aboutsummaryrefslogtreecommitdiff
path: root/src/ringct/rctSigs.cpp
blob: 2d92ba05d4a6585ec193c983189859cd160b6bbe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
// Copyright (c) 2016-2024, Monero Research Labs
//
// Author: Shen Noether <shen.noether@gmx.com>
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "misc_log_ex.h"
#include "misc_language.h"
#include "common/perf_timer.h"
#include "common/threadpool.h"
#include "common/util.h"
#include "rctSigs.h"
#include "bulletproofs.h"
#include "bulletproofs_plus.h"
#include "cryptonote_basic/cryptonote_format_utils.h"
#include "cryptonote_config.h"

using namespace crypto;
using namespace std;

#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "ringct"

#define CHECK_AND_ASSERT_MES_L1(expr, ret, message) {if(!(expr)) {MCERROR("verify", message); return ret;}}

namespace
{
    rct::Bulletproof make_dummy_bulletproof(const std::vector<uint64_t> &outamounts, rct::keyV &C, rct::keyV &masks)
    {
        const size_t n_outs = outamounts.size();
        const rct::key I = rct::identity();
        size_t nrl = 0;
        while ((1u << nrl) < n_outs)
          ++nrl;
        nrl += 6;

        C.resize(n_outs);
        masks.resize(n_outs);
        for (size_t i = 0; i < n_outs; ++i)
        {
            masks[i] = I;
            rct::key sv8, sv;
            sv = rct::zero();
            sv.bytes[0] = outamounts[i] & 255;
            sv.bytes[1] = (outamounts[i] >> 8) & 255;
            sv.bytes[2] = (outamounts[i] >> 16) & 255;
            sv.bytes[3] = (outamounts[i] >> 24) & 255;
            sv.bytes[4] = (outamounts[i] >> 32) & 255;
            sv.bytes[5] = (outamounts[i] >> 40) & 255;
            sv.bytes[6] = (outamounts[i] >> 48) & 255;
            sv.bytes[7] = (outamounts[i] >> 56) & 255;
            sc_mul(sv8.bytes, sv.bytes, rct::INV_EIGHT.bytes);
            rct::addKeys2(C[i], rct::INV_EIGHT, sv8, rct::H);
        }

        return rct::Bulletproof{rct::keyV(n_outs, I), I, I, I, I, I, I, rct::keyV(nrl, I), rct::keyV(nrl, I), I, I, I};
    }

    rct::BulletproofPlus make_dummy_bulletproof_plus(const std::vector<uint64_t> &outamounts, rct::keyV &C, rct::keyV &masks)
    {
        const size_t n_outs = outamounts.size();
        const rct::key I = rct::identity();
        size_t nrl = 0;
        while ((1u << nrl) < n_outs)
          ++nrl;
        nrl += 6;

        C.resize(n_outs);
        masks.resize(n_outs);
        for (size_t i = 0; i < n_outs; ++i)
        {
            masks[i] = I;
            rct::key sv8, sv;
            sv = rct::zero();
            sv.bytes[0] = outamounts[i] & 255;
            sv.bytes[1] = (outamounts[i] >> 8) & 255;
            sv.bytes[2] = (outamounts[i] >> 16) & 255;
            sv.bytes[3] = (outamounts[i] >> 24) & 255;
            sv.bytes[4] = (outamounts[i] >> 32) & 255;
            sv.bytes[5] = (outamounts[i] >> 40) & 255;
            sv.bytes[6] = (outamounts[i] >> 48) & 255;
            sv.bytes[7] = (outamounts[i] >> 56) & 255;
            sc_mul(sv8.bytes, sv.bytes, rct::INV_EIGHT.bytes);
            rct::addKeys2(C[i], rct::INV_EIGHT, sv8, rct::H);
        }

        return rct::BulletproofPlus{rct::keyV(n_outs, I), I, I, I, I, I, I, rct::keyV(nrl, I), rct::keyV(nrl, I)};
    }

    rct::clsag make_dummy_clsag(size_t ring_size)
    {
        const rct::key I = rct::identity();
        const size_t n_scalars = ring_size;
        return rct::clsag{rct::keyV(n_scalars, I), I, I, I};
    }
}

namespace rct {
    Bulletproof proveRangeBulletproof(keyV &C, keyV &masks, const std::vector<uint64_t> &amounts, epee::span<const key> sk, hw::device &hwdev)
    {
        CHECK_AND_ASSERT_THROW_MES(amounts.size() == sk.size(), "Invalid amounts/sk sizes");
        masks.resize(amounts.size());
        for (size_t i = 0; i < masks.size(); ++i)
            masks[i] = hwdev.genCommitmentMask(sk[i]);
        Bulletproof proof = bulletproof_PROVE(amounts, masks);
        CHECK_AND_ASSERT_THROW_MES(proof.V.size() == amounts.size(), "V does not have the expected size");
        C = proof.V;
        return proof;
    }

    bool verBulletproof(const Bulletproof &proof)
    {
      try { return bulletproof_VERIFY(proof); }
      // we can get deep throws from ge_frombytes_vartime if input isn't valid
      catch (...) { return false; }
    }

    bool verBulletproof(const std::vector<const Bulletproof*> &proofs)
    {
      try { return bulletproof_VERIFY(proofs); }
      // we can get deep throws from ge_frombytes_vartime if input isn't valid
      catch (...) { return false; }
    }

    BulletproofPlus proveRangeBulletproofPlus(keyV &C, keyV &masks, const std::vector<uint64_t> &amounts, epee::span<const key> sk, hw::device &hwdev)
    {
        CHECK_AND_ASSERT_THROW_MES(amounts.size() == sk.size(), "Invalid amounts/sk sizes");
        masks.resize(amounts.size());
        for (size_t i = 0; i < masks.size(); ++i)
            masks[i] = hwdev.genCommitmentMask(sk[i]);
        BulletproofPlus proof = bulletproof_plus_PROVE(amounts, masks);
        CHECK_AND_ASSERT_THROW_MES(proof.V.size() == amounts.size(), "V does not have the expected size");
        C = proof.V;
        return proof;
    }

    bool verBulletproofPlus(const BulletproofPlus &proof)
    {
      try { return bulletproof_plus_VERIFY(proof); }
      // we can get deep throws from ge_frombytes_vartime if input isn't valid
      catch (...) { return false; }
    }

    bool verBulletproofPlus(const std::vector<const BulletproofPlus*> &proofs)
    {
      try { return bulletproof_plus_VERIFY(proofs); }
      // we can get deep throws from ge_frombytes_vartime if input isn't valid
      catch (...) { return false; }
    }

    //Borromean (c.f. gmax/andytoshi's paper)
    boroSig genBorromean(const key64 x, const key64 P1, const key64 P2, const bits indices) {
        key64 L[2], alpha;
        auto wiper = epee::misc_utils::create_scope_leave_handler([&](){memwipe(alpha, sizeof(alpha));});
        key c;
        int naught = 0, prime = 0, ii = 0, jj=0;
        boroSig bb;
        for (ii = 0 ; ii < 64 ; ii++) {
            naught = indices[ii]; prime = (indices[ii] + 1) % 2;
            skGen(alpha[ii]);
            scalarmultBase(L[naught][ii], alpha[ii]);
            if (naught == 0) {
                skGen(bb.s1[ii]);
                c = hash_to_scalar(L[naught][ii]);
                addKeys2(L[prime][ii], bb.s1[ii], c, P2[ii]);
            }
        }
        bb.ee = hash_to_scalar(L[1]); //or L[1]..
        key LL, cc;
        for (jj = 0 ; jj < 64 ; jj++) {
            if (!indices[jj]) {
                sc_mulsub(bb.s0[jj].bytes, x[jj].bytes, bb.ee.bytes, alpha[jj].bytes);
            } else {
                skGen(bb.s0[jj]);
                addKeys2(LL, bb.s0[jj], bb.ee, P1[jj]); //different L0
                cc = hash_to_scalar(LL);
                sc_mulsub(bb.s1[jj].bytes, x[jj].bytes, cc.bytes, alpha[jj].bytes);
            }
        }
        return bb;
    }
    
    //see above.
    bool verifyBorromean(const boroSig &bb, const ge_p3 P1[64], const ge_p3 P2[64]) {
        key64 Lv1; key chash, LL;
        int ii = 0;
        ge_p2 p2;
        for (ii = 0 ; ii < 64 ; ii++) {
            // equivalent of: addKeys2(LL, bb.s0[ii], bb.ee, P1[ii]);
            ge_double_scalarmult_base_vartime(&p2, bb.ee.bytes, &P1[ii], bb.s0[ii].bytes);
            ge_tobytes(LL.bytes, &p2);
            chash = hash_to_scalar(LL);
            // equivalent of: addKeys2(Lv1[ii], bb.s1[ii], chash, P2[ii]);
            ge_double_scalarmult_base_vartime(&p2, chash.bytes, &P2[ii], bb.s1[ii].bytes);
            ge_tobytes(Lv1[ii].bytes, &p2);
        }
        key eeComputed = hash_to_scalar(Lv1); //hash function fine
        return equalKeys(eeComputed, bb.ee);
    }

    bool verifyBorromean(const boroSig &bb, const key64 P1, const key64 P2) {
      ge_p3 P1_p3[64], P2_p3[64];
      for (size_t i = 0 ; i < 64 ; ++i) {
        CHECK_AND_ASSERT_MES_L1(ge_frombytes_vartime(&P1_p3[i], P1[i].bytes) == 0, false, "point conv failed");
        CHECK_AND_ASSERT_MES_L1(ge_frombytes_vartime(&P2_p3[i], P2[i].bytes) == 0, false, "point conv failed");
      }
      return verifyBorromean(bb, P1_p3, P2_p3);
    }

