aboutsummaryrefslogtreecommitdiff
path: root/tests/core_tests/bulletproofs.cpp
blob: db875d2a2e9d4fd16cea0148c7f7a787c19f0e6a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Copyright (c) 2014-2018, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// 
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers

#include "ringct/rctSigs.h"
#include "ringct/bulletproofs.h"
#include "chaingen.h"
#include "bulletproofs.h"
#include "device/device.hpp"

using namespace epee;
using namespace crypto;
using namespace cryptonote;

//----------------------------------------------------------------------------------------------------------------------
// Tests

bool gen_bp_tx_validation_base::generate_with(std::vector<test_event_entry>& events,
    size_t mixin, size_t n_txes, const uint64_t *amounts_paid, bool valid, const rct::RangeProofType *range_proof_type,
    const std::function<bool(std::vector<tx_source_entry> &sources, std::vector<tx_destination_entry> &destinations, size_t tx_idx)> &pre_tx,
    const std::function<bool(transaction &tx, size_t tx_idx)> &post_tx) const
{
  uint64_t ts_start = 1338224400;

  GENERATE_ACCOUNT(miner_account);
  MAKE_GENESIS_BLOCK(events, blk_0, miner_account, ts_start);

  // create 12 miner accounts, and have them mine the next 12 blocks
  cryptonote::account_base miner_accounts[12];
  const cryptonote::block *prev_block = &blk_0;
  cryptonote::block blocks[12 + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW];
  for (size_t n = 0; n < 12; ++n) {
    miner_accounts[n].generate();
    CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[n], *prev_block, miner_accounts[n],
        test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version,
        2, 2, prev_block->timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
          crypto::hash(), 0, transaction(), std::vector<crypto::hash>(), 0, 0, 2),
        false, "Failed to generate block");
    events.push_back(blocks[n]);
    prev_block = blocks + n;
    LOG_PRINT_L0("Initial miner tx " << n << ": " << obj_to_json_str(blocks[n].miner_tx));
  }

  // rewind
  cryptonote::block blk_r, blk_last;
  {
    blk_last = blocks[11];
    for (size_t i = 0; i < CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW; ++i)
    {
      CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[12+i], blk_last, miner_account,
          test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version,
          2, 2, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
          crypto::hash(), 0, transaction(), std::vector<crypto::hash>(), 0, 0, 2),
          false, "Failed to generate block");
      events.push_back(blocks[12+i]);
      blk_last = blocks[12+i];
    }
    blk_r = blk_last;
  }

  // create 4 txes from these miners in another block, to generate some rct outputs
  std::vector<transaction> rct_txes;
  cryptonote::block blk_txes;
  std::vector<crypto::hash> starting_rct_tx_hashes;
  static const uint64_t input_amounts_available[] = {5000000000000, 30000000000000, 100000000000, 80000000000};
  for (size_t n = 0; n < n_txes; ++n)
  {
    std::vector<tx_source_entry> sources;

    sources.resize(1);
    tx_source_entry& src = sources.back();

    const uint64_t needed_amount = input_amounts_available[n];
    src.amount = input_amounts_available[n];
    size_t real_index_in_tx = 0;
    for (size_t m = 0; m <= mixin; ++m) {
      size_t index_in_tx = 0;
      for (size_t i = 0; i < blocks[m].miner_tx.vout.size(); ++i)
        if (blocks[m].miner_tx.vout[i].amount == needed_amount)
          index_in_tx = i;
      CHECK_AND_ASSERT_MES(blocks[m].miner_tx.vout[index_in_tx].amount == needed_amount, false, "Expected amount not found");
      src.push_output(m, boost::get<txout_to_key>(blocks[m].miner_tx.vout[index_in_tx].target).key, src.amount);
      if (m == n)
        real_index_in_tx = index_in_tx;
    }
    src.real_out_tx_key = cryptonote::get_tx_pub_key_from_extra(blocks[n].miner_tx);
    src.real_output = n;
    src.real_output_in_tx_index = real_index_in_tx;
    src.mask = rct::identity();
    src.rct = false;

