1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
|
// Copyright (c) 2017-2024, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "crypto/crypto.h"
#include "multisig/multisig_account.h"
#include "multisig/multisig_kex_msg.h"
#include "ringct/rctOps.h"
#include "wallet/wallet2.h"
#include "gtest/gtest.h"
#include <cstdint>
static const struct
{
const char *address;
const char *spendkey;
} test_addresses[] =
{
{
"9uvjbU54ZJb8j7Dcq1h3F1DnBRkxXdYUX4pbJ7mE3ghM8uF3fKzqRKRNAKYZXcNLqMg7MxjVVD2wKC2PALUwEveGSC3YSWD",
"2dd6e34a234c3e8b5d29a371789e4601e96dee4ea6f7ef79224d1a2d91164c01"
},
{
"9ywDBAyDbb6QKFiZxDJ4hHZqZEQXXCR5EaYNcndUpqPDeE7rEgs6neQdZnhcDrWbURYK8xUjhuG2mVjJdmknrZbcG7NnbaB",
"fac47aecc948ce9d3531aa042abb18235b1df632087c55a361b632ffdd6ede0c"
},
{
"9t6Hn946u3eah5cuncH1hB5hGzsTUoevtf4SY7MHN5NgJZh2SFWsyVt3vUhuHyRKyrCQvr71Lfc1AevG3BXE11PQFoXDtD8",
"bbd3175ef9fd9f5eefdc43035f882f74ad14c4cf1799d8b6f9001bc197175d02"
},
{
"9zmAWoNyNPbgnYSm3nJNpAKHm6fCcs3MR94gBWxp9MCDUiMUhyYFfyQETUDLPF7DP6ZsmNo6LRxwPP9VmhHNxKrER9oGigT",
"f2efae45bef1917a7430cda8fcffc4ee010e3178761aa41d4628e23b1fe2d501"
},
{
"9ue8NJMg3WzKxTtmjeXzWYF5KmU6dC7LHEt9wvYdPn2qMmoFUa8hJJHhSHvJ46UEwpDyy5jSboNMRaDBKwU54NT42YcNUp5",
"a4cef54ed3fd61cd78a2ceb82ecf85a903ad2db9a86fb77ff56c35c56016280a"
}
};
static const size_t KEYS_COUNT = 5;
static void make_wallet(unsigned int idx, tools::wallet2 &wallet)
{
ASSERT_TRUE(idx < sizeof(test_addresses) / sizeof(test_addresses[0]));
crypto::secret_key spendkey;
epee::string_tools::hex_to_pod(test_addresses[idx].spendkey, spendkey);
try
{
wallet.init("", boost::none, "", 0, true, epee::net_utils::ssl_support_t::e_ssl_support_disabled);
wallet.set_subaddress_lookahead(1, 1);
wallet.generate("", "", spendkey, true, false);
ASSERT_TRUE(test_addresses[idx].address == wallet.get_account().get_public_address_str(cryptonote::TESTNET));
wallet.decrypt_keys("");
ASSERT_TRUE(test_addresses[idx].spendkey == epee::string_tools::pod_to_hex(wallet.get_account().get_keys().m_spend_secret_key));
wallet.encrypt_keys("");
}
catch (const std::exception &e)
{
MFATAL("Error creating test wallet: " << e.what());
ASSERT_TRUE(0);
}
}
static std::vector<std::string> exchange_round(std::vector<tools::wallet2>& wallets, const std::vector<std::string>& infos)
{
std::vector<std::string> new_infos;
new_infos.reserve(infos.size());
for (size_t i = 0; i < wallets.size(); ++i)
new_infos.push_back(wallets[i].exchange_multisig_keys("", infos));
return new_infos;
}
static std::vector<std::string> exchange_round_force_update(std::vector<tools::wallet2>& wallets,
const std::vector<std::string>& infos,
const std::size_t round_in_progress)
{
EXPECT_TRUE(wallets.size() == infos.size());
std::vector<std::string> new_infos;
std::vector<std::string> temp_force_update_infos;
new_infos.reserve(infos.size());
// when force-updating, we only need at most 'num_signers - 1 - (round - 1)' messages from other signers
size_t num_other_messages_required{wallets.size() - 1 - (round_in_progress - 1)};
if (num_other_messages_required > wallets.size())
num_other_messages_required = 0; //overflow case for post-kex verification round of 1-of-N
for (size_t i = 0; i < wallets.size(); ++i)
{
temp_force_update_infos.clear();
temp_force_update_infos.reserve(num_other_messages_required + 1);