    // Generate a CLSAG signature
    // See paper by Goodell et al. (https://eprint.iacr.org/2019/654)
    //
    // The keys are set as follows:
    //   P[l] == p*G
    //   C[l] == z*G
    //   C[i] == C_nonzero[i] - C_offset (for hashing purposes) for all i
    clsag CLSAG_Gen(const key &message, const keyV & P, const key & p, const keyV & C, const key & z, const keyV & C_nonzero, const key & C_offset, const unsigned int l, hw::device &hwdev) {
        clsag sig;
        size_t n = P.size(); // ring size
        CHECK_AND_ASSERT_THROW_MES(n == C.size(), "Signing and commitment key vector sizes must match!");
        CHECK_AND_ASSERT_THROW_MES(n == C_nonzero.size(), "Signing and commitment key vector sizes must match!");
        CHECK_AND_ASSERT_THROW_MES(l < n, "Signing index out of range!");

        // Key images
        ge_p3 H_p3;
        hash_to_p3(H_p3,P[l]);
        key H;
        ge_p3_tobytes(H.bytes,&H_p3);

        key D;

        // Initial values
        key a;
        key aG;
        key aH;

        hwdev.clsag_prepare(p,z,sig.I,D,H,a,aG,aH);

        geDsmp I_precomp;
        geDsmp D_precomp;
        precomp(I_precomp.k,sig.I);
        precomp(D_precomp.k,D);

        // Offset key image
        scalarmultKey(sig.D,D,INV_EIGHT);

        // Aggregation hashes
        keyV mu_P_to_hash(2*n+4); // domain, I, D, P, C, C_offset
        keyV mu_C_to_hash(2*n+4); // domain, I, D, P, C, C_offset
        sc_0(mu_P_to_hash[0].bytes);
        memcpy(mu_P_to_hash[0].bytes,config::HASH_KEY_CLSAG_AGG_0,sizeof(config::HASH_KEY_CLSAG_AGG_0)-1);
        sc_0(mu_C_to_hash[0].bytes);
        memcpy(mu_C_to_hash[0].bytes,config::HASH_KEY_CLSAG_AGG_1,sizeof(config::HASH_KEY_CLSAG_AGG_1)-1);
        for (size_t i = 1; i < n+1; ++i) {
            mu_P_to_hash[i] = P[i-1];
            mu_C_to_hash[i] = P[i-1];
        }
        for (size_t i = n+1; i < 2*n+1; ++i) {
            mu_P_to_hash[i] = C_nonzero[i-n-1];
            mu_C_to_hash[i] = C_nonzero[i-n-1];
        }
        mu_P_to_hash[2*n+1] = sig.I;
        mu_P_to_hash[2*n+2] = sig.D;
        mu_P_to_hash[2*n+3] = C_offset;
        mu_C_to_hash[2*n+1] = sig.I;
        mu_C_to_hash[2*n+2] = sig.D;
        mu_C_to_hash[2*n+3] = C_offset;
        key mu_P, mu_C;
        mu_P = hash_to_scalar(mu_P_to_hash);
        mu_C = hash_to_scalar(mu_C_to_hash);

        // Initial commitment
        keyV c_to_hash(2*n+5); // domain, P, C, C_offset, message, aG, aH
        key c;
        sc_0(c_to_hash[0].bytes);
        memcpy(c_to_hash[0].bytes,config::HASH_KEY_CLSAG_ROUND,sizeof(config::HASH_KEY_CLSAG_ROUND)-1);
        for (size_t i = 1; i < n+1; ++i)
        {
            c_to_hash[i] = P[i-1];
            c_to_hash[i+n] = C_nonzero[i-1];
        }
        c_to_hash[2*n+1] = C_offset;
        c_to_hash[2*n+2] = message;

        c_to_hash[2*n+3] = aG;
        c_to_hash[2*n+4] = aH;

        hwdev.clsag_hash(c_to_hash,c);
        
        size_t i;
        i = (l + 1) % n;
        if (i == 0)
            copy(sig.c1, c);

        // Decoy indices
        sig.s = keyV(n);
        key c_new;
        key L;
        key R;
        key c_p; // = c[i]*mu_P
        key c_c; // = c[i]*mu_C
        geDsmp P_precomp;
        geDsmp C_precomp;
        geDsmp H_precomp;
        ge_p3 Hi_p3;

        while (i != l) {
            sig.s[i] = skGen();
            sc_0(c_new.bytes);
            sc_mul(c_p.bytes,mu_P.bytes,c.bytes);
            sc_mul(c_c.bytes,mu_C.bytes,c.bytes);

            // Precompute points
            precomp(P_precomp.k,P[i]);
            precomp(C_precomp.k,C[i]);

            // Compute L
            addKeys_aGbBcC(L,sig.s[i],c_p,P_precomp.k,c_c,C_precomp.k);

            // Compute R
            hash_to_p3(Hi_p3,P[i]);
            ge_dsm_precomp(H_precomp.k, &Hi_p3);
            addKeys_aAbBcC(R,sig.s[i],H_precomp.k,c_p,I_precomp.k,c_c,D_precomp.k);

            c_to_hash[2*n+3] = L;
            c_to_hash[2*n+4] = R;
            hwdev.clsag_hash(c_to_hash,c_new);
            copy(c,c_new);
            
            i = (i + 1) % n;
            if (i == 0)
                copy(sig.c1,c);
        }

        // Compute final scalar
        hwdev.clsag_sign(c,a,p,z,mu_P,mu_C,sig.s[l]);
        memwipe(&a, sizeof(key));

        return sig;
    }

    clsag CLSAG_Gen(const key &message, const keyV & P, const key & p, const keyV & C, const key & z, const keyV & C_nonzero, const key & C_offset, const unsigned int l) {
        return CLSAG_Gen(message, P, p, C, z, C_nonzero, C_offset, l, hw::get_device("default"));
    }

    // MLSAG signatures
    // See paper by Noether (https://eprint.iacr.org/2015/1098)
    // This generalization allows for some dimensions not to require linkability;
    //   this is used in practice for commitment data within signatures
    // Note that using more than one linkable dimension is not recommended.
    mgSig MLSAG_Gen(const key &message, const keyM & pk, const keyV & xx, const unsigned int index, size_t dsRows, hw::device &hwdev) {
        mgSig rv;
        size_t cols = pk.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 2, "Error! What is c if cols = 1!");
        CHECK_AND_ASSERT_THROW_MES(index < cols, "Index out of range");
        size_t rows = pk[0].size();
        CHECK_AND_ASSERT_THROW_MES(rows >= 1, "Empty pk");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_THROW_MES(pk[i].size() == rows, "pk is not rectangular");
        }
        CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "Bad xx size");
        CHECK_AND_ASSERT_THROW_MES(dsRows <= rows, "Bad dsRows size");

        size_t i = 0, j = 0, ii = 0;
        key c, c_old, L, R, Hi;
        ge_p3 Hi_p3;
        sc_0(c_old.bytes);
        vector<geDsmp> Ip(dsRows);
        rv.II = keyV(dsRows);
        keyV alpha(rows);
        auto wiper = epee::misc_utils::create_scope_leave_handler([&](){memwipe(alpha.data(), alpha.size() * sizeof(alpha[0]));});
        keyV aG(rows);
        rv.ss = keyM(cols, aG);
        keyV aHP(dsRows);
        keyV toHash(1 + 3 * dsRows + 2 * (rows - dsRows));
        toHash[0] = message;
        DP("here1");
        for (i = 0; i < dsRows; i++) {
            toHash[3 * i + 1] = pk[index][i];
            hash_to_p3(Hi_p3, pk[index][i]);
            ge_p3_tobytes(Hi.bytes, &Hi_p3);
            hwdev.mlsag_prepare(Hi, xx[i], alpha[i] , aG[i] , aHP[i] , rv.II[i]);
            toHash[3 * i + 2] = aG[i];
            toHash[3 * i + 3] = aHP[i];
            precomp(Ip[i].k, rv.II[i]);
        }
        size_t ndsRows = 3 * dsRows; //non Double Spendable Rows (see identity chains paper)
        for (i = dsRows, ii = 0 ; i < rows ; i++, ii++) {
            skpkGen(alpha[i], aG[i]); //need to save alphas for later..
            toHash[ndsRows + 2 * ii + 1] = pk[index][i];
            toHash[ndsRows + 2 * ii + 2] = aG[i];
        }

        hwdev.mlsag_hash(toHash, c_old);

        
        i = (index + 1) % cols;
        if (i == 0) {
            copy(rv.cc, c_old);
        }
        while (i != index) {

            rv.ss[i] = skvGen(rows);            
            sc_0(c.bytes);
            for (j = 0; j < dsRows; j++) {
                addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
                hash_to_p3(Hi_p3, pk[i][j]);
                ge_p3_tobytes(Hi.bytes, &Hi_p3);
                addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
                toHash[3 * j + 1] = pk[i][j];
                toHash[3 * j + 2] = L; 
                toHash[3 * j + 3] = R;
            }
            for (j = dsRows, ii = 0; j < rows; j++, ii++) {
                addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
                toHash[ndsRows + 2 * ii + 1] = pk[i][j];
                toHash[ndsRows + 2 * ii + 2] = L;
            }
            hwdev.mlsag_hash(toHash, c);
            copy(c_old, c);
            i = (i + 1) % cols;
            
            if (i == 0) { 
                copy(rv.cc, c_old);
            }   
        }
        hwdev.mlsag_sign(c, xx, alpha, rows, dsRows, rv.ss[index]);
        return rv;
    }
    
