1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
// Copyright (c) 2016-2023, Monero Research Labs
//
// Author: Shen Noether <shen.noether@gmx.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "misc_log_ex.h"
#include "cryptonote_config.h"
#include "rctTypes.h"
#include "int-util.h"
using namespace crypto;
using namespace std;
#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "ringct"
namespace rct {
//dp
//Debug printing for the above types
//Actually use DP(value) and #define DBG
void dp(key a) {
int j = 0;
printf("\"");
for (j = 0; j < 32; j++) {
printf("%02x", (unsigned char)a.bytes[j]);
}
printf("\"");
printf("\n");
}
void dp(bool a) {
printf(" ... %s ... ", a ? "true" : "false");
printf("\n");
}
void dp(const char * a, int l) {
int j = 0;
printf("\"");
for (j = 0; j < l; j++) {
printf("%02x", (unsigned char)a[j]);
}
printf("\"");
printf("\n");
}
void dp(keyV a) {
size_t j = 0;
printf("[");
for (j = 0; j < a.size(); j++) {
dp(a[j]);
if (j < a.size() - 1) {
printf(",");
}
}
printf("]");
printf("\n");
}
void dp(keyM a) {
size_t j = 0;
printf("[");
for (j = 0; j < a.size(); j++) {
dp(a[j]);
if (j < a.size() - 1) {
printf(",");
}
}
printf("]");
printf("\n");
}
void dp(xmr_amount vali) {
printf("x: ");
std::cout << vali;
printf("\n\n");
}
void dp(int vali) {
printf("x: %d\n", vali);
printf("\n");
}
void dp(bits amountb) {
for (int i = 0; i < 64; i++) {
printf("%d", amountb[i]);
}
printf("\n");
}
void dp(const char * st) {
printf("%s\n", st);
}
//Various Conversions
//uint long long to 32 byte key
void d2h(key & amounth, const xmr_amount in) {
sc_0(amounth.bytes);
memcpy_swap64le(amounth.bytes, &in, 1);
}
//uint long long to 32 byte key
key d2h(const xmr_amount in) {
key amounth;
d2h(amounth, in);
return amounth;
}
//uint long long to int[64]
void d2b(bits amountb, xmr_amount val) {
int i = 0;
while (i < 64) {
amountb[i++] = val & 1;
val >>= 1;
}
}
//32 byte key to uint long long
// if the key holds a value > 2^64
// then the value in the first 8 bytes is returned
xmr_amount h2d(const key & test) {
xmr_amount vali = 0;
int j = 0;
for (j = 7; j >= 0; j--) {
vali = (xmr_amount)(vali * 256 + (unsigned char)test.bytes[j]);
}
return vali;
}
//32 byte key to int[64]
void h2b(bits amountb2, const key & test) {
int val = 0, i = 0, j = 0;
for (j = 0; j < 8; j++) {
val = (unsigned char)test.bytes[j];
i = 0;
while (i < 8) {
amountb2[j*8+i++] = val & 1;
val >>= 1;
}
}
}
//int[64] to 32 byte key
void b2h(key & amountdh, const bits amountb2) {
int byte, i, j;
for (j = 0; j < 8; j++) {
byte = 0;
for (i = 7; i > -1; i--) {
byte = byte * 2 + amountb2[8 * j + i];
}
amountdh[j] = (unsigned char)byte;
}
for (j = 8; j < 32; j++) {
amountdh[j] = (unsigned char)(0x00);
}
}
//int[64] to uint long long
xmr_amount b2d(bits amountb) {
xmr_amount vali = 0;
int j = 0;
for (j = 63; j >= 0; j--) {
vali = (xmr_amount)(vali * 2 + amountb[j]);
}
return vali;
}
bool is_rct_simple(int type)
{
switch (type)
{
case RCTTypeSimple:
case RCTTypeBulletproof:
case RCTTypeBulletproof2:
case RCTTypeCLSAG:
case RCTTypeBulletproofPlus:
return true;
default:
return false;
}
}
bool is_rct_bulletproof(int type)
{
switch (type)
{
case RCTTypeBulletproof:
case RCTTypeBulletproof2:
case RCTTypeCLSAG:
return true;
default:
return false;
}
}
bool is_rct_bulletproof_plus(int type)
{
switch (type)
{
case RCTTypeBulletproofPlus:
return true;
default:
return false;
}
}
bool is_rct_borromean(int type)
{
switch (type)
{
