftmost->uncompressed_base == 0);
// Consecutive nodes may have the same uncompressed_base.
// We must pick the rightmost one.
while (node != NULL) {
if (node->uncompressed_base > target) {
node = node->left;
} else {
result = node;
node = node->right;
}
}
return (void *)(result);
}
/// Allocate and initialize a new Stream using the given base offsets.
static index_stream *
index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
uint32_t stream_number, lzma_vli block_number_base,
const lzma_allocator *allocator)
{
index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
if (s == NULL)
return NULL;
s->node.uncompressed_base = uncompressed_base;
s->node.compressed_base = compressed_base;
s->node.parent = NULL;
s->node.left = NULL;
s->node.right = NULL;
s->number = stream_number;
s->block_number_base = block_number_base;
index_tree_init(&s->groups);
s->record_count = 0;
s->index_list_size = 0;
s->stream_flags.version = UINT32_MAX;
s->stream_padding = 0;
return s;
}
/// Free the memory allocated for a Stream and its Record groups.
static void
index_stream_end(void *node, const lzma_allocator *allocator)
{
index_stream *s = node;
index_tree_end(&s->groups, allocator, NULL);
return;
}
static lzma_index *
index_init_plain(const lzma_allocator *allocator)
{
lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
if (i != NULL) {
index_tree_init(&i->streams);
i->uncompressed_size = 0;
i->total_size = 0;
i->record_count = 0;
i->index_list_size = 0;
i->prealloc = INDEX_GROUP_SIZE;
i->checks = 0;
}
return i;
}
extern LZMA_API(lzma_index *)
lzma_index_init(const lzma_allocator *allocator)
{
lzma_index *i = index_init_plain(allocator);
if (i == NULL)
return NULL;
index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
if (s == NULL) {
lzma_free(i, allocator);
return NULL;
}
index_tree_append(&i->streams, &s->node);
return i;
}
extern LZMA_API(void)
lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
{
// NOTE: If you modify this function, check also the bottom
// of lzma_index_cat().
if (i != NULL) {
index_tree_end(&i->streams, allocator, &index_stream_end);
lzma_free(i, allocator);
}
return;
}
extern void
lzma_index_prealloc(lzma_index *i, lzma_vli records)
{
if (records > PREALLOC_MAX)
records = PREALLOC_MAX;
i->prealloc = (size_t)(records);
return;
}
extern LZMA_API(uint64_t)
lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
{
// This calculates an upper bound that is only a little bit
// bigger than the exact maximum memory usage with the given
// parameters.
// Typical malloc() overhead is 2 * sizeof(void *) but we take
// a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
// instead would give too inaccurate estimate.
const size_t alloc_overhead = 4 * sizeof(void *);
// Amount of memory needed for each Stream base structures.
// We assume that every Stream has at least one Block and
// thus at least one group.
const size_t stream_base = sizeof(index_stream)
+ sizeof(index_group) + 2 * alloc_overhead;
// Amount of memory needed per group.
const size_t group_base = sizeof(index_group)
+ INDEX_GROUP_SIZE * sizeof(index_record)
+ alloc_overhead;
// Number of groups. There may actually be more, but that overhead
// has been taken into account in stream_base already.
const lzma_vli groups
= (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
// Memory used by index_stream and index_group structures.
const uint64_t streams_mem = streams * stream_base;
const uint64_t groups_mem = groups * group_base;
// Memory used by the base structure.
const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
// Validate the arguments and catch integer overflows.
// Maximum number of Streams is "only" UINT32_MAX, because
// that limit is used by the tree containing the Streams.