    // MLSAG signatures
    // See paper by Noether (https://eprint.iacr.org/2015/1098)
    // This generalization allows for some dimensions not to require linkability;
    //   this is used in practice for commitment data within signatures
    // Note that using more than one linkable dimension is not recommended.
    bool MLSAG_Ver(const key &message, const keyM & pk, const mgSig & rv, size_t dsRows) {
        size_t cols = pk.size();
        CHECK_AND_ASSERT_MES(cols >= 2, false, "Signature must contain more than one public key");
        size_t rows = pk[0].size();
        CHECK_AND_ASSERT_MES(rows >= 1, false, "Bad total row number");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_MES(pk[i].size() == rows, false, "Bad public key matrix dimensions");
        }
        CHECK_AND_ASSERT_MES(rv.II.size() == dsRows, false, "Wrong number of key images present");
        CHECK_AND_ASSERT_MES(rv.ss.size() == cols, false, "Bad scalar matrix dimensions");
        for (size_t i = 0; i < cols; ++i) {
          CHECK_AND_ASSERT_MES(rv.ss[i].size() == rows, false, "Bad scalar matrix dimensions");
        }
        CHECK_AND_ASSERT_MES(dsRows <= rows, false, "Non-double-spend rows cannot exceed total rows");

        for (size_t i = 0; i < rv.ss.size(); ++i) {
          for (size_t j = 0; j < rv.ss[i].size(); ++j) {
            CHECK_AND_ASSERT_MES(sc_check(rv.ss[i][j].bytes) == 0, false, "Bad signature scalar");
          }
        }
        CHECK_AND_ASSERT_MES(sc_check(rv.cc.bytes) == 0, false, "Bad initial signature hash");

        size_t i = 0, j = 0, ii = 0;
        key c,  L, R;
        key c_old = copy(rv.cc);
        vector<geDsmp> Ip(dsRows);
        for (i = 0 ; i < dsRows ; i++) {
            CHECK_AND_ASSERT_MES(!(rv.II[i] == rct::identity()), false, "Bad key image");
            precomp(Ip[i].k, rv.II[i]);
        }
        size_t ndsRows = 3 * dsRows; // number of dimensions not requiring linkability
        keyV toHash(1 + 3 * dsRows + 2 * (rows - dsRows));
        toHash[0] = message;
        i = 0;
        while (i < cols) {
            sc_0(c.bytes);
            for (j = 0; j < dsRows; j++) {
                addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);

                // Compute R directly
                ge_p3 hash8_p3;
                hash_to_p3(hash8_p3, pk[i][j]);
                ge_p2 R_p2;
                ge_double_scalarmult_precomp_vartime(&R_p2, rv.ss[i][j].bytes, &hash8_p3, c_old.bytes, Ip[j].k);
                ge_tobytes(R.bytes, &R_p2);

                toHash[3 * j + 1] = pk[i][j];
                toHash[3 * j + 2] = L; 
                toHash[3 * j + 3] = R;
            }
            for (j = dsRows, ii = 0 ; j < rows ; j++, ii++) {
                addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
                toHash[ndsRows + 2 * ii + 1] = pk[i][j];
                toHash[ndsRows + 2 * ii + 2] = L;
            }
            c = hash_to_scalar(toHash);
            CHECK_AND_ASSERT_MES(!(c == rct::zero()), false, "Bad signature hash");
            copy(c_old, c);
            i = (i + 1);
        }
        sc_sub(c.bytes, c_old.bytes, rv.cc.bytes);
        return sc_isnonzero(c.bytes) == 0;  
    }
    


    //proveRange and verRange
    //proveRange gives C, and mask such that \sumCi = C
    //   c.f. https://eprint.iacr.org/2015/1098 section 5.1
    //   and Ci is a commitment to either 0 or 2^i, i=0,...,63
    //   thus this proves that "amount" is in [0, 2^64]
    //   mask is a such that C = aG + bH, and b = amount
    //verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
    rangeSig proveRange(key & C, key & mask, const xmr_amount & amount) {
        sc_0(mask.bytes);
        identity(C);
        bits b;
        d2b(b, amount);
        rangeSig sig;
        key64 ai;
        key64 CiH;
        int i = 0;
        for (i = 0; i < ATOMS; i++) {
            skGen(ai[i]);
            if (b[i] == 0) {
                scalarmultBase(sig.Ci[i], ai[i]);
            }
            if (b[i] == 1) {
                addKeys1(sig.Ci[i], ai[i], H2[i]);
            }
            subKeys(CiH[i], sig.Ci[i], H2[i]);
            sc_add(mask.bytes, mask.bytes, ai[i].bytes);
            addKeys(C, C, sig.Ci[i]);
        }
        sig.asig = genBorromean(ai, sig.Ci, CiH, b);
        return sig;
    }

    //proveRange and verRange
    //proveRange gives C, and mask such that \sumCi = C
    //   c.f. https://eprint.iacr.org/2015/1098 section 5.1
    //   and Ci is a commitment to either 0 or 2^i, i=0,...,63
    //   thus this proves that "amount" is in [0, 2^64]
    //   mask is a such that C = aG + bH, and b = amount
    //verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
    bool verRange(const key & C, const rangeSig & as) {
      try
      {
        PERF_TIMER(verRange);
        ge_p3 CiH[64], asCi[64];
        int i = 0;
        ge_p3 Ctmp_p3 = ge_p3_identity;
        for (i = 0; i < 64; i++) {
            // faster equivalent of:
            // subKeys(CiH[i], as.Ci[i], H2[i]);
            // addKeys(Ctmp, Ctmp, as.Ci[i]);
            ge_cached cached;
            ge_p3 p3;
            ge_p1p1 p1;
            CHECK_AND_ASSERT_MES_L1(ge_frombytes_vartime(&p3, H2[i].bytes) == 0, false, "point conv failed");
            ge_p3_to_cached(&cached, &p3);
            CHECK_AND_ASSERT_MES_L1(ge_frombytes_vartime(&asCi[i], as.Ci[i].bytes) == 0, false, "point conv failed");
            ge_sub(&p1, &asCi[i], &cached);
            ge_p3_to_cached(&cached, &asCi[i]);
            ge_p1p1_to_p3(&CiH[i], &p1);
            ge_add(&p1, &Ctmp_p3, &cached);
            ge_p1p1_to_p3(&Ctmp_p3, &p1);
        }
        key Ctmp;
        ge_p3_tobytes(Ctmp.bytes, &Ctmp_p3);
        if (!equalKeys(C, Ctmp))
          return false;
        if (!verifyBorromean(as.asig, asCi, CiH))
          return false;
        return true;
      }
      // we can get deep throws from ge_frombytes_vartime if input isn't valid
      catch (...) { return false; }
    }

    key get_pre_mlsag_hash(const rctSig &rv, hw::device &hwdev)
    {
      keyV hashes;
      hashes.reserve(3);
      hashes.push_back(rv.message);
      crypto::hash h;

      std::stringstream ss;
      binary_archive<true> ba(ss);
      CHECK_AND_ASSERT_THROW_MES(!rv.mixRing.empty(), "Empty mixRing");
      const size_t inputs = is_rct_simple(rv.type) ? rv.mixRing.size() : rv.mixRing[0].size();
      const size_t outputs = rv.ecdhInfo.size();
      key prehash;
      CHECK_AND_ASSERT_THROW_MES(const_cast<rctSig&>(rv).serialize_rctsig_base(ba, inputs, outputs),
          "Failed to serialize rctSigBase");
      cryptonote::get_blob_hash(ss.str(), h);
      hashes.push_back(hash2rct(h));

      keyV kv;
      if (rv.type == RCTTypeBulletproof || rv.type == RCTTypeBulletproof2 || rv.type == RCTTypeCLSAG)
      {
        kv.reserve((6*2+9) * rv.p.bulletproofs.size());
        for (const auto &p: rv.p.bulletproofs)
        {
          // V are not hashed as they're expanded from outPk.mask
          // (and thus hashed as part of rctSigBase above)
          kv.push_back(p.A);
          kv.push_back(p.S);
          kv.push_back(p.T1);
          kv.push_back(p.T2);
          kv.push_back(p.taux);
          kv.push_back(p.mu);
          for (size_t n = 0; n < p.L.size(); ++n)
            kv.push_back(p.L[n]);
          for (size_t n = 0; n < p.R.size(); ++n)
            kv.push_back(p.R[n]);
          kv.push_back(p.a);
          kv.push_back(p.b);
          kv.push_back(p.t);
        }
      }
      else if (rv.type == RCTTypeBulletproofPlus)
      {
        kv.reserve((6*2+6) * rv.p.bulletproofs_plus.size());
        for (const auto &p: rv.p.bulletproofs_plus)
        {
          // V are not hashed as they're expanded from outPk.mask
          // (and thus hashed as part of rctSigBase above)
          kv.push_back(p.A);
          kv.push_back(p.A1);
          kv.push_back(p.B);
          kv.push_back(p.r1);
          kv.push_back(p.s1);
          kv.push_back(p.d1);
          for (size_t n = 0; n < p.L.size(); ++n)
            kv.push_back(p.L[n]);
          for (size_t n = 0; n < p.R.size(); ++n)
            kv.push_back(p.R[n]);
        }
      }
      else
      {
        kv.reserve((64*3+1) * rv.p.rangeSigs.size());
        for (const auto &r: rv.p.rangeSigs)
        {
          for (size_t n = 0; n < 64; ++n)
            kv.push_back(r.asig.s0[n]);
          for (size_t n = 0; n < 64; ++n)
            kv.push_back(r.asig.s1[n]);
          kv.push_back(r.asig.ee);
          for (size_t n = 0; n < 64; ++n)
            kv.push_back(r.Ci[n]);
        }
      }
      hashes.push_back(cn_fast_hash(kv));
      hwdev.mlsag_prehash(ss.str(), inputs, outputs, hashes, rv.outPk, prehash);
      return  prehash;
    }