    //fill outputs entry
    tx_destination_entry td;
    td.addr = miner_accounts[n].get_keys().m_account_address;
    std::vector<tx_destination_entry> destinations;
    for (int o = 0; amounts_paid[o] != (uint64_t)-1; ++o)
    {
      td.amount = amounts_paid[o];
      destinations.push_back(td);
    }

    if (pre_tx && !pre_tx(sources, destinations, n))
    {
      MDEBUG("pre_tx returned failure");
      return false;
    }

    crypto::secret_key tx_key;
    std::vector<crypto::secret_key> additional_tx_keys;
    std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
    subaddresses[miner_accounts[n].get_keys().m_account_address.m_spend_public_key] = {0,0};
    rct_txes.resize(rct_txes.size() + 1);
    bool r = construct_tx_and_get_tx_key(miner_accounts[n].get_keys(), subaddresses, sources, destinations, cryptonote::account_public_address{}, std::vector<uint8_t>(), rct_txes.back(), 0, tx_key, additional_tx_keys, true, range_proof_type[n]);
    CHECK_AND_ASSERT_MES(r, false, "failed to construct transaction");

    if (post_tx && !post_tx(rct_txes.back(), n))
    {
      MDEBUG("post_tx returned failure");
      return false;
    }

    //events.push_back(rct_txes.back());
    starting_rct_tx_hashes.push_back(get_transaction_hash(rct_txes.back()));
    LOG_PRINT_L0("Test tx: " << obj_to_json_str(rct_txes.back()));

    for (int o = 0; amounts_paid[o] != (uint64_t)-1; ++o)
    {
      crypto::key_derivation derivation;
      bool r = crypto::generate_key_derivation(destinations[o].addr.m_view_public_key, tx_key, derivation);
      CHECK_AND_ASSERT_MES(r, false, "Failed to generate key derivation");
      crypto::secret_key amount_key;
      crypto::derivation_to_scalar(derivation, o, amount_key);
      rct::key rct_tx_mask;
      if (rct_txes.back().rct_signatures.type == rct::RCTTypeSimple || rct_txes.back().rct_signatures.type == rct::RCTTypeBulletproof)
        rct::decodeRctSimple(rct_txes.back().rct_signatures, rct::sk2rct(amount_key), o, rct_tx_mask, hw::get_device("default"));
      else
        rct::decodeRct(rct_txes.back().rct_signatures, rct::sk2rct(amount_key), o, rct_tx_mask, hw::get_device("default"));
    }

    while (amounts_paid[0] != (size_t)-1)
      ++amounts_paid;
    ++amounts_paid;
  }
  if (!valid)
    DO_CALLBACK(events, "mark_invalid_tx");
  events.push_back(rct_txes);

  CHECK_AND_ASSERT_MES(generator.construct_block_manually(blk_txes, blk_last, miner_account,
      test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_tx_hashes | test_generator::bf_hf_version | test_generator::bf_max_outs,
      8, 8, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long
      crypto::hash(), 0, transaction(), starting_rct_tx_hashes, 0, 6, 8),
      false, "Failed to generate block");
  if (!valid)
    DO_CALLBACK(events, "mark_invalid_block");
  events.push_back(blk_txes);
  blk_last = blk_txes;

  return true;
}

bool gen_bp_tx_validation_base::check_bp(const cryptonote::transaction &tx, size_t tx_idx, const size_t *sizes, const char *context) const
{
  DEFINE_TESTS_ERROR_CONTEXT(context);
  CHECK_TEST_CONDITION(tx.version >= 2);
  CHECK_TEST_CONDITION(rct::is_rct_bulletproof(tx.rct_signatures.type));
  size_t n_sizes = 0, n_amounts = 0;
  for (size_t n = 0; n < tx_idx; ++n)
  {
    while (sizes[0] != (size_t)-1)
      ++sizes;
    ++sizes;
  }
  while (sizes[n_sizes] != (size_t)-1)
    n_amounts += sizes[n_sizes++];
  CHECK_TEST_CONDITION(tx.rct_signatures.p.bulletproofs.size() == n_sizes);
  CHECK_TEST_CONDITION(rct::n_bulletproof_max_amounts(tx.rct_signatures.p.bulletproofs) == n_amounts);
  for (size_t n = 0; n < n_sizes; ++n)
    CHECK_TEST_CONDITION(rct::n_bulletproof_max_amounts(tx.rct_signatures.p.bulletproofs[n]) == sizes[n]);
  return true;
}