temp_force_update_infos.push_back(infos[i]); //always include the local signer's message for this round
size_t infos_collected{0};
for (size_t wallet_index = 0; wallet_index < wallets.size(); ++wallet_index)
{
// skip the local signer's message
if (wallet_index == i)
continue;
temp_force_update_infos.push_back(infos[wallet_index]);
++infos_collected;
if (infos_collected == num_other_messages_required)
break;
}
new_infos.push_back(wallets[i].exchange_multisig_keys("", temp_force_update_infos, true));
}
return new_infos;
}
static void check_results(const std::vector<std::string> &intermediate_infos,
std::vector<tools::wallet2>& wallets,
const std::uint32_t M)
{
// check results
std::unordered_set<crypto::secret_key> unique_privkeys;
rct::key composite_pubkey = rct::identity();
ASSERT_TRUE(wallets.size() > 0);
wallets[0].decrypt_keys("");
crypto::public_key spend_pubkey = wallets[0].get_account().get_keys().m_account_address.m_spend_public_key;
crypto::secret_key view_privkey = wallets[0].get_account().get_keys().m_view_secret_key;
crypto::public_key view_pubkey;
EXPECT_TRUE(crypto::secret_key_to_public_key(view_privkey, view_pubkey));
wallets[0].encrypt_keys("");
// at the end of multisig kex, all wallets should emit a post-kex message with the same two pubkeys
std::vector<crypto::public_key> post_kex_msg_pubkeys;
ASSERT_TRUE(intermediate_infos.size() == wallets.size());
for (const std::string &intermediate_info : intermediate_infos)
{
multisig::multisig_kex_msg post_kex_msg;
EXPECT_TRUE(!intermediate_info.empty());
EXPECT_NO_THROW(post_kex_msg = intermediate_info);
if (post_kex_msg_pubkeys.size() != 0)
EXPECT_TRUE(post_kex_msg_pubkeys == post_kex_msg.get_msg_pubkeys()); //assumes sorting is always the same
else
post_kex_msg_pubkeys = post_kex_msg.get_msg_pubkeys();
EXPECT_TRUE(post_kex_msg_pubkeys.size() == 2);
}
// the post-kex pubkeys should equal the account's public view and spend keys
EXPECT_TRUE(std::find(post_kex_msg_pubkeys.begin(), post_kex_msg_pubkeys.end(), spend_pubkey) != post_kex_msg_pubkeys.end());
EXPECT_TRUE(std::find(post_kex_msg_pubkeys.begin(), post_kex_msg_pubkeys.end(), view_pubkey) != post_kex_msg_pubkeys.end());
// each wallet should have the same state (private view key, public spend key), and the public spend key should be
// reproducible from the private spend keys found in each account
for (tools::wallet2 &wallet : wallets)
{
wallet.decrypt_keys("");
const multisig::multisig_account_status ms_status{wallet.get_multisig_status()};
EXPECT_TRUE(ms_status.multisig_is_active);
EXPECT_TRUE(ms_status.kex_is_done);
EXPECT_TRUE(ms_status.is_ready);
EXPECT_TRUE(ms_status.threshold == M);
EXPECT_TRUE(ms_status.total == wallets.size());
EXPECT_TRUE(wallets[0].get_account().get_public_address_str(cryptonote::TESTNET) ==
wallet.get_account().get_public_address_str(cryptonote::TESTNET));
EXPECT_EQ(spend_pubkey, wallet.get_account().get_keys().m_account_address.m_spend_public_key);
EXPECT_EQ(view_privkey, wallet.get_account().get_keys().m_view_secret_key);
EXPECT_EQ(view_pubkey, wallet.get_account().get_keys().m_account_address.m_view_public_key);
// sum together unique multisig keys
for (const auto &privkey : wallet.get_account().get_keys().m_multisig_keys)
{
EXPECT_NE(privkey, crypto::null_skey);
if (unique_privkeys.find(privkey) == unique_privkeys.end())