    //Ring-ct MG sigs
    //Prove: 
    //   c.f. https://eprint.iacr.org/2015/1098 section 4. definition 10. 
    //   This does the MG sig on the "dest" part of the given key matrix, and 
    //   the last row is the sum of input commitments from that column - sum output commitments
    //   this shows that sum inputs = sum outputs
    //Ver:    
    //   verifies the above sig is created corretly
    mgSig proveRctMG(const key &message, const ctkeyM & pubs, const ctkeyV & inSk, const ctkeyV &outSk, const ctkeyV & outPk, unsigned int index, const key &txnFeeKey, hw::device &hwdev) {
        //setup vars
        size_t cols = pubs.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 1, "Empty pubs");
        size_t rows = pubs[0].size();
        CHECK_AND_ASSERT_THROW_MES(rows >= 1, "Empty pubs");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_THROW_MES(pubs[i].size() == rows, "pubs is not rectangular");
        }
        CHECK_AND_ASSERT_THROW_MES(inSk.size() == rows, "Bad inSk size");
        CHECK_AND_ASSERT_THROW_MES(outSk.size() == outPk.size(), "Bad outSk/outPk size");

        keyV sk(rows + 1);
        keyV tmp(rows + 1);
        size_t i = 0, j = 0;
        for (i = 0; i < rows + 1; i++) {
            sc_0(sk[i].bytes);
            identity(tmp[i]);
        }
        keyM M(cols, tmp);
        //create the matrix to mg sig
        for (i = 0; i < cols; i++) {
            M[i][rows] = identity();
            for (j = 0; j < rows; j++) {
                M[i][j] = pubs[i][j].dest;
                addKeys(M[i][rows], M[i][rows], pubs[i][j].mask); //add input commitments in last row
            }
        }
        sc_0(sk[rows].bytes);
        for (j = 0; j < rows; j++) {
            sk[j] = copy(inSk[j].dest);
            sc_add(sk[rows].bytes, sk[rows].bytes, inSk[j].mask.bytes); //add masks in last row
        }
        for (i = 0; i < cols; i++) {
            for (size_t j = 0; j < outPk.size(); j++) {
                subKeys(M[i][rows], M[i][rows], outPk[j].mask); //subtract output Ci's in last row
            }
            //subtract txn fee output in last row
            subKeys(M[i][rows], M[i][rows], txnFeeKey);
        }
        for (size_t j = 0; j < outPk.size(); j++) {
            sc_sub(sk[rows].bytes, sk[rows].bytes, outSk[j].mask.bytes); //subtract output masks in last row..
        }
        mgSig result = MLSAG_Gen(message, M, sk, index, rows, hwdev);
        memwipe(sk.data(), sk.size() * sizeof(key));
        return result;
    }


    //Ring-ct MG sigs Simple
    //   Simple version for when we assume only
    //       post rct inputs
    //       here pubs is a vector of (P, C) length mixin
    //   inSk is x, a_in corresponding to signing index
    //       a_out, Cout is for the output commitment
    //       index is the signing index..
    mgSig proveRctMGSimple(const key &message, const ctkeyV & pubs, const ctkey & inSk, const key &a , const key &Cout, unsigned int index, hw::device &hwdev) {
        //setup vars
        size_t rows = 1;
        size_t cols = pubs.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 1, "Empty pubs");
        keyV tmp(rows + 1);
        keyV sk(rows + 1);
        size_t i;
        keyM M(cols, tmp);

        sk[0] = copy(inSk.dest);
        sc_sub(sk[1].bytes, inSk.mask.bytes, a.bytes);
        for (i = 0; i < cols; i++) {
            M[i][0] = pubs[i].dest;
            subKeys(M[i][1], pubs[i].mask, Cout);
        }
        mgSig result = MLSAG_Gen(message, M, sk, index, rows, hwdev);
        memwipe(sk.data(), sk.size() * sizeof(key));
        return result;
    }

    clsag proveRctCLSAGSimple(const key &message, const ctkeyV &pubs, const ctkey &inSk, const key &a, const key &Cout, unsigned int index, hw::device &hwdev) {
        //setup vars
        size_t rows = 1;
        size_t cols = pubs.size();
        CHECK_AND_ASSERT_THROW_MES(cols >= 1, "Empty pubs");
        keyV tmp(rows + 1);
        keyV sk(rows + 1);
        keyM M(cols, tmp);

        keyV P, C, C_nonzero;
        P.reserve(pubs.size());
        C.reserve(pubs.size());
        C_nonzero.reserve(pubs.size());
        for (const ctkey &k: pubs)
        {
            P.push_back(k.dest);
            C_nonzero.push_back(k.mask);
            rct::key tmp;
            subKeys(tmp, k.mask, Cout);
            C.push_back(tmp);
        }

        sk[0] = copy(inSk.dest);
        sc_sub(sk[1].bytes, inSk.mask.bytes, a.bytes);
        clsag result = CLSAG_Gen(message, P, sk[0], C, sk[1], C_nonzero, Cout, index, hwdev);
        memwipe(sk.data(), sk.size() * sizeof(key));
        return result;
    }


    //Ring-ct MG sigs
    //Prove: 
    //   c.f. https://eprint.iacr.org/2015/1098 section 4. definition 10. 
    //   This does the MG sig on the "dest" part of the given key matrix, and 
    //   the last row is the sum of input commitments from that column - sum output commitments
    //   this shows that sum inputs = sum outputs
    //Ver:    
    //   verifies the above sig is created corretly
    bool verRctMG(const mgSig &mg, const ctkeyM & pubs, const ctkeyV & outPk, const key &txnFeeKey, const key &message) {
        PERF_TIMER(verRctMG);
        //setup vars
        size_t cols = pubs.size();
        CHECK_AND_ASSERT_MES(cols >= 1, false, "Empty pubs");
        size_t rows = pubs[0].size();
        CHECK_AND_ASSERT_MES(rows >= 1, false, "Empty pubs");
        for (size_t i = 1; i < cols; ++i) {
          CHECK_AND_ASSERT_MES(pubs[i].size() == rows, false, "pubs is not rectangular");
        }

        keyV tmp(rows + 1);
        size_t i = 0, j = 0;
        for (i = 0; i < rows + 1; i++) {
            identity(tmp[i]);
        }
        keyM M(cols, tmp);

        //create the matrix to mg sig
        for (j = 0; j < rows; j++) {
            for (i = 0; i < cols; i++) {
                M[i][j] = pubs[i][j].dest;
                addKeys(M[i][rows], M[i][rows], pubs[i][j].mask); //add Ci in last row
            }
        }
        for (i = 0; i < cols; i++) {
            for (j = 0; j < outPk.size(); j++) {
                subKeys(M[i][rows], M[i][rows], outPk[j].mask); //subtract output Ci's in last row
            }
            //subtract txn fee output in last row
            subKeys(M[i][rows], M[i][rows], txnFeeKey);
        }
        return MLSAG_Ver(message, M, mg, rows);
    }

    //Ring-ct Simple MG sigs
    //Ver: 
    //This does a simplified version, assuming only post Rct
    //inputs
    bool verRctMGSimple(const key &message, const mgSig &mg, const ctkeyV & pubs, const key & C) {
        try
        {
            PERF_TIMER(verRctMGSimple);
            //setup vars
            size_t rows = 1;
            size_t cols = pubs.size();
            CHECK_AND_ASSERT_MES(cols >= 1, false, "Empty pubs");
            keyV tmp(rows + 1);
            size_t i;
            keyM M(cols, tmp);
            ge_p3 Cp3;
            CHECK_AND_ASSERT_MES_L1(ge_frombytes_vartime(&Cp3, C.bytes) == 0, false, "point conv failed");
            ge_cached Ccached;
            ge_p3_to_cached(&Ccached, &Cp3);
            ge_p1p1 p1;
            //create the matrix to mg sig
            for (i = 0; i < cols; i++) {
                    M[i][0] = pubs[i].dest;
                    ge_p3 p3;
                    CHECK_AND_ASSERT_MES_L1(ge_frombytes_vartime(&p3, pubs[i].mask.bytes) == 0, false, "point conv failed");
                    ge_sub(&p1, &p3, &Ccached);
                    ge_p1p1_to_p3(&p3, &p1);
                    ge_p3_tobytes(M[i][1].bytes, &p3);
            }
            //DP(C);
            return MLSAG_Ver(message, M, mg, rows);
        }
        catch (...) { return false; }
    }

    bool verRctCLSAGSimple(const key &message, const clsag &sig, const ctkeyV & pubs, const key & C_offset) {
        try
        {
            PERF_TIMER(verRctCLSAGSimple);
            const size_t n = pubs.size();