bool gen_bp_tx_valid_1::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {10000, (uint64_t)-1};
  const size_t bp_sizes[] = {1, (size_t)-1};
  const rct::RangeProofType range_proof_type[] = {rct::RangeProofPaddedBulletproof};
  return generate_with(events, mixin, 1, amounts_paid, true, range_proof_type, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_1"); });
}

bool gen_bp_tx_invalid_1_1::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1};
  const rct::RangeProofType range_proof_type[] = { rct::RangeProofBulletproof };
  return generate_with(events, mixin, 1, amounts_paid, false, range_proof_type, NULL, NULL);
}

bool gen_bp_tx_valid_2::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1};
  const size_t bp_sizes[] = {2, (size_t)-1};
  const rct::RangeProofType range_proof_type[] = {rct::RangeProofPaddedBulletproof};
  return generate_with(events, mixin, 1, amounts_paid, true, range_proof_type, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_2"); });
}

bool gen_bp_tx_valid_3::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {5000, 5000, 5000, (uint64_t)-1};
  const size_t bp_sizes[] = {4, (size_t)-1};
  const rct::RangeProofType range_proof_type[] = { rct::RangeProofPaddedBulletproof };
  return generate_with(events, mixin, 1, amounts_paid, true, range_proof_type, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_3"); });
}

bool gen_bp_tx_valid_16::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, (uint64_t)-1};
  const size_t bp_sizes[] = {16, (size_t)-1};
  const rct::RangeProofType range_proof_type[] = { rct::RangeProofPaddedBulletproof };
  return generate_with(events, mixin, 1, amounts_paid, true, range_proof_type, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_tx_valid_16"); });
}

bool gen_bp_tx_invalid_4_2_1::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {1000, 1000, 1000, 1000, 1000, 1000, 1000, (uint64_t)-1};
  const rct::RangeProofType range_proof_type[] = { rct::RangeProofMultiOutputBulletproof };
  return generate_with(events, mixin, 1, amounts_paid, false, range_proof_type, NULL, NULL);
}

bool gen_bp_tx_invalid_16_16::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, (uint64_t)-1};
  const rct::RangeProofType range_proof_type[] = { rct::RangeProofMultiOutputBulletproof };
  return generate_with(events, mixin, 1, amounts_paid, false, range_proof_type, NULL, NULL);
}

bool gen_bp_txs_valid_2_and_2::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {1000, 1000, (size_t)-1, 1000, 1000, (uint64_t)-1};
  const size_t bp_sizes[] = {2, (size_t)-1, 2, (size_t)-1};
  const rct::RangeProofType range_proof_type[] = { rct::RangeProofPaddedBulletproof,  rct::RangeProofPaddedBulletproof};
  return generate_with(events, mixin, 2, amounts_paid, true, range_proof_type, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx){ return check_bp(tx, tx_idx, bp_sizes, "gen_bp_txs_valid_2_and_2"); });
}

bool gen_bp_txs_invalid_2_and_8_2_and_16_16_1::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {1000, 1000, (uint64_t)-1, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, (uint64_t)-1, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, (uint64_t)-1};
  const rct::RangeProofType range_proof_type[] = {rct::RangeProofMultiOutputBulletproof, rct::RangeProofMultiOutputBulletproof, rct::RangeProofMultiOutputBulletproof};
  return generate_with(events, mixin, 3, amounts_paid, false, range_proof_type, NULL, NULL);
}

