aboutsummaryrefslogtreecommitdiff
path: root/tests/unit_tests/crypto.cpp
blob: e41f3955f2c0b04bb10f01e1e3ab282427b85d81 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Copyright (c) 2017-2023, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <cstdint>
#include <gtest/gtest.h>
#include <memory>
#include <sstream>
#include <string>

extern "C"
{
#include "crypto/crypto-ops.h"
}
#include "crypto/generators.h"
#include "cryptonote_basic/cryptonote_basic_impl.h"
#include "cryptonote_basic/merge_mining.h"
#include "ringct/rctOps.h"
#include "ringct/rctTypes.h"

namespace
{
  static constexpr const std::uint8_t source[] = {
    0x8b, 0x65, 0x59, 0x70, 0x15, 0x37, 0x99, 0xaf, 0x2a, 0xea, 0xdc, 0x9f, 0xf1, 0xad, 0xd0, 0xea,
    0x6c, 0x72, 0x51, 0xd5, 0x41, 0x54, 0xcf, 0xa9, 0x2c, 0x17, 0x3a, 0x0d, 0xd3, 0x9c, 0x1f, 0x94,
    0x6c, 0x72, 0x51, 0xd5, 0x41, 0x54, 0xcf, 0xa9, 0x2c, 0x17, 0x3a, 0x0d, 0xd3, 0x9c, 0x1f, 0x94,
    0x8b, 0x65, 0x59, 0x70, 0x15, 0x37, 0x99, 0xaf, 0x2a, 0xea, 0xdc, 0x9f, 0xf1, 0xad, 0xd0, 0xea
  };

  static constexpr const char expected[] =
    "8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94"
    "6c7251d54154cfa92c173a0dd39c1f948b655970153799af2aeadc9ff1add0ea";

  template<typename T> void *addressof(T &t) { return &t; }
  template<> void *addressof(crypto::secret_key &k) { return addressof(unwrap(unwrap(k))); }

  template<typename T>
  bool is_formatted()
  {
    T value{};

    static_assert(alignof(T) == 1, "T must have 1 byte alignment");
    static_assert(sizeof(T) <= sizeof(source), "T is too large for source");
    static_assert(sizeof(T) * 2 <= sizeof(expected), "T is too large for destination");
    std::memcpy(addressof(value), source, sizeof(T));

    std::stringstream out;
    out << "BEGIN" << value << "END";  
    return out.str() == "BEGIN<" + std::string{expected, sizeof(T) * 2} + ">END";
  }
}

TEST(Crypto, Ostream)
{
  EXPECT_TRUE(is_formatted<crypto::hash8>());
  EXPECT_TRUE(is_formatted<crypto::hash>());
  EXPECT_TRUE(is_formatted<crypto::public_key>());
  EXPECT_TRUE(is_formatted<crypto::secret_key>());
  EXPECT_TRUE(is_formatted<crypto::signature>());
  EXPECT_TRUE(is_formatted<crypto::key_derivation>());
  EXPECT_TRUE(is_formatted<crypto::key_image>());
}

TEST(Crypto, null_keys)
{
  char zero[32];
  memset(zero, 0, 32);
  ASSERT_EQ(memcmp(crypto::null_skey.data, zero, 32), 0);
  ASSERT_EQ(memcmp(crypto::null_pkey.data, zero, 32), 0);
}

TEST(Crypto, verify_32)
{
  // all bytes are treated the same, so we can brute force just one byte
  unsigned char k0[32] = {0}, k1[32] = {0};
  for (unsigned int i0 = 0; i0 < 256; ++i0)
  {
    k0[0] = i0;
    for (unsigned int i1 = 0; i1 < 256; ++i1)
    {
      k1[0] = i1;
      ASSERT_EQ(!crypto_verify_32(k0, k1), i0 == i1);
    }
  }
}

TEST(Crypto, tree_branch)
{
  crypto::hash inputs[6];
  crypto::hash branch[8];
  crypto::hash root, root2;
  size_t depth;
  uint32_t path, path2;

  auto hasher = [](const crypto::hash &h0, const crypto::hash &h1) -> crypto::hash
  {
    char buffer[64];
    memcpy(buffer, &h0, 32);
    memcpy(buffer + 32, &h1, 32);
    crypto::hash res;
    cn_fast_hash(buffer, 64, res);
    return res;
  };

  for (int n = 0; n < 6; ++n)
  {
    memset(&inputs[n], 0, 32);
    inputs[n].data[0] = n + 1;
  }

  // empty
  ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 0, crypto::null_hash.data, (char(*)[32])branch, &depth, &path));

  // one, matching
  ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 1, inputs[0].data, (char(*)[32])branch, &depth, &path));
  ASSERT_EQ(depth, 0);
  ASSERT_EQ(path, 0);
  ASSERT_TRUE(crypto::tree_path(1, 0, &path2));
  ASSERT_EQ(path, path2);
  crypto::tree_hash((const char(*)[32])inputs, 1, root.data);
  ASSERT_EQ(root, inputs[0]);
  ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));

  // one, not found
  ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 1, inputs[1].data, (char(*)[32])branch, &depth, &path));

  // two, index 0
  ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 2, inputs[0].data, (char(*)[32])branch, &depth, &path));
  ASSERT_EQ(depth, 1);
  ASSERT_EQ(path, 0);
  ASSERT_TRUE(crypto::tree_path(2, 0, &path2));
  ASSERT_EQ(path, path2);
  ASSERT_EQ(branch[0], inputs[1]);
  crypto::tree_hash((const char(*)[32])inputs, 2, root.data);
  ASSERT_EQ(root, hasher(inputs[0], inputs[1]));
  ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));