            // Check data
            CHECK_AND_ASSERT_MES(n >= 1, false, "Empty pubs");
            CHECK_AND_ASSERT_MES(n == sig.s.size(), false, "Signature scalar vector is the wrong size!");
            for (size_t i = 0; i < n; ++i)
                CHECK_AND_ASSERT_MES(sc_check(sig.s[i].bytes) == 0, false, "Bad signature scalar!");
            CHECK_AND_ASSERT_MES(sc_check(sig.c1.bytes) == 0, false, "Bad signature commitment!");
            CHECK_AND_ASSERT_MES(!(sig.I == rct::identity()), false, "Bad key image!");

            // Cache commitment offset for efficient subtraction later
            ge_p3 C_offset_p3;
            CHECK_AND_ASSERT_MES(ge_frombytes_vartime(&C_offset_p3, C_offset.bytes) == 0, false, "point conv failed");
            ge_cached C_offset_cached;
            ge_p3_to_cached(&C_offset_cached, &C_offset_p3);

            // Prepare key images
            key c = copy(sig.c1);
            key D_8 = scalarmult8(sig.D);
            CHECK_AND_ASSERT_MES(!(D_8 == rct::identity()), false, "Bad auxiliary key image!");
            geDsmp I_precomp;
            geDsmp D_precomp;
            precomp(I_precomp.k,sig.I);
            precomp(D_precomp.k,D_8);

            // Aggregation hashes
            keyV mu_P_to_hash(2*n+4); // domain, I, D, P, C, C_offset
            keyV mu_C_to_hash(2*n+4); // domain, I, D, P, C, C_offset
            sc_0(mu_P_to_hash[0].bytes);
            memcpy(mu_P_to_hash[0].bytes,config::HASH_KEY_CLSAG_AGG_0,sizeof(config::HASH_KEY_CLSAG_AGG_0)-1);
            sc_0(mu_C_to_hash[0].bytes);
            memcpy(mu_C_to_hash[0].bytes,config::HASH_KEY_CLSAG_AGG_1,sizeof(config::HASH_KEY_CLSAG_AGG_1)-1);
            for (size_t i = 1; i < n+1; ++i) {
                mu_P_to_hash[i] = pubs[i-1].dest;
                mu_C_to_hash[i] = pubs[i-1].dest;
            }
            for (size_t i = n+1; i < 2*n+1; ++i) {
                mu_P_to_hash[i] = pubs[i-n-1].mask;
                mu_C_to_hash[i] = pubs[i-n-1].mask;
            }
            mu_P_to_hash[2*n+1] = sig.I;
            mu_P_to_hash[2*n+2] = sig.D;
            mu_P_to_hash[2*n+3] = C_offset;
            mu_C_to_hash[2*n+1] = sig.I;
            mu_C_to_hash[2*n+2] = sig.D;
            mu_C_to_hash[2*n+3] = C_offset;
            key mu_P, mu_C;
            mu_P = hash_to_scalar(mu_P_to_hash);
            mu_C = hash_to_scalar(mu_C_to_hash);

            // Set up round hash
            keyV c_to_hash(2*n+5); // domain, P, C, C_offset, message, L, R
            sc_0(c_to_hash[0].bytes);
            memcpy(c_to_hash[0].bytes,config::HASH_KEY_CLSAG_ROUND,sizeof(config::HASH_KEY_CLSAG_ROUND)-1);
            for (size_t i = 1; i < n+1; ++i)
            {
                c_to_hash[i] = pubs[i-1].dest;
                c_to_hash[i+n] = pubs[i-1].mask;
            }
            c_to_hash[2*n+1] = C_offset;
            c_to_hash[2*n+2] = message;
            key c_p; // = c[i]*mu_P
            key c_c; // = c[i]*mu_C
            key c_new;
            key L;
            key R;
            geDsmp P_precomp;
            geDsmp C_precomp;
            size_t i = 0;
            ge_p3 hash8_p3;
            geDsmp hash_precomp;
            ge_p3 temp_p3;
            ge_p1p1 temp_p1;

            while (i < n) {
                sc_0(c_new.bytes);
                sc_mul(c_p.bytes,mu_P.bytes,c.bytes);
                sc_mul(c_c.bytes,mu_C.bytes,c.bytes);

                // Precompute points for L/R
                precomp(P_precomp.k,pubs[i].dest);

                CHECK_AND_ASSERT_MES(ge_frombytes_vartime(&temp_p3, pubs[i].mask.bytes) == 0, false, "point conv failed");
                ge_sub(&temp_p1,&temp_p3,&C_offset_cached);
                ge_p1p1_to_p3(&temp_p3,&temp_p1);
                ge_dsm_precomp(C_precomp.k,&temp_p3);

                // Compute L
                addKeys_aGbBcC(L,sig.s[i],c_p,P_precomp.k,c_c,C_precomp.k);

                // Compute R
                hash_to_p3(hash8_p3,pubs[i].dest);
                ge_dsm_precomp(hash_precomp.k, &hash8_p3);
                addKeys_aAbBcC(R,sig.s[i],hash_precomp.k,c_p,I_precomp.k,c_c,D_precomp.k);

                c_to_hash[2*n+3] = L;
                c_to_hash[2*n+4] = R;
                c_new = hash_to_scalar(c_to_hash);
                CHECK_AND_ASSERT_MES(!(c_new == rct::zero()), false, "Bad signature hash");
                copy(c,c_new);

                i = i + 1;
            }
            sc_sub(c_new.bytes,c.bytes,sig.c1.bytes);
            return sc_isnonzero(c_new.bytes) == 0;
        }
        catch (...) { return false; }
    }


    //These functions get keys from blockchain
    //replace these when connecting blockchain
    //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
    //populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
    //   the return value are the key matrix, and the index where inPk was put (random).    
    void getKeyFromBlockchain(ctkey & a, size_t reference_index) {
        a.mask = pkGen();
        a.dest = pkGen();
    }

    //These functions get keys from blockchain
    //replace these when connecting blockchain
    //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
    //populateFromBlockchain creates a keymatrix with "mixin" + 1 columns and one of the columns is inPk
    //   the return value are the key matrix, and the index where inPk was put (random).     
    tuple<ctkeyM, xmr_amount> populateFromBlockchain(ctkeyV inPk, int mixin) {
        int rows = inPk.size();
        ctkeyM rv(mixin + 1, inPk);
        int index = randXmrAmount(mixin);
        int i = 0, j = 0;
        for (i = 0; i <= mixin; i++) {
            if (i != index) {
                for (j = 0; j < rows; j++) {
                    getKeyFromBlockchain(rv[i][j], (size_t)randXmrAmount);
                }
            }
        }
        return make_tuple(rv, index);
    }

    //These functions get keys from blockchain
    //replace these when connecting blockchain
    //getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
    //populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
    //   the return value are the key matrix, and the index where inPk was put (random).     
    xmr_amount populateFromBlockchainSimple(ctkeyV & mixRing, const ctkey & inPk, int mixin) {
        int index = randXmrAmount(mixin);
        int i = 0;
        for (i = 0; i <= mixin; i++) {
            if (i != index) {
                getKeyFromBlockchain(mixRing[i], (size_t)randXmrAmount(1000));
            } else {
                mixRing[i] = inPk;
            }
        }
        return index;
    }

    //RingCT protocol
    //genRct: 
    //   creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
    //   columns that are claimed as inputs, and that the sum of inputs  = sum of outputs.
    //   Also contains masked "amount" and "mask" so the receiver can see how much they received
    //verRct:
    //   verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
    //decodeRct: (c.f. https://eprint.iacr.org/2015/1098 section 5.1.1)
    //   uses the attached ecdh info to find the amounts represented by each output commitment 
    //   must know the destination private key to find the correct amount, else will return a random number
    //   Note: For txn fees, the last index in the amounts vector should contain that
    //   Thus the amounts vector will be "one" longer than the destinations vectort
    rctSig genRct(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> & amounts, const ctkeyM &mixRing, const keyV &amount_keys, unsigned int index, ctkeyV &outSk, const RCTConfig &rct_config, hw::device &hwdev) {
        CHECK_AND_ASSERT_THROW_MES(amounts.size() == destinations.size() || amounts.size() == destinations.size() + 1, "Different number of amounts/destinations");
        CHECK_AND_ASSERT_THROW_MES(amount_keys.size() == destinations.size(), "Different number of amount_keys/destinations");
        CHECK_AND_ASSERT_THROW_MES(index < mixRing.size(), "Bad index into mixRing");
        for (size_t n = 0; n < mixRing.size(); ++n) {
          CHECK_AND_ASSERT_THROW_MES(mixRing[n].size() == inSk.size(), "Bad mixRing size");
        }
        CHECK_AND_ASSERT_THROW_MES(inSk.size() < 2, "genRct is not suitable for 2+ rings");

        rctSig rv;
        rv.type = RCTTypeFull;
        rv.message = message;
        rv.outPk.resize(destinations.size());
        rv.p.rangeSigs.resize(destinations.size());
        rv.ecdhInfo.resize(destinations.size());

        size_t i = 0;
        keyV masks(destinations.size()); //sk mask..
        outSk.resize(destinations.size());
        for (i = 0; i < destinations.size(); i++) {
            //add destination to sig
            rv.outPk[i].dest = copy(destinations[i]);
            //compute range proof
            rv.p.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, amounts[i]);
            #ifdef DBG
            CHECK_AND_ASSERT_THROW_MES(verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]), "verRange failed on newly created proof");
            #endif
            //mask amount and mask
            rv.ecdhInfo[i].mask = copy(outSk[i].mask);
            rv.ecdhInfo[i].amount = d2h(amounts[i]);
            hwdev.ecdhEncode(rv.ecdhInfo[i], amount_keys[i], rv.type == RCTTypeBulletproof2 || rv.type == RCTTypeCLSAG || rv.type == RCTTypeBulletproofPlus);
        }