const uint64_t limit = UINT64_MAX - index_base;
if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
|| streams > limit / stream_base
|| groups > limit / group_base
|| limit - streams_mem < groups_mem)
return UINT64_MAX;
return index_base + streams_mem + groups_mem;
}
extern LZMA_API(uint64_t)
lzma_index_memused(const lzma_index *i)
{
return lzma_index_memusage(i->streams.count, i->record_count);
}
extern LZMA_API(lzma_vli)
lzma_index_block_count(const lzma_index *i)
{
return i->record_count;
}
extern LZMA_API(lzma_vli)
lzma_index_stream_count(const lzma_index *i)
{
return i->streams.count;
}
extern LZMA_API(lzma_vli)
lzma_index_size(const lzma_index *i)
{
return index_size(i->record_count, i->index_list_size);
}
extern LZMA_API(lzma_vli)
lzma_index_total_size(const lzma_index *i)
{
return i->total_size;
}
extern LZMA_API(lzma_vli)
lzma_index_stream_size(const lzma_index *i)
{
// Stream Header + Blocks + Index + Stream Footer
return LZMA_STREAM_HEADER_SIZE + i->total_size
+ index_size(i->record_count, i->index_list_size)
+ LZMA_STREAM_HEADER_SIZE;
}
static lzma_vli
index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
lzma_vli record_count, lzma_vli index_list_size,
lzma_vli stream_padding)
{
// Earlier Streams and Stream Paddings + Stream Header
// + Blocks + Index + Stream Footer + Stream Padding
//
// This might go over LZMA_VLI_MAX due to too big unpadded_sum
// when this function is used in lzma_index_append().
lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
+ stream_padding + vli_ceil4(unpadded_sum);
if (file_size > LZMA_VLI_MAX)
return LZMA_VLI_UNKNOWN;
// The same applies here.
file_size += index_size(record_count, index_list_size);
if (file_size > LZMA_VLI_MAX)
return LZMA_VLI_UNKNOWN;
return file_size;
}
extern LZMA_API(lzma_vli)
lzma_index_file_size(const lzma_index *i)
{
const index_stream *s = (const index_stream *)(i->streams.rightmost);
const index_group *g = (const index_group *)(s->groups.rightmost);
return index_file_size(s->node.compressed_base,
g == NULL ? 0 : g->records[g->last].unpadded_sum,
s->record_count, s->index_list_size,
s->stream_padding);
}
extern LZMA_API(lzma_vli)
lzma_index_uncompressed_size(const lzma_index *i)
{
return i->uncompressed_size;
}
extern LZMA_API(uint32_t)
lzma_index_checks(const lzma_index *i)
{
uint32_t checks = i->checks;
// Get the type of the Check of the last Stream too.
const index_stream *s = (const index_stream *)(i->streams.rightmost);
if (s->stream_flags.version != UINT32_MAX)
checks |= UINT32_C(1) << s->stream_flags.check;
return checks;
}
extern uint32_t
lzma_index_padding_size(const lzma_index *i)
{
return (LZMA_VLI_C(4) - index_size_unpadded(
i->record_count, i->index_list_size)) & 3;
}
extern LZMA_API(lzma_ret)
lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
{
if (i == NULL || stream_flags == NULL)
return LZMA_PROG_ERROR;
// Validate the Stream Flags.
return_if_error(lzma_stream_flags_compare(
stream_flags, stream_flags));
index_stream *s = (index_stream *)(i->streams.rightmost);
s->stream_flags = *stream_flags;
return LZMA_OK;
}
extern LZMA_API(lzma_ret)
lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
{
if (i == NULL || stream_padding > LZMA_VLI_MAX
|| (stream_padding & 3) != 0)
return LZMA_PROG_ERROR;
index_stream *s = (index_stream *)(i->streams.rightmost);
// Check that the new value won't make the file grow too big.
const lzma_vli old_stream_padding = s->stream_padding;
s->stream_padding = 0;
if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
s->stream_padding = old_stream_padding;
return LZMA_DATA_ERROR;
}
s->stream_padding = stream_padding;
return LZMA_OK;
}
extern LZMA_API(lzma_ret)
lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
lzma_vli unpadded_size, lzma_vli uncompressed_size)
{
// Validate.
if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
|| unpadded_size > UNPADDED_SIZE_MAX
|| uncompressed_size > LZMA_VLI_MAX)
return LZMA_PROG_ERROR;
index_stream *s = (index_stream *)(i->streams.rightmost);
index_group *g = (index_group *)(s->groups.rightmost);
const lzma_vli compressed_base = g == NULL ? 0
: vli_ceil4(g->records[g->last].unpadded_sum);
const lzma_vli uncompressed_base = g == NULL ? 0
: g->records[g->last].uncompressed_sum;
const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
+ lzma_vli_size(uncompressed_size);
// Check that the file size will stay within limits.