  // two, index 1
  ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 2, inputs[1].data, (char(*)[32])branch, &depth, &path));
  ASSERT_EQ(depth, 1);
  ASSERT_EQ(path, 1);
  ASSERT_TRUE(crypto::tree_path(2, 1, &path2));
  ASSERT_EQ(path, path2);
  ASSERT_EQ(branch[0], inputs[0]);
  crypto::tree_hash((const char(*)[32])inputs, 2, root.data);
  ASSERT_EQ(root, hasher(inputs[0], inputs[1]));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_TRUE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));

  // two, not found
  ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 2, inputs[2].data, (char(*)[32])branch, &depth, &path));

  // a b c 0
  //  x   y
  //    z

  // three, index 0
  ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[0].data, (char(*)[32])branch, &depth, &path));
  ASSERT_GE(depth, 1);
  ASSERT_LE(depth, 2);
  ASSERT_TRUE(crypto::tree_path(3, 0, &path2));
  ASSERT_EQ(path, path2);
  crypto::tree_hash((const char(*)[32])inputs, 3, root.data);
  ASSERT_EQ(root, hasher(inputs[0], hasher(inputs[1], inputs[2])));
  ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));

  // three, index 1
  ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[1].data, (char(*)[32])branch, &depth, &path));
  ASSERT_GE(depth, 1);
  ASSERT_LE(depth, 2);
  ASSERT_TRUE(crypto::tree_path(3, 1, &path2));
  ASSERT_EQ(path, path2);
  crypto::tree_hash((const char(*)[32])inputs, 3, root.data);
  ASSERT_EQ(root, hasher(inputs[0], hasher(inputs[1], inputs[2])));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_TRUE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));

  // three, index 2
  ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[2].data, (char(*)[32])branch, &depth, &path));
  ASSERT_GE(depth, 1);
  ASSERT_LE(depth, 2);
  ASSERT_TRUE(crypto::tree_path(3, 2, &path2));
  ASSERT_EQ(path, path2);
  crypto::tree_hash((const char(*)[32])inputs, 3, root.data);
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_TRUE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_TRUE(crypto::tree_branch_hash(inputs[2].data, (const char(*)[32])branch, depth, path, root2.data));
  ASSERT_EQ(root, root2);

  // three, not found
  ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[3].data, (char(*)[32])branch, &depth, &path));

  // a b c d e 0 0 0
  //    x   y
  //      z
  //    w

  // five, index 0
  ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[0].data, (char(*)[32])branch, &depth, &path));
  ASSERT_GE(depth, 2);
  ASSERT_LE(depth, 3);
  ASSERT_TRUE(crypto::tree_path(5, 0, &path2));
  ASSERT_EQ(path, path2);
  crypto::tree_hash((const char(*)[32])inputs, 5, root.data);
  ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));

  // five, index 1
  ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[1].data, (char(*)[32])branch, &depth, &path));
  ASSERT_GE(depth, 2);
  ASSERT_LE(depth, 3);
  ASSERT_TRUE(crypto::tree_path(5, 1, &path2));
  ASSERT_EQ(path, path2);
  crypto::tree_hash((const char(*)[32])inputs, 5, root.data);
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_TRUE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));

  // five, index 2
  ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[2].data, (char(*)[32])branch, &depth, &path));
  ASSERT_GE(depth, 2);
  ASSERT_LE(depth, 3);
  ASSERT_TRUE(crypto::tree_path(5, 2, &path2));
  ASSERT_EQ(path, path2);
  crypto::tree_hash((const char(*)[32])inputs, 5, root.data);
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_TRUE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));

  // five, index 4
  ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[4].data, (char(*)[32])branch, &depth, &path));
  ASSERT_GE(depth, 2);
  ASSERT_LE(depth, 3);
  ASSERT_TRUE(crypto::tree_path(5, 4, &path2));
  ASSERT_EQ(path, path2);
  crypto::tree_hash((const char(*)[32])inputs, 5, root.data);
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_TRUE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));

  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth - 1, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth + 1, path));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path ^ 1));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path ^ 2));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path ^ 3));
  ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])(branch + 1), depth, path));

  // five, not found
  ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 5, crypto::null_hash.data, (char(*)[32])branch, &depth, &path));

  // depth encoding roundtrip
  for (uint32_t n_chains = 1; n_chains <= 65; ++n_chains)
  {
    for (uint32_t nonce = 0; nonce < 1024; ++nonce)
    {
      const uint32_t depth = cryptonote::encode_mm_depth(n_chains, nonce);
      uint32_t n_chains_2, nonce_2;
      ASSERT_TRUE(cryptonote::decode_mm_depth(depth, n_chains_2, nonce_2));
      ASSERT_EQ(n_chains, n_chains_2);
      ASSERT_EQ(nonce, nonce_2);
    }
  }
}

TEST(Crypto, generator_consistency)
{
  // crypto/generators.h
  const crypto::public_key G{crypto::get_G()};
  const crypto::public_key H{crypto::get_H()};
  const ge_p3 H_p3 = crypto::get_H_p3();

  // crypto/crypto-ops.h
  ASSERT_TRUE(memcmp(&H_p3, &ge_p3_H, sizeof(ge_p3)) == 0);

  // ringct/rctOps.h
  ASSERT_TRUE(memcmp(G.data, rct::G.bytes, 32) == 0);

  // ringct/rctTypes.h
  ASSERT_TRUE(memcmp(H.data, rct::H.bytes, 32) == 0);
}