{
unique_privkeys.insert(privkey);
crypto::public_key pubkey;
EXPECT_TRUE(crypto::secret_key_to_public_key(privkey, pubkey));
EXPECT_NE(privkey, crypto::null_skey);
EXPECT_NE(pubkey, crypto::null_pkey);
EXPECT_NE(pubkey, rct::rct2pk(rct::identity()));
rct::addKeys(composite_pubkey, composite_pubkey, rct::pk2rct(pubkey));
}
}
wallet.encrypt_keys("");
}
// final key via sum of privkeys should equal the wallets' public spend key
wallets[0].decrypt_keys("");
EXPECT_EQ(wallets[0].get_account().get_keys().m_account_address.m_spend_public_key, rct::rct2pk(composite_pubkey));
wallets[0].encrypt_keys("");
}
static void make_wallets(const unsigned int M, const unsigned int N, const bool force_update)
{
std::vector<tools::wallet2> wallets(N);
ASSERT_TRUE(wallets.size() > 1 && wallets.size() <= KEYS_COUNT);
ASSERT_TRUE(M <= wallets.size());
std::uint32_t total_rounds_required = multisig::multisig_setup_rounds_required(wallets.size(), M);
std::uint32_t rounds_complete{0};
// initialize wallets, get first round multisig kex msgs
std::vector<std::string> initial_infos(wallets.size());
for (size_t i = 0; i < wallets.size(); ++i)
{
make_wallet(i, wallets[i]);
wallets[i].decrypt_keys("");
initial_infos[i] = wallets[i].get_multisig_first_kex_msg();
wallets[i].encrypt_keys("");
}
// wallets should not be multisig yet
for (const auto& wallet: wallets)
ASSERT_FALSE(wallet.get_multisig_status().multisig_is_active);
// make wallets multisig, get second round kex messages (if appropriate)
std::vector<std::string> intermediate_infos(wallets.size());
for (size_t i = 0; i < wallets.size(); ++i)
{
intermediate_infos[i] = wallets[i].make_multisig("", initial_infos, M);
}
++rounds_complete;
// perform kex rounds until kex is complete
multisig::multisig_account_status ms_status{wallets[0].get_multisig_status()};
while (!ms_status.is_ready)
{
if (force_update)
intermediate_infos = exchange_round_force_update(wallets, intermediate_infos, rounds_complete + 1);
else
intermediate_infos = exchange_round(wallets, intermediate_infos);
ms_status = wallets[0].get_multisig_status();
++rounds_complete;
}
EXPECT_EQ(total_rounds_required, rounds_complete);
check_results(intermediate_infos, wallets, M);
}
static void make_wallets_boosting(std::vector<tools::wallet2>& wallets, unsigned int M)
{
ASSERT_TRUE(wallets.size() > 1 && wallets.size() <= KEYS_COUNT);
ASSERT_TRUE(M <= wallets.size());
std::uint32_t kex_rounds_required = multisig::multisig_kex_rounds_required(wallets.size(), M);
std::uint32_t rounds_required = multisig::multisig_setup_rounds_required(wallets.size(), M);
std::uint32_t rounds_complete{0};
// initialize wallets, get first round multisig kex msgs
std::vector<std::string> initial_infos(wallets.size());
for (size_t i = 0; i < wallets.size(); ++i)
{
make_wallet(i, wallets[i]);
wallets[i].decrypt_keys("");
initial_infos[i] = wallets[i].get_multisig_first_kex_msg();
wallets[i].encrypt_keys("");
}
// wallets should not be multisig yet
for (const auto &wallet: wallets)
{
const multisig::multisig_account_status ms_status{wallet.get_multisig_status()};
ASSERT_FALSE(ms_status.multisig_is_active);
}
// get round 2 booster messages for wallet0 (if appropriate)
auto initial_infos_truncated = initial_infos;
initial_infos_truncated.erase(initial_infos_truncated.begin());