        //set txn fee
        if (amounts.size() > destinations.size())
        {
          rv.txnFee = amounts[destinations.size()];
        }
        else
        {
          rv.txnFee = 0;
        }
        key txnFeeKey = scalarmultH(d2h(rv.txnFee));

        rv.mixRing = mixRing;
        rv.p.MGs.push_back(proveRctMG(get_pre_mlsag_hash(rv, hwdev), rv.mixRing, inSk, outSk, rv.outPk, index, txnFeeKey,hwdev));
        return rv;
    }

    rctSig genRct(const key &message, const ctkeyV & inSk, const ctkeyV  & inPk, const keyV & destinations, const vector<xmr_amount> & amounts, const keyV &amount_keys, const int mixin, const RCTConfig &rct_config, hw::device &hwdev) {
        unsigned int index;
        ctkeyM mixRing;
        ctkeyV outSk;
        tie(mixRing, index) = populateFromBlockchain(inPk, mixin);
        return genRct(message, inSk, destinations, amounts, mixRing, amount_keys, index, outSk, rct_config, hwdev);
    }
    
    //RCT simple    
    //for post-rct only
    rctSig genRctSimple(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> &inamounts, const vector<xmr_amount> &outamounts, xmr_amount txnFee, const ctkeyM & mixRing, const keyV &amount_keys, const std::vector<unsigned int> & index, ctkeyV &outSk, const RCTConfig &rct_config, hw::device &hwdev) {
        const bool bulletproof_or_plus = rct_config.range_proof_type > RangeProofBorromean;
        CHECK_AND_ASSERT_THROW_MES(inamounts.size() > 0, "Empty inamounts");
        CHECK_AND_ASSERT_THROW_MES(inamounts.size() == inSk.size(), "Different number of inamounts/inSk");
        CHECK_AND_ASSERT_THROW_MES(outamounts.size() == destinations.size(), "Different number of amounts/destinations");
        CHECK_AND_ASSERT_THROW_MES(amount_keys.size() == destinations.size(), "Different number of amount_keys/destinations");
        CHECK_AND_ASSERT_THROW_MES(index.size() == inSk.size(), "Different number of index/inSk");
        CHECK_AND_ASSERT_THROW_MES(mixRing.size() == inSk.size(), "Different number of mixRing/inSk");
        for (size_t n = 0; n < mixRing.size(); ++n) {
          CHECK_AND_ASSERT_THROW_MES(index[n] < mixRing[n].size(), "Bad index into mixRing");
        }

        rctSig rv;
        if (bulletproof_or_plus)
        {
          switch (rct_config.bp_version)
          {
            case 0:
            case 4:
              rv.type = RCTTypeBulletproofPlus;
              break;
            case 3:
              rv.type = RCTTypeCLSAG;
              break;
            case 2:
              rv.type = RCTTypeBulletproof2;
              break;
            case 1:
              rv.type = RCTTypeBulletproof;
              break;
            default:
              ASSERT_MES_AND_THROW("Unsupported BP version: " << rct_config.bp_version);
          }
        }
        else
          rv.type = RCTTypeSimple;

        rv.message = message;
        rv.outPk.resize(destinations.size());
        if (!bulletproof_or_plus)
          rv.p.rangeSigs.resize(destinations.size());
        rv.ecdhInfo.resize(destinations.size());

        size_t i;
        keyV masks(destinations.size()); //sk mask..
        outSk.resize(destinations.size());
        for (i = 0; i < destinations.size(); i++) {

            //add destination to sig
            rv.outPk[i].dest = copy(destinations[i]);
            //compute range proof
            if (!bulletproof_or_plus)
              rv.p.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, outamounts[i]);
            #ifdef DBG
            if (!bulletproof_or_plus)
                CHECK_AND_ASSERT_THROW_MES(verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]), "verRange failed on newly created proof");
            #endif
        }

        rv.p.bulletproofs.clear();
        rv.p.bulletproofs_plus.clear();
        if (bulletproof_or_plus)
        {
            const bool plus = is_rct_bulletproof_plus(rv.type);
            size_t n_amounts = outamounts.size();
            size_t amounts_proved = 0;
            if (rct_config.range_proof_type == RangeProofPaddedBulletproof)
            {
                rct::keyV C, masks;
                if (hwdev.get_mode() == hw::device::TRANSACTION_CREATE_FAKE)
                {
                    // use a fake bulletproof for speed
                    if (plus)
                      rv.p.bulletproofs_plus.push_back(make_dummy_bulletproof_plus(outamounts, C, masks));
                    else
                      rv.p.bulletproofs.push_back(make_dummy_bulletproof(outamounts, C, masks));
                }
                else
                {
                    const epee::span<const key> keys{&amount_keys[0], amount_keys.size()};
                    if (plus)
                      rv.p.bulletproofs_plus.push_back(proveRangeBulletproofPlus(C, masks, outamounts, keys, hwdev));
                    else
                      rv.p.bulletproofs.push_back(proveRangeBulletproof(C, masks, outamounts, keys, hwdev));
                    #ifdef DBG
                    if (plus)
                      CHECK_AND_ASSERT_THROW_MES(verBulletproofPlus(rv.p.bulletproofs_plus.back()), "verBulletproofPlus failed on newly created proof");
                    else
                      CHECK_AND_ASSERT_THROW_MES(verBulletproof(rv.p.bulletproofs.back()), "verBulletproof failed on newly created proof");
                    #endif
                }
                for (i = 0; i < outamounts.size(); ++i)
                {
                    rv.outPk[i].mask = rct::scalarmult8(C[i]);
                    outSk[i].mask = masks[i];
                }
            }
            else while (amounts_proved < n_amounts)
            {
                size_t batch_size = 1;
                if (rct_config.range_proof_type == RangeProofMultiOutputBulletproof)
                  while (batch_size * 2 + amounts_proved <= n_amounts && batch_size * 2 <= (plus ? BULLETPROOF_PLUS_MAX_OUTPUTS : BULLETPROOF_MAX_OUTPUTS))
                    batch_size *= 2;
                rct::keyV C, masks;
                std::vector<uint64_t> batch_amounts(batch_size);
                for (i = 0; i < batch_size; ++i)
                  batch_amounts[i] = outamounts[i + amounts_proved];
                if (hwdev.get_mode() == hw::device::TRANSACTION_CREATE_FAKE)
                {
                    // use a fake bulletproof for speed
                    if (plus)
                      rv.p.bulletproofs_plus.push_back(make_dummy_bulletproof_plus(batch_amounts, C, masks));
                    else
                      rv.p.bulletproofs.push_back(make_dummy_bulletproof(batch_amounts, C, masks));
                }
                else
                {
                    const epee::span<const key> keys{&amount_keys[amounts_proved], batch_size};
                    if (plus)
                      rv.p.bulletproofs_plus.push_back(proveRangeBulletproofPlus(C, masks, batch_amounts, keys, hwdev));
                    else
                      rv.p.bulletproofs.push_back(proveRangeBulletproof(C, masks, batch_amounts, keys, hwdev));
                #ifdef DBG
                    if (plus)
                      CHECK_AND_ASSERT_THROW_MES(verBulletproofPlus(rv.p.bulletproofs_plus.back()), "verBulletproofPlus failed on newly created proof");
                    else
                      CHECK_AND_ASSERT_THROW_MES(verBulletproof(rv.p.bulletproofs.back()), "verBulletproof failed on newly created proof");
                #endif
                }
                for (i = 0; i < batch_size; ++i)
                {
                  rv.outPk[i + amounts_proved].mask = rct::scalarmult8(C[i]);
                  outSk[i + amounts_proved].mask = masks[i];
                }
                amounts_proved += batch_size;
            }
        }

        key sumout = zero();
        for (i = 0; i < outSk.size(); ++i)
        {
            sc_add(sumout.bytes, outSk[i].mask.bytes, sumout.bytes);

            //mask amount and mask
            rv.ecdhInfo[i].mask = copy(outSk[i].mask);
            rv.ecdhInfo[i].amount = d2h(outamounts[i]);
            hwdev.ecdhEncode(rv.ecdhInfo[i], amount_keys[i], rv.type == RCTTypeBulletproof2 || rv.type == RCTTypeCLSAG || rv.type == RCTTypeBulletproofPlus);
        }
            