if (index_file_size(s->node.compressed_base,
compressed_base + unpadded_size, s->record_count + 1,
s->index_list_size + index_list_size_add,
s->stream_padding) == LZMA_VLI_UNKNOWN)
return LZMA_DATA_ERROR;
// The size of the Index field must not exceed the maximum value
// that can be stored in the Backward Size field.
if (index_size(i->record_count + 1,
i->index_list_size + index_list_size_add)
> LZMA_BACKWARD_SIZE_MAX)
return LZMA_DATA_ERROR;
if (g != NULL && g->last + 1 < g->allocated) {
// There is space in the last group at least for one Record.
++g->last;
} else {
// We need to allocate a new group.
g = lzma_alloc(sizeof(index_group)
+ i->prealloc * sizeof(index_record),
allocator);
if (g == NULL)
return LZMA_MEM_ERROR;
g->last = 0;
g->allocated = i->prealloc;
// Reset prealloc so that if the application happens to
// add new Records, the allocation size will be sane.
i->prealloc = INDEX_GROUP_SIZE;
// Set the start offsets of this group.
g->node.uncompressed_base = uncompressed_base;
g->node.compressed_base = compressed_base;
g->number_base = s->record_count + 1;
// Add the new group to the Stream.
index_tree_append(&s->groups, &g->node);
}
// Add the new Record to the group.
g->records[g->last].uncompressed_sum
= uncompressed_base + uncompressed_size;
g->records[g->last].unpadded_sum
= compressed_base + unpadded_size;
// Update the totals.
++s->record_count;
s->index_list_size += index_list_size_add;
i->total_size += vli_ceil4(unpadded_size);
i->uncompressed_size += uncompressed_size;
++i->record_count;
i->index_list_size += index_list_size_add;
return LZMA_OK;
}
/// Structure to pass info to index_cat_helper()
typedef struct {
/// Uncompressed size of the destination
lzma_vli uncompressed_size;
/// Compressed file size of the destination
lzma_vli file_size;
/// Same as above but for Block numbers
lzma_vli block_number_add;
/// Number of Streams that were in the destination index before we
/// started appending new Streams from the source index. This is
/// used to fix the Stream numbering.
uint32_t stream_number_add;
/// Destination index' Stream tree
index_tree *streams;
} index_cat_info;
/// Add the Stream nodes from the source index to dest using recursion.
/// Simplest iterative traversal of the source tree wouldn't work, because
/// we update the pointers in nodes when moving them to the destination tree.
static void
index_cat_helper(const index_cat_info *info, index_stream *this)
{
index_stream *left = (index_stream *)(this->node.left);
index_stream *right = (index_stream *)(this->node.right);
if (left != NULL)
index_cat_helper(info, left);
this->node.uncompressed_base += info->uncompressed_size;
this->node.compressed_base += info->file_size;
this->number += info->stream_number_add;
this->block_number_base += info->block_number_add;
index_tree_append(info->streams, &this->node);
if (right != NULL)
index_cat_helper(info, right);
return;
}
extern LZMA_API(lzma_ret)
lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
const lzma_allocator *allocator)
{
const lzma_vli dest_file_size = lzma_index_file_size(dest);
// Check that we don't exceed the file size limits.
if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
|| dest->uncompressed_size + src->uncompressed_size
> LZMA_VLI_MAX)
return LZMA_DATA_ERROR;
// Check that the encoded size of the combined lzma_indexes stays
// within limits. In theory, this should be done only if we know
// that the user plans to actually combine the Streams and thus
// construct a single Index (probably rare). However, exceeding
// this limit is quite theoretical, so we do this check always
// to simplify things elsewhere.
{
const lzma_vli dest_size = index_size_unpadded(
dest->record_count, dest->index_list_size);
const lzma_vli src_size = index_size_unpadded(
src->record_count, src->index_list_size);
if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
return LZMA_DATA_ERROR;
}
// Optimize the last group to minimize memory usage. Allocation has
// to be done before modifying dest or src.