std::vector<std::string> wallet0_booster_infos;
wallet0_booster_infos.reserve(wallets.size() - 1);
if (rounds_complete + 1 < kex_rounds_required)
{
for (size_t i = 1; i < wallets.size(); ++i)
{
wallet0_booster_infos.push_back(
wallets[i].get_multisig_key_exchange_booster("", initial_infos_truncated, M, wallets.size())
);
}
}
// make wallets multisig
std::vector<std::string> intermediate_infos(wallets.size());
for (size_t i = 0; i < wallets.size(); ++i)
intermediate_infos[i] = wallets[i].make_multisig("", initial_infos, M);
++rounds_complete;
// perform all kex rounds
// boost wallet0 each round, so wallet0 is always 1 round ahead
std::string wallet0_intermediate_info;
std::vector<std::string> new_infos(intermediate_infos.size());
multisig::multisig_account_status ms_status{wallets[0].get_multisig_status()};
while (!ms_status.is_ready)
{
// use booster infos to update wallet0 'early'
if (rounds_complete < kex_rounds_required)
new_infos[0] = wallets[0].exchange_multisig_keys("", wallet0_booster_infos);
else
{
// force update the post-kex round with wallet0's post-kex message since wallet0 is 'ahead' of the other wallets
wallet0_booster_infos = {wallets[0].exchange_multisig_keys("", {})};
new_infos[0] = wallets[0].exchange_multisig_keys("", wallet0_booster_infos, true);
}
// get wallet0 booster infos for next round
if (rounds_complete + 1 < kex_rounds_required)
{
// remove wallet0 info for this round (so boosters have incomplete kex message set)
auto intermediate_infos_truncated = intermediate_infos;
intermediate_infos_truncated.erase(intermediate_infos_truncated.begin());
// obtain booster messages from all other wallets
for (size_t i = 1; i < wallets.size(); ++i)
{
wallet0_booster_infos[i-1] =
wallets[i].get_multisig_key_exchange_booster("", intermediate_infos_truncated, M, wallets.size());
}
}
// update other wallets
for (size_t i = 1; i < wallets.size(); ++i)
new_infos[i] = wallets[i].exchange_multisig_keys("", intermediate_infos);
intermediate_infos = new_infos;
++rounds_complete;
ms_status = wallets[0].get_multisig_status();
}
EXPECT_EQ(rounds_required, rounds_complete);
check_results(intermediate_infos, wallets, M);
}
TEST(multisig, make_1_2)
{
make_wallets(1, 2, false);
make_wallets(1, 2, true);
}
TEST(multisig, make_1_3)
{
make_wallets(1, 3, false);
make_wallets(1, 3, true);
}
TEST(multisig, make_2_2)
{
make_wallets(2, 2, false);
make_wallets(2, 2, true);
}
TEST(multisig, make_3_3)
{
make_wallets(3, 3, false);
make_wallets(3, 3, true);
}
TEST(multisig, make_2_3)
{
make_wallets(2, 3, false);
make_wallets(2, 3, true);
}
TEST(multisig, make_2_4)
{
make_wallets(2, 4, false);
make_wallets(2, 4, true);
}
TEST(multisig, make_2_4_boosting)
{
std::vector<tools::wallet2> wallets(4);
make_wallets_boosting(wallets, 2);
}
TEST(multisig, multisig_kex_msg)
{
using namespace multisig;
crypto::public_key pubkey1;
crypto::public_key pubkey2;
crypto::public_key pubkey3;
crypto::secret_key_to_public_key(rct::rct2sk(rct::skGen()), pubkey1);
crypto::secret_key_to_public_key(rct::rct2sk(rct::skGen()), pubkey2);
crypto::secret_key_to_public_key(rct::rct2sk(rct::skGen()), pubkey3);
crypto::secret_key signing_skey = rct::rct2sk(rct::skGen());
crypto::public_key signing_pubkey;
while(!crypto::secret_key_to_public_key(signing_skey, signing_pubkey))