        //set txn fee
        rv.txnFee = txnFee;
//        TODO: unused ??
//        key txnFeeKey = scalarmultH(d2h(rv.txnFee));
        rv.mixRing = mixRing;
        keyV &pseudoOuts = bulletproof_or_plus ? rv.p.pseudoOuts : rv.pseudoOuts;
        pseudoOuts.resize(inamounts.size());
        if (is_rct_clsag(rv.type))
            rv.p.CLSAGs.resize(inamounts.size());
        else
            rv.p.MGs.resize(inamounts.size());
        key sumpouts = zero(); //sum pseudoOut masks
        keyV a(inamounts.size());
        for (i = 0 ; i < inamounts.size() - 1; i++) {
            skGen(a[i]);
            sc_add(sumpouts.bytes, a[i].bytes, sumpouts.bytes);
            genC(pseudoOuts[i], a[i], inamounts[i]);
        }
        sc_sub(a[i].bytes, sumout.bytes, sumpouts.bytes);
        genC(pseudoOuts[i], a[i], inamounts[i]);
        DP(pseudoOuts[i]);

        key full_message = get_pre_mlsag_hash(rv,hwdev);

        for (i = 0 ; i < inamounts.size(); i++)
        {
            if (is_rct_clsag(rv.type))
            {
                if (hwdev.get_mode() == hw::device::TRANSACTION_CREATE_FAKE)
                    rv.p.CLSAGs[i] = make_dummy_clsag(rv.mixRing[i].size());
                else
                    rv.p.CLSAGs[i] = proveRctCLSAGSimple(full_message, rv.mixRing[i], inSk[i], a[i], pseudoOuts[i], index[i], hwdev);
            }
            else
            {
                rv.p.MGs[i] = proveRctMGSimple(full_message, rv.mixRing[i], inSk[i], a[i], pseudoOuts[i], index[i], hwdev);
            }
        }
        return rv;
    }

    rctSig genRctSimple(const key &message, const ctkeyV & inSk, const ctkeyV & inPk, const keyV & destinations, const vector<xmr_amount> &inamounts, const vector<xmr_amount> &outamounts, const keyV &amount_keys, xmr_amount txnFee, unsigned int mixin, const RCTConfig &rct_config, hw::device &hwdev) {
        std::vector<unsigned int> index;
        index.resize(inPk.size());
        ctkeyM mixRing;
        ctkeyV outSk;
        mixRing.resize(inPk.size());
        for (size_t i = 0; i < inPk.size(); ++i) {
          mixRing[i].resize(mixin+1);
          index[i] = populateFromBlockchainSimple(mixRing[i], inPk[i], mixin);
        }
        return genRctSimple(message, inSk, destinations, inamounts, outamounts, txnFee, mixRing, amount_keys, index, outSk, rct_config, hwdev);
    }

    //RingCT protocol
    //genRct: 
    //   creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
    //   columns that are claimed as inputs, and that the sum of inputs  = sum of outputs.
    //   Also contains masked "amount" and "mask" so the receiver can see how much they received
    //verRct:
    //   verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
    //decodeRct: (c.f. https://eprint.iacr.org/2015/1098 section 5.1.1)
    //   uses the attached ecdh info to find the amounts represented by each output commitment 
    //   must know the destination private key to find the correct amount, else will return a random number    
    bool verRct(const rctSig & rv, bool semantics) {
        PERF_TIMER(verRct);
        CHECK_AND_ASSERT_MES(rv.type == RCTTypeFull, false, "verRct called on non-full rctSig");
        if (semantics)
        {
          CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.p.rangeSigs.size(), false, "Mismatched sizes of outPk and rv.p.rangeSigs");
          CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.ecdhInfo.size(), false, "Mismatched sizes of outPk and rv.ecdhInfo");
          CHECK_AND_ASSERT_MES(rv.p.MGs.size() == 1, false, "full rctSig has not one MG");
        }
        else
        {
          // semantics check is early, we don't have the MGs resolved yet
        }

        // some rct ops can throw
        try
        {
          if (semantics) {
            tools::threadpool& tpool = tools::threadpool::getInstanceForCompute();
            tools::threadpool::waiter waiter(tpool);
            std::deque<bool> results(rv.outPk.size(), false);
            DP("range proofs verified?");
            for (size_t i = 0; i < rv.outPk.size(); i++)
              tpool.submit(&waiter, [&, i] { results[i] = verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]); });
            if (!waiter.wait())
              return false;

            for (size_t i = 0; i < results.size(); ++i) {
              if (!results[i]) {
                LOG_PRINT_L1("Range proof verified failed for proof " << i);
                return false;
              }
            }
          }

          if (!semantics) {
            //compute txn fee
            key txnFeeKey = scalarmultH(d2h(rv.txnFee));
            bool mgVerd = verRctMG(rv.p.MGs[0], rv.mixRing, rv.outPk, txnFeeKey, get_pre_mlsag_hash(rv, hw::get_device("default")));
            DP("mg sig verified?");
            DP(mgVerd);
            if (!mgVerd) {
              LOG_PRINT_L1("MG signature verification failed");
              return false;
            }
          }

          return true;
        }
        catch (const std::exception &e)
        {
          LOG_PRINT_L1("Error in verRct: " << e.what());
          return false;
        }
        catch (...)
        {
          LOG_PRINT_L1("Error in verRct, but not an actual exception");
          return false;
        }
    }

    //ver RingCT simple
    //assumes only post-rct style inputs (at least for max anonymity)
    bool verRctSemanticsSimple(const std::vector<const rctSig*> & rvv) {
      try
      {
        PERF_TIMER(verRctSemanticsSimple);

        tools::threadpool& tpool = tools::threadpool::getInstanceForCompute();
        tools::threadpool::waiter waiter(tpool);
        std::deque<bool> results;
        std::vector<const Bulletproof*> bp_proofs;
        std::vector<const BulletproofPlus*> bpp_proofs;
        size_t max_non_bp_proofs = 0, offset = 0;

        for (const rctSig *rvp: rvv)
        {
          CHECK_AND_ASSERT_MES(rvp, false, "rctSig pointer is NULL");
          const rctSig &rv = *rvp;
          CHECK_AND_ASSERT_MES(rv.type == RCTTypeSimple || rv.type == RCTTypeBulletproof || rv.type == RCTTypeBulletproof2 || rv.type == RCTTypeCLSAG || rv.type == RCTTypeBulletproofPlus,
              false, "verRctSemanticsSimple called on non simple rctSig");
          const bool bulletproof = is_rct_bulletproof(rv.type);
          const bool bulletproof_plus = is_rct_bulletproof_plus(rv.type);
          if (bulletproof || bulletproof_plus)
          {
            if (bulletproof_plus)
              CHECK_AND_ASSERT_MES(rv.outPk.size() == n_bulletproof_plus_amounts(rv.p.bulletproofs_plus), false, "Mismatched sizes of outPk and bulletproofs_plus");
            else
              CHECK_AND_ASSERT_MES(rv.outPk.size() == n_bulletproof_amounts(rv.p.bulletproofs), false, "Mismatched sizes of outPk and bulletproofs");
            if (is_rct_clsag(rv.type))
            {
              CHECK_AND_ASSERT_MES(rv.p.MGs.empty(), false, "MGs are not empty for CLSAG");
              CHECK_AND_ASSERT_MES(rv.p.pseudoOuts.size() == rv.p.CLSAGs.size(), false, "Mismatched sizes of rv.p.pseudoOuts and rv.p.CLSAGs");
            }
            else
            {
              CHECK_AND_ASSERT_MES(rv.p.CLSAGs.empty(), false, "CLSAGs are not empty for MLSAG");
              CHECK_AND_ASSERT_MES(rv.p.pseudoOuts.size() == rv.p.MGs.size(), false, "Mismatched sizes of rv.p.pseudoOuts and rv.p.MGs");
            }
            CHECK_AND_ASSERT_MES(rv.pseudoOuts.empty(), false, "rv.pseudoOuts is not empty");
          }
          else
          {
            CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.p.rangeSigs.size(), false, "Mismatched sizes of outPk and rv.p.rangeSigs");
            CHECK_AND_ASSERT_MES(rv.pseudoOuts.size() == rv.p.MGs.size(), false, "Mismatched sizes of rv.pseudoOuts and rv.p.MGs");
            CHECK_AND_ASSERT_MES(rv.p.pseudoOuts.empty(), false, "rv.p.pseudoOuts is not empty");
          }
          CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.ecdhInfo.size(), false, "Mismatched sizes of outPk and rv.ecdhInfo");

          if (!bulletproof && !bulletproof_plus)
            max_non_bp_proofs += rv.p.rangeSigs.size();
        }

        results.resize(max_non_bp_proofs);
        for (const rctSig *rvp: rvv)
        {
          const rctSig &rv = *rvp;

          const bool bulletproof = is_rct_bulletproof(rv.type);
          const bool bulletproof_plus = is_rct_bulletproof_plus(rv.type);
          const keyV &pseudoOuts = bulletproof || bulletproof_plus ? rv.p.pseudoOuts : rv.pseudoOuts;

          rct::keyV masks(rv.outPk.size());
          for (size_t i = 0; i < rv.outPk.size(); i++) {
            masks[i] = rv.outPk[i].mask;
          }
          key sumOutpks = addKeys(masks);
          DP(sumOutpks);
          const key txnFeeKey = scalarmultH(d2h(rv.txnFee));
          addKeys(sumOutpks, txnFeeKey, sumOutpks);

          key sumPseudoOuts = addKeys(pseudoOuts);
          DP(sumPseudoOuts);