{
index_stream *s = (index_stream *)(dest->streams.rightmost);
index_group *g = (index_group *)(s->groups.rightmost);
if (g != NULL && g->last + 1 < g->allocated) {
assert(g->node.left == NULL);
assert(g->node.right == NULL);
index_group *newg = lzma_alloc(sizeof(index_group)
+ (g->last + 1)
* sizeof(index_record),
allocator);
if (newg == NULL)
return LZMA_MEM_ERROR;
newg->node = g->node;
newg->allocated = g->last + 1;
newg->last = g->last;
newg->number_base = g->number_base;
memcpy(newg->records, g->records, newg->allocated
* sizeof(index_record));
if (g->node.parent != NULL) {
assert(g->node.parent->right == &g->node);
g->node.parent->right = &newg->node;
}
if (s->groups.leftmost == &g->node) {
assert(s->groups.root == &g->node);
s->groups.leftmost = &newg->node;
s->groups.root = &newg->node;
}
if (s->groups.rightmost == &g->node)
s->groups.rightmost = &newg->node;
lzma_free(g, allocator);
// NOTE: newg isn't leaked here because
// newg == (void *)&newg->node.
}
}
// Add all the Streams from src to dest. Update the base offsets
// of each Stream from src.
const index_cat_info info = {
.uncompressed_size = dest->uncompressed_size,
.file_size = dest_file_size,
.stream_number_add = dest->streams.count,
.block_number_add = dest->record_count,
.streams = &dest->streams,
};
index_cat_helper(&info, (index_stream *)(src->streams.root));
// Update info about all the combined Streams.
dest->uncompressed_size += src->uncompressed_size;
dest->total_size += src->total_size;
dest->record_count += src->record_count;
dest->index_list_size += src->index_list_size;
dest->checks = lzma_index_checks(dest) | src->checks;
// There's nothing else left in src than the base structure.
lzma_free(src, allocator);
return LZMA_OK;
}
/// Duplicate an index_stream.
static index_stream *
index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
{
// Catch a somewhat theoretical integer overflow.
if (src->record_count > PREALLOC_MAX)
return NULL;
// Allocate and initialize a new Stream.
index_stream *dest = index_stream_init(src->node.compressed_base,
src->node.uncompressed_base, src->number,
src->block_number_base, allocator);
if (dest == NULL)
return NULL;
// Copy the overall information.
dest->record_count = src->record_count;
dest->index_list_size = src->index_list_size;
dest->stream_flags = src->stream_flags;
dest->stream_padding = src->stream_padding;
// Return if there are no groups to duplicate.
if (src->groups.leftmost == NULL)
return dest;
// Allocate memory for the Records. We put all the Records into
// a single group. It's simplest and also tends to make
// lzma_index_locate() a little bit faster with very big Indexes.
index_group *destg = lzma_alloc(sizeof(index_group)
+ src->record_count * sizeof(index_record),
allocator);
if (destg == NULL) {
index_stream_end(dest, allocator);
return NULL;
}
// Initialize destg.
destg->node.uncompressed_base = 0;
destg->node.compressed_base = 0;
destg->number_base = 1;
destg->allocated = src->record_count;
destg->last = src->record_count - 1;
// Go through all the groups in src and copy the Records into destg.
const index_group *srcg = (const index_group *)(src->groups.leftmost);
size_t i = 0;
do {
memcpy(destg->records + i, srcg->records,
(srcg->last + 1) * sizeof(index_record));
i += srcg->last + 1;
srcg = index_tree_next(&srcg->node);
} while (srcg != NULL);
assert(i == destg->allocated);
// Add the group to the new Stream.
index_tree_append(&dest->groups, &destg->node);
return dest;
}
extern LZMA_API(lzma_index *)
lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
{
// Allocate the base structure (no initial Stream).
lzma_index *dest = index_init_plain(allocator);
if (dest == NULL)
return NULL;
// Copy the totals.
dest->uncompressed_size = src->uncompressed_size;
dest->total_size = src->total_size;
dest->record_count = src->record_count;
dest->index_list_size = src->index_list_size;
// Copy the Streams and the groups in them.