{
signing_skey = rct::rct2sk(rct::skGen());
}
const crypto::secret_key ancillary_skey{rct::rct2sk(rct::skGen())};
// misc. edge cases
EXPECT_NO_THROW((multisig_kex_msg{}));
EXPECT_ANY_THROW((multisig_kex_msg{multisig_kex_msg{}.get_msg()}));
EXPECT_ANY_THROW((multisig_kex_msg{"abc"}));
EXPECT_ANY_THROW((multisig_kex_msg{0, crypto::null_skey, std::vector<crypto::public_key>{}, crypto::null_skey}));
EXPECT_ANY_THROW((multisig_kex_msg{1, crypto::null_skey, std::vector<crypto::public_key>{}, crypto::null_skey}));
EXPECT_ANY_THROW((multisig_kex_msg{1, signing_skey, std::vector<crypto::public_key>{}, crypto::null_skey}));
EXPECT_ANY_THROW((multisig_kex_msg{1, crypto::null_skey, std::vector<crypto::public_key>{}, ancillary_skey}));
// test that messages are both constructible and reversible
// round 1
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{1, signing_skey, std::vector<crypto::public_key>{}, ancillary_skey}.get_msg()
}));
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{1, signing_skey, std::vector<crypto::public_key>{pubkey1}, ancillary_skey}.get_msg()
}));
// round 2
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1}, ancillary_skey}.get_msg()
}));
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1}, crypto::null_skey}.get_msg()
}));
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1, pubkey2}, ancillary_skey}.get_msg()
}));
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1, pubkey2, pubkey3}, crypto::null_skey}.get_msg()
}));
// test that keys can be recovered if stored in a message and the message's reverse
// round 1
const multisig_kex_msg msg_rnd1{1, signing_skey, std::vector<crypto::public_key>{pubkey1}, ancillary_skey};
const multisig_kex_msg msg_rnd1_reverse{msg_rnd1.get_msg()};
EXPECT_EQ(msg_rnd1.get_round(), 1);
EXPECT_EQ(msg_rnd1.get_round(), msg_rnd1_reverse.get_round());
EXPECT_EQ(msg_rnd1.get_signing_pubkey(), signing_pubkey);
EXPECT_EQ(msg_rnd1.get_signing_pubkey(), msg_rnd1_reverse.get_signing_pubkey());
EXPECT_EQ(msg_rnd1.get_msg_pubkeys().size(), 0);
EXPECT_EQ(msg_rnd1.get_msg_pubkeys().size(), msg_rnd1_reverse.get_msg_pubkeys().size());
EXPECT_EQ(msg_rnd1.get_msg_privkey(), ancillary_skey);
EXPECT_EQ(msg_rnd1.get_msg_privkey(), msg_rnd1_reverse.get_msg_privkey());
// round 2
const multisig_kex_msg msg_rnd2{2, signing_skey, std::vector<crypto::public_key>{pubkey1, pubkey2}, ancillary_skey};
const multisig_kex_msg msg_rnd2_reverse{msg_rnd2.get_msg()};
EXPECT_EQ(msg_rnd2.get_round(), 2);
EXPECT_EQ(msg_rnd2.get_round(), msg_rnd2_reverse.get_round());
EXPECT_EQ(msg_rnd2.get_signing_pubkey(), signing_pubkey);
EXPECT_EQ(msg_rnd2.get_signing_pubkey(), msg_rnd2_reverse.get_signing_pubkey());
ASSERT_EQ(msg_rnd2.get_msg_pubkeys().size(), 2);
ASSERT_EQ(msg_rnd2.get_msg_pubkeys().size(), msg_rnd2_reverse.get_msg_pubkeys().size());
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[0], pubkey1);
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[1], pubkey2);
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[0], msg_rnd2_reverse.get_msg_pubkeys()[0]);
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[1], msg_rnd2_reverse.get_msg_pubkeys()[1]);
EXPECT_EQ(msg_rnd2.get_msg_privkey(), crypto::null_skey);
EXPECT_EQ(msg_rnd2.get_msg_privkey(), msg_rnd2_reverse.get_msg_privkey());
}
|