          //check pseudoOuts vs Outs..
          if (!equalKeys(sumPseudoOuts, sumOutpks)) {
            LOG_PRINT_L1("Sum check failed");
            return false;
          }

          if (bulletproof_plus)
          {
            for (size_t i = 0; i < rv.p.bulletproofs_plus.size(); i++)
              bpp_proofs.push_back(&rv.p.bulletproofs_plus[i]);
          }
          else if (bulletproof)
          {
            for (size_t i = 0; i < rv.p.bulletproofs.size(); i++)
              bp_proofs.push_back(&rv.p.bulletproofs[i]);
          }
          else
          {
            for (size_t i = 0; i < rv.p.rangeSigs.size(); i++)
              tpool.submit(&waiter, [&, i, offset] { results[i+offset] = verRange(rv.outPk[i].mask, rv.p.rangeSigs[i]); });
            offset += rv.p.rangeSigs.size();
          }
        }
        if (!bpp_proofs.empty() && !verBulletproofPlus(bpp_proofs))
        {
          LOG_PRINT_L1("Aggregate range proof verified failed");
          if (!waiter.wait())
            return false;
          return false;
        }
        if (!bp_proofs.empty() && !verBulletproof(bp_proofs))
        {
          LOG_PRINT_L1("Aggregate range proof verified failed");
          if (!waiter.wait())
            return false;
          return false;
        }

        if (!waiter.wait())
          return false;
        for (size_t i = 0; i < results.size(); ++i) {
          if (!results[i]) {
            LOG_PRINT_L1("Range proof verified failed for proof " << i);
            return false;
          }
        }

        return true;
      }
      // we can get deep throws from ge_frombytes_vartime if input isn't valid
      catch (const std::exception &e)
      {
        LOG_PRINT_L1("Error in verRctSemanticsSimple: " << e.what());
        return false;
      }
      catch (...)
      {
        LOG_PRINT_L1("Error in verRctSemanticsSimple, but not an actual exception");
        return false;
      }
    }

    bool verRctSemanticsSimple(const rctSig & rv)
    {
      return verRctSemanticsSimple(std::vector<const rctSig*>(1, &rv));
    }

    //ver RingCT simple
    //assumes only post-rct style inputs (at least for max anonymity)
    bool verRctNonSemanticsSimple(const rctSig & rv) {
      try
      {
        PERF_TIMER(verRctNonSemanticsSimple);

        CHECK_AND_ASSERT_MES(rv.type == RCTTypeSimple || rv.type == RCTTypeBulletproof || rv.type == RCTTypeBulletproof2 || rv.type == RCTTypeCLSAG || rv.type == RCTTypeBulletproofPlus,
            false, "verRctNonSemanticsSimple called on non simple rctSig");
        const bool bulletproof = is_rct_bulletproof(rv.type);
        const bool bulletproof_plus = is_rct_bulletproof_plus(rv.type);
        // semantics check is early, and mixRing/MGs aren't resolved yet
        if (bulletproof || bulletproof_plus)
          CHECK_AND_ASSERT_MES(rv.p.pseudoOuts.size() == rv.mixRing.size(), false, "Mismatched sizes of rv.p.pseudoOuts and mixRing");
        else
          CHECK_AND_ASSERT_MES(rv.pseudoOuts.size() == rv.mixRing.size(), false, "Mismatched sizes of rv.pseudoOuts and mixRing");

        const size_t threads = std::max(rv.outPk.size(), rv.mixRing.size());

        std::deque<bool> results(threads);
        tools::threadpool& tpool = tools::threadpool::getInstanceForCompute();
        tools::threadpool::waiter waiter(tpool);

        const keyV &pseudoOuts = bulletproof || bulletproof_plus ? rv.p.pseudoOuts : rv.pseudoOuts;

        const key message = get_pre_mlsag_hash(rv, hw::get_device("default"));

        results.clear();
        results.resize(rv.mixRing.size());
        for (size_t i = 0 ; i < rv.mixRing.size() ; i++) {
          tpool.submit(&waiter, [&, i] {
              if (is_rct_clsag(rv.type))
                  results[i] = verRctCLSAGSimple(message, rv.p.CLSAGs[i], rv.mixRing[i], pseudoOuts[i]);
              else
                  results[i] = verRctMGSimple(message, rv.p.MGs[i], rv.mixRing[i], pseudoOuts[i]);
          });
        }
        if (!waiter.wait())
          return false;

        for (size_t i = 0; i < results.size(); ++i) {
          if (!results[i]) {
            LOG_PRINT_L1("verRctMGSimple/verRctCLSAGSimple failed for input " << i);
            return false;
          }
        }

        return true;
      }
      // we can get deep throws from ge_frombytes_vartime if input isn't valid
      catch (const std::exception &e)
      {
        LOG_PRINT_L1("Error in verRctNonSemanticsSimple: " << e.what());
        return false;
      }
      catch (...)
      {
        LOG_PRINT_L1("Error in verRctNonSemanticsSimple, but not an actual exception");
        return false;
      }
    }

    //RingCT protocol
    //genRct: 
    //   creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
    //   columns that are claimed as inputs, and that the sum of inputs  = sum of outputs.
    //   Also contains masked "amount" and "mask" so the receiver can see how much they received
    //verRct:
    //   verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
    //decodeRct: (c.f. https://eprint.iacr.org/2015/1098 section 5.1.1)
    //   uses the attached ecdh info to find the amounts represented by each output commitment 
    //   must know the destination private key to find the correct amount, else will return a random number    
    xmr_amount decodeRct(const rctSig & rv, const key & sk, unsigned int i, key & mask, hw::device &hwdev) {
        CHECK_AND_ASSERT_MES(rv.type == RCTTypeFull, false, "decodeRct called on non-full rctSig");
        CHECK_AND_ASSERT_THROW_MES(i < rv.ecdhInfo.size(), "Bad index");
        CHECK_AND_ASSERT_THROW_MES(rv.outPk.size() == rv.ecdhInfo.size(), "Mismatched sizes of rv.outPk and rv.ecdhInfo");

        //mask amount and mask
        ecdhTuple ecdh_info = rv.ecdhInfo[i];
        hwdev.ecdhDecode(ecdh_info, sk, rv.type == RCTTypeBulletproof2 || rv.type == RCTTypeCLSAG || rv.type == RCTTypeBulletproofPlus);
        mask = ecdh_info.mask;
        key amount = ecdh_info.amount;
        key C = rv.outPk[i].mask;
        DP("C");
        DP(C);
        key Ctmp;
        CHECK_AND_ASSERT_THROW_MES(sc_check(mask.bytes) == 0, "warning, bad ECDH mask");
        CHECK_AND_ASSERT_THROW_MES(sc_check(amount.bytes) == 0, "warning, bad ECDH amount");
        addKeys2(Ctmp, mask, amount, H);
        DP("Ctmp");
        DP(Ctmp);
        if (equalKeys(C, Ctmp) == false) {
            CHECK_AND_ASSERT_THROW_MES(false, "warning, amount decoded incorrectly, will be unable to spend");
        }
        return h2d(amount);
    }

    xmr_amount decodeRct(const rctSig & rv, const key & sk, unsigned int i, hw::device &hwdev) {
      key mask;
      return decodeRct(rv, sk, i, mask, hwdev);
    }

    xmr_amount decodeRctSimple(const rctSig & rv, const key & sk, unsigned int i, key &mask, hw::device &hwdev) {
        CHECK_AND_ASSERT_MES(rv.type == RCTTypeSimple || rv.type == RCTTypeBulletproof || rv.type == RCTTypeBulletproof2 || rv.type == RCTTypeCLSAG || rv.type == RCTTypeBulletproofPlus,
            false, "decodeRct called on non simple rctSig");
        CHECK_AND_ASSERT_THROW_MES(i < rv.ecdhInfo.size(), "Bad index");
        CHECK_AND_ASSERT_THROW_MES(rv.outPk.size() == rv.ecdhInfo.size(), "Mismatched sizes of rv.outPk and rv.ecdhInfo");

        //mask amount and mask
        ecdhTuple ecdh_info = rv.ecdhInfo[i];
        hwdev.ecdhDecode(ecdh_info, sk, rv.type == RCTTypeBulletproof2 || rv.type == RCTTypeCLSAG || rv.type == RCTTypeBulletproofPlus);
        mask = ecdh_info.mask;
        key amount = ecdh_info.amount;
        key C = rv.outPk[i].mask;
        DP("C");
        DP(C);
        key Ctmp;
        CHECK_AND_ASSERT_THROW_MES(sc_check(mask.bytes) == 0, "warning, bad ECDH mask");
        CHECK_AND_ASSERT_THROW_MES(sc_check(amount.bytes) == 0, "warning, bad ECDH amount");
        addKeys2(Ctmp, mask, amount, H);
        DP("Ctmp");
        DP(Ctmp);
        if (equalKeys(C, Ctmp) == false) {
            CHECK_AND_ASSERT_THROW_MES(false, "warning, amount decoded incorrectly, will be unable to spend");
        }
        return h2d(amount);
    }

    xmr_amount decodeRctSimple(const rctSig & rv, const key & sk, unsigned int i, hw::device &hwdev) {
      key mask;
      return decodeRctSimple(rv, sk, i, mask, hwdev);
    }
}