const index_stream *srcstream
= (const index_stream *)(src->streams.leftmost);
do {
index_stream *deststream = index_dup_stream(
srcstream, allocator);
if (deststream == NULL) {
lzma_index_end(dest, allocator);
return NULL;
}
index_tree_append(&dest->streams, &deststream->node);
srcstream = index_tree_next(&srcstream->node);
} while (srcstream != NULL);
return dest;
}
/// Indexing for lzma_index_iter.internal[]
enum {
ITER_INDEX,
ITER_STREAM,
ITER_GROUP,
ITER_RECORD,
ITER_METHOD,
};
/// Values for lzma_index_iter.internal[ITER_METHOD].s
enum {
ITER_METHOD_NORMAL,
ITER_METHOD_NEXT,
ITER_METHOD_LEFTMOST,
};
static void
iter_set_info(lzma_index_iter *iter)
{
const lzma_index *i = iter->internal[ITER_INDEX].p;
const index_stream *stream = iter->internal[ITER_STREAM].p;
const index_group *group = iter->internal[ITER_GROUP].p;
const size_t record = iter->internal[ITER_RECORD].s;
// lzma_index_iter.internal must not contain a pointer to the last
// group in the index, because that may be reallocated by
// lzma_index_cat().
if (group == NULL) {
// There are no groups.
assert(stream->groups.root == NULL);
iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
} else if (i->streams.rightmost != &stream->node
|| stream->groups.rightmost != &group->node) {
// The group is not not the last group in the index.
iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
} else if (stream->groups.leftmost != &group->node) {
// The group isn't the only group in the Stream, thus we
// know that it must have a parent group i.e. it's not
// the root node.
assert(stream->groups.root != &group->node);
assert(group->node.parent->right == &group->node);
iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
iter->internal[ITER_GROUP].p = group->node.parent;
} else {
// The Stream has only one group.
assert(stream->groups.root == &group->node);
assert(group->node.parent == NULL);
iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
iter->internal[ITER_GROUP].p = NULL;
}
// NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
// internally.
iter->stream.number = stream->number;
iter->stream.block_count = stream->record_count;
iter->stream.compressed_offset = stream->node.compressed_base;
iter->stream.uncompressed_offset = stream->node.uncompressed_base;
// iter->stream.flags will be NULL if the Stream Flags haven't been
// set with lzma_index_stream_flags().
iter->stream.flags = stream->stream_flags.version == UINT32_MAX
? NULL : &stream->stream_flags;
iter->stream.padding = stream->stream_padding;
if (stream->groups.rightmost == NULL) {
// Stream has no Blocks.
iter->stream.compressed_size = index_size(0, 0)
+ 2 * LZMA_STREAM_HEADER_SIZE;
iter->stream.uncompressed_size = 0;
} else {
const index_group *g = (const index_group *)(
stream->groups.rightmost);
// Stream Header + Stream Footer + Index + Blocks
iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
+ index_size(stream->record_count,
stream->index_list_size)
+ vli_ceil4(g->records[g->last].unpadded_sum);
iter->stream.uncompressed_size
= g->records[g->last].uncompressed_sum;
}
if (group != NULL) {
iter->block.number_in_stream = group->number_base + record;
iter->block.number_in_file = iter->block.number_in_stream
+ stream->block_number_base;
iter->block.compressed_stream_offset
= record == 0 ? group->node.compressed_base
: vli_ceil4(group->records[
record - 1].unpadded_sum);
iter->block.uncompressed_stream_offset
= record == 0 ? group->node.uncompressed_base
: group->records[record - 1].uncompressed_sum;
iter->block.uncompressed_size
= group->records[record].uncompressed_sum
- iter->block.uncompressed_stream_offset;
iter->block.unpadded_size
= group->records[record].unpadded_sum
- iter->block.compressed_stream_offset;
iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
iter->block.compressed_stream_offset
+= LZMA_STREAM_HEADER_SIZE;
iter->block.compressed_file_offset
= iter->block.compressed_stream_offset
+ iter->stream.compressed_offset;
iter->block.uncompressed_file_offset
= iter->block.uncompressed_stream_offset
+ iter->stream.uncompressed_offset;
}
return;
}
extern LZMA_API(void)
lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
{
iter->internal[ITER_INDEX].p = i;
lzma_index_iter_rewind(iter);
return;
}
extern LZMA_API(void)
lzma_index_iter_rewind(lzma_index_iter *iter)
{
iter->internal[ITER_STREAM].p = NULL;
iter->internal[ITER_GROUP].p = NULL;
iter->internal[ITER_RECORD].s = 0;
iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
return;
}
extern LZMA_API(lzma_bool)
lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
{
// Catch unsupported mode values.