case RCTTypeSimple:
case RCTTypeFull:
return true;
default:
return false;
}
}
bool is_rct_clsag(int type)
{
switch (type)
{
case RCTTypeCLSAG:
case RCTTypeBulletproofPlus:
return true;
default:
return false;
}
}
static size_t n_bulletproof_amounts_base(const size_t L_size, const size_t R_size, const size_t V_size, const size_t max_outputs)
{
CHECK_AND_ASSERT_MES(L_size >= 6, 0, "Invalid bulletproof L size");
CHECK_AND_ASSERT_MES(L_size == R_size, 0, "Mismatched bulletproof L/R size");
static const size_t extra_bits = 4;
CHECK_AND_ASSERT_MES((1 << extra_bits) == max_outputs, 0, "log2(max_outputs) is out of date");
CHECK_AND_ASSERT_MES(L_size <= 6 + extra_bits, 0, "Invalid bulletproof L size");
CHECK_AND_ASSERT_MES(V_size <= (1u<<(L_size-6)), 0, "Invalid bulletproof V/L");
CHECK_AND_ASSERT_MES(V_size * 2 > (1u<<(L_size-6)), 0, "Invalid bulletproof V/L");
CHECK_AND_ASSERT_MES(V_size > 0, 0, "Empty bulletproof");
return V_size;
}
size_t n_bulletproof_amounts(const Bulletproof &proof) { return n_bulletproof_amounts_base(proof.L.size(), proof.R.size(), proof.V.size(), BULLETPROOF_MAX_OUTPUTS); }
size_t n_bulletproof_plus_amounts(const BulletproofPlus &proof) { return n_bulletproof_amounts_base(proof.L.size(), proof.R.size(), proof.V.size(), BULLETPROOF_PLUS_MAX_OUTPUTS); }
size_t n_bulletproof_amounts(const std::vector<Bulletproof> &proofs)
{
size_t n = 0;
for (const Bulletproof &proof: proofs)
{
size_t n2 = n_bulletproof_amounts(proof);
CHECK_AND_ASSERT_MES(n2 < std::numeric_limits<uint32_t>::max() - n, 0, "Invalid number of bulletproofs");
if (n2 == 0)
return 0;
n += n2;
}
return n;
}
size_t n_bulletproof_plus_amounts(const std::vector<BulletproofPlus> &proofs)
{
size_t n = 0;
for (const BulletproofPlus &proof: proofs)
{
size_t n2 = n_bulletproof_plus_amounts(proof);
CHECK_AND_ASSERT_MES(n2 < std::numeric_limits<uint32_t>::max() - n, 0, "Invalid number of bulletproofs");
if (n2 == 0)
return 0;
n += n2;
}
return n;
}
static size_t n_bulletproof_max_amounts_base(size_t L_size, size_t R_size, size_t max_outputs)
{
CHECK_AND_ASSERT_MES(L_size >= 6, 0, "Invalid bulletproof L size");
CHECK_AND_ASSERT_MES(L_size == R_size, 0, "Mismatched bulletproof L/R size");
static const size_t extra_bits = 4;
CHECK_AND_ASSERT_MES((1 << extra_bits) == max_outputs, 0, "log2(max_outputs) is out of date");
CHECK_AND_ASSERT_MES(L_size <= 6 + extra_bits, 0, "Invalid bulletproof L size");
return 1 << (L_size - 6);
}
size_t n_bulletproof_max_amounts(const Bulletproof &proof) { return n_bulletproof_max_amounts_base(proof.L.size(), proof.R.size(), BULLETPROOF_MAX_OUTPUTS); }
size_t n_bulletproof_plus_max_amounts(const BulletproofPlus &proof) { return n_bulletproof_max_amounts_base(proof.L.size(), proof.R.size(), BULLETPROOF_PLUS_MAX_OUTPUTS); }
size_t n_bulletproof_max_amounts(const std::vector<Bulletproof> &proofs)
{
size_t n = 0;
for (const Bulletproof &proof: proofs)
{
size_t n2 = n_bulletproof_max_amounts(proof);
CHECK_AND_ASSERT_MES(n2 < std::numeric_limits<uint32_t>::max() - n, 0, "Invalid number of bulletproofs");
if (n2 == 0)
return 0;
n += n2;
}
return n;
}
size_t n_bulletproof_plus_max_amounts(const std::vector<BulletproofPlus> &proofs)
{
size_t n = 0;
for (const BulletproofPlus &proof: proofs)
{
size_t n2 = n_bulletproof_plus_max_amounts(proof);
CHECK_AND_ASSERT_MES(n2 < std::numeric_limits<uint32_t>::max() - n, 0, "Invalid number of bulletproofs");
if (n2 == 0)
return 0;
n += n2;
}
return n;
}
}
|