bool gen_bp_txs_valid_2_and_3_and_2_and_4::generate(std::vector<test_event_entry>& events) const
{
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {11111115000, 11111115000, (uint64_t)-1, 11111115000, 11111115000, 11111115001, (uint64_t)-1, 11111115000, 11111115002, (uint64_t)-1, 11111115000, 11111115000, 11111115000, 11111115003, (uint64_t)-1};
  const rct::RangeProofType range_proof_type[] = {rct::RangeProofPaddedBulletproof, rct::RangeProofPaddedBulletproof, rct::RangeProofPaddedBulletproof, rct::RangeProofPaddedBulletproof};
  const size_t bp_sizes[] = {2, (size_t)-1, 4, (size_t)-1, 2, (size_t)-1, 4, (size_t)-1};
  return generate_with(events, mixin, 4, amounts_paid, true, range_proof_type, NULL, [&](const cryptonote::transaction &tx, size_t tx_idx) { return check_bp(tx, tx_idx, bp_sizes, "gen_bp_txs_valid_2_and_3_and_2_and_4"); });
}

bool gen_bp_tx_invalid_not_enough_proofs::generate(std::vector<test_event_entry>& events) const
{
  DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_not_enough_proofs");
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1};
  const rct::RangeProofType range_proof_type[] = { rct::RangeProofBulletproof };
  return generate_with(events, mixin, 1, amounts_paid, false, range_proof_type, NULL, [&](cryptonote::transaction &tx, size_t idx){
    CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof);
    CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
    tx.rct_signatures.p.bulletproofs.pop_back();
    CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
    return true;
  });
}

bool gen_bp_tx_invalid_empty_proofs::generate(std::vector<test_event_entry>& events) const
{
  DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_empty_proofs");
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {50000, 50000, (uint64_t)-1};
  const rct::RangeProofType range_proof_type[] = { rct::RangeProofBulletproof };
  return generate_with(events, mixin, 1, amounts_paid, false, range_proof_type, NULL, [&](cryptonote::transaction &tx, size_t idx){
    CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof);
    tx.rct_signatures.p.bulletproofs.clear();
    return true;
  });
}

bool gen_bp_tx_invalid_too_many_proofs::generate(std::vector<test_event_entry>& events) const
{
  DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_too_many_proofs");
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {10000, (uint64_t)-1};
  const rct::RangeProofType range_proof_type[] = { rct::RangeProofBulletproof };
  return generate_with(events, mixin, 1, amounts_paid, false, range_proof_type, NULL, [&](cryptonote::transaction &tx, size_t idx){
    CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof);
    CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
    tx.rct_signatures.p.bulletproofs.push_back(tx.rct_signatures.p.bulletproofs.back());
    return true;
  });
}

bool gen_bp_tx_invalid_wrong_amount::generate(std::vector<test_event_entry>& events) const
{
  DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_wrong_amount");
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {10000, (uint64_t)-1};
  const rct::RangeProofType range_proof_type[] = { rct::RangeProofBulletproof };
  return generate_with(events, mixin, 1, amounts_paid, false, range_proof_type, NULL, [&](cryptonote::transaction &tx, size_t idx){
    CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof);
    CHECK_TEST_CONDITION(!tx.rct_signatures.p.bulletproofs.empty());
    tx.rct_signatures.p.bulletproofs.back() = rct::bulletproof_PROVE(1000, rct::skGen());
    return true;
  });
}

bool gen_bp_tx_invalid_borromean_type::generate(std::vector<test_event_entry>& events) const
{
  DEFINE_TESTS_ERROR_CONTEXT("gen_bp_tx_invalid_borromean_type");
  const size_t mixin = 10;
  const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1};
  const rct::RangeProofType range_proof_type[] = {rct::RangeProofPaddedBulletproof};
  return generate_with(events, mixin, 1, amounts_paid, false, range_proof_type, NULL, [&](cryptonote::transaction &tx, size_t tx_idx){
    CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeBulletproof);
    tx.rct_signatures.type = rct::RCTTypeSimple;
    return true;
  });
}