if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
return true;
const lzma_index *i = iter->internal[ITER_INDEX].p;
const index_stream *stream = iter->internal[ITER_STREAM].p;
const index_group *group = NULL;
size_t record = iter->internal[ITER_RECORD].s;
// If we are being asked for the next Stream, leave group to NULL
// so that the rest of the this function thinks that this Stream
// has no groups and will thus go to the next Stream.
if (mode != LZMA_INDEX_ITER_STREAM) {
// Get the pointer to the current group. See iter_set_inf()
// for explanation.
switch (iter->internal[ITER_METHOD].s) {
case ITER_METHOD_NORMAL:
group = iter->internal[ITER_GROUP].p;
break;
case ITER_METHOD_NEXT:
group = index_tree_next(iter->internal[ITER_GROUP].p);
break;
case ITER_METHOD_LEFTMOST:
group = (const index_group *)(
stream->groups.leftmost);
break;
}
}
again:
if (stream == NULL) {
// We at the beginning of the lzma_index.
// Locate the first Stream.
stream = (const index_stream *)(i->streams.leftmost);
if (mode >= LZMA_INDEX_ITER_BLOCK) {
// Since we are being asked to return information
// about the first a Block, skip Streams that have
// no Blocks.
while (stream->groups.leftmost == NULL) {
stream = index_tree_next(&stream->node);
if (stream == NULL)
return true;
}
}
// Start from the first Record in the Stream.
group = (const index_group *)(stream->groups.leftmost);
record = 0;
} else if (group != NULL && record < group->last) {
// The next Record is in the same group.
++record;
} else {
// This group has no more Records or this Stream has
// no Blocks at all.
record = 0;
// If group is not NULL, this Stream has at least one Block
// and thus at least one group. Find the next group.
if (group != NULL)
group = index_tree_next(&group->node);
if (group == NULL) {
// This Stream has no more Records. Find the next
// Stream. If we are being asked to return information
// about a Block, we skip empty Streams.
do {
stream = index_tree_next(&stream->node);
if (stream == NULL)
return true;
} while (mode >= LZMA_INDEX_ITER_BLOCK
&& stream->groups.leftmost == NULL);
group = (const index_group *)(
stream->groups.leftmost);
}
}
if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
// We need to look for the next Block again if this Block
// is empty.
if (record == 0) {
if (group->node.uncompressed_base
== group->records[0].uncompressed_sum)
goto again;
} else if (group->records[record - 1].uncompressed_sum
== group->records[record].uncompressed_sum) {
goto again;
}
}
iter->internal[ITER_STREAM].p = stream;
iter->internal[ITER_GROUP].p = group;
iter->internal[ITER_RECORD].s = record;
iter_set_info(iter);
return false;
}
extern LZMA_API(lzma_bool)
lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
{
const lzma_index *i = iter->internal[ITER_INDEX].p;
// If the target is past the end of the file, return immediately.
if (i->uncompressed_size <= target)
return true;
// Locate the Stream containing the target offset.
const index_stream *stream = index_tree_locate(&i->streams, target);
assert(stream != NULL);
target -= stream->node.uncompressed_base;
// Locate the group containing the target offset.
const index_group *group = index_tree_locate(&stream->groups, target);
assert(group != NULL);
// Use binary search to locate the exact Record. It is the first
// Record whose uncompressed_sum is greater than target.
// This is because we want the rightmost Record that fullfills the
// search criterion. It is possible that there are empty Blocks;
// we don't want to return them.
size_t left = 0;
size_t right = group->last;
while (left < right) {
const size_t pos = left + (right - left) / 2;
if (group->records[pos].uncompressed_sum <= target)
left = pos + 1;
else
right = pos;
}
iter->internal[ITER_STREAM].p = stream;
iter->internal[ITER_GROUP].p = group;
iter->internal[ITER_RECORD].s = left;
iter_set_info(iter);
return false;
}