aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/groestl.c
blob: e1c89cc3baaa29a53c3b27d50d3128dd234dd7bc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/* hash.c     April 2012
 * Groestl ANSI C code optimised for 32-bit machines
 * Author: Thomas Krinninger
 *
 *  This work is based on the implementation of
 *          Soeren S. Thomsen and Krystian Matusiewicz
 *          
 *
 */

#include "groestl.h"
#include "groestl_tables.h"

#define P_TYPE 0
#define Q_TYPE 1

const uint8_t shift_Values[2][8] = {{0,1,2,3,4,5,6,7},{1,3,5,7,0,2,4,6}};

const uint8_t indices_cyclic[15] = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6};


#define ROTATE_COLUMN_DOWN(v1, v2, amount_bytes, temp_var) {temp_var = (v1<<(8*amount_bytes))|(v2>>(8*(4-amount_bytes))); \
															v2 = (v2<<(8*amount_bytes))|(v1>>(8*(4-amount_bytes))); \
															v1 = temp_var;}
  

#define COLUMN(x,y,i,c0,c1,c2,c3,c4,c5,c6,c7,tv1,tv2,tu,tl,t)				\
   tu = T[2*(uint32_t)x[4*c0+0]];			    \
   tl = T[2*(uint32_t)x[4*c0+0]+1];		    \
   tv1 = T[2*(uint32_t)x[4*c1+1]];			\
   tv2 = T[2*(uint32_t)x[4*c1+1]+1];			\
   ROTATE_COLUMN_DOWN(tv1,tv2,1,t)	\
   tu ^= tv1;						\
   tl ^= tv2;						\
   tv1 = T[2*(uint32_t)x[4*c2+2]];			\
   tv2 = T[2*(uint32_t)x[4*c2+2]+1];			\
   ROTATE_COLUMN_DOWN(tv1,tv2,2,t)	\
   tu ^= tv1;						\
   tl ^= tv2;   					\
   tv1 = T[2*(uint32_t)x[4*c3+3]];			\
   tv2 = T[2*(uint32_t)x[4*c3+3]+1];			\
   ROTATE_COLUMN_DOWN(tv1,tv2,3,t)	\
   tu ^= tv1;						\
   tl ^= tv2;						\
   tl ^= T[2*(uint32_t)x[4*c4+0]];			\
   tu ^= T[2*(uint32_t)x[4*c4+0]+1];			\
   tv1 = T[2*(uint32_t)x[4*c5+1]];			\
   tv2 = T[2*(uint32_t)x[4*c5+1]+1];			\
   ROTATE_COLUMN_DOWN(tv1,tv2,1,t)	\
   tl ^= tv1;						\
   tu ^= tv2;						\
   tv1 = T[2*(uint32_t)x[4*c6+2]];			\
   tv2 = T[2*(uint32_t)x[4*c6+2]+1];			\
   ROTATE_COLUMN_DOWN(tv1,tv2,2,t)	\
   tl ^= tv1;						\
   tu ^= tv2;   					\
   tv1 = T[2*(uint32_t)x[4*c7+3]];			\
   tv2 = T[2*(uint32_t)x[4*c7+3]+1];			\
   ROTATE_COLUMN_DOWN(tv1,tv2,3,t)	\
   tl ^= tv1;						\
   tu ^= tv2;						\
   y[i] = tu;						\
   y[i+1] = tl;


/* compute one round of P (short variants) */
static void RND512P(uint8_t *x, uint32_t *y, uint32_t r) {
  uint32_t temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp;
  uint32_t* x32 = (uint32_t*)x;
  x32[ 0] ^= 0x00000000^r;
  x32[ 2] ^= 0x00000010^r;
  x32[ 4] ^= 0x00000020^r;
  x32[ 6] ^= 0x00000030^r;
  x32[ 8] ^= 0x00000040^r;
  x32[10] ^= 0x00000050^r;
  x32[12] ^= 0x00000060^r;
  x32[14] ^= 0x00000070^r;
  COLUMN(x,y, 0,  0,  2,  4,  6,  9, 11, 13, 15, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y, 2,  2,  4,  6,  8, 11, 13, 15,  1, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y, 4,  4,  6,  8, 10, 13, 15,  1,  3, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y, 6,  6,  8, 10, 12, 15,  1,  3,  5, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y, 8,  8, 10, 12, 14,  1,  3,  5,  7, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y,10, 10, 12, 14,  0,  3,  5,  7,  9, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y,12, 12, 14,  0,  2,  5,  7,  9, 11, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y,14, 14,  0,  2,  4,  7,  9, 11, 13, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
}

/* compute one round of Q (short variants) */
static void RND512Q(uint8_t *x, uint32_t *y, uint32_t r) {
  uint32_t temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp;
  uint32_t* x32 = (uint32_t*)x;
  x32[ 0] = ~x32[ 0];
  x32[ 1] ^= 0xffffffff^r;
  x32[ 2] = ~x32[ 2];
  x32[ 3] ^= 0xefffffff^r;
  x32[ 4] = ~x32[ 4];
  x32[ 5] ^= 0xdfffffff^r;
  x32[ 6] = ~x32[ 6];
  x32[ 7] ^= 0xcfffffff^r;
  x32[ 8] = ~x32[ 8];
  x32[ 9] ^= 0xbfffffff^r;
  x32[10] = ~x32[10];
  x32[11] ^= 0xafffffff^r;
  x32[12] = ~x32[12];
  x32[13] ^= 0x9fffffff^r;
  x32[14] = ~x32[14];
  x32[15] ^= 0x8fffffff^r;
  COLUMN(x,y, 0,  2,  6, 10, 14,  1,  5,  9, 13, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y, 2,  4,  8, 12,  0,  3,  7, 11, 15, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y, 4,  6, 10, 14,  2,  5,  9, 13,  1, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y, 6,  8, 12,  0,  4,  7, 11, 15,  3, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y, 8, 10, 14,  2,  6,  9, 13,  1,  5, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y,10, 12,  0,  4,  8, 11, 15,  3,  7, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y,12, 14,  2,  6, 10, 13,  1,  5,  9, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
  COLUMN(x,y,14,  0,  4,  8, 12, 15,  3,  7, 11, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
}

/* compute compression function (short variants) */
static void F512(uint32_t *h, const uint32_t *m) {
  int i;
  uint32_t Ptmp[2*COLS512];
  uint32_t Qtmp[2*COLS512];
  uint32_t y[2*COLS512];
  uint32_t z[2*COLS512];

  for (i = 0; i < 2*COLS512; i++) {
    z[i] = m[i];
    Ptmp[i] = h[i]^m[i];
  }

  /* compute Q(m) */
  RND512Q((uint8_t*)z, y, 0x00000000);
  RND512Q((uint8_t*)y, z, 0x01000000);
  RND512Q((uint8_t*)z, y, 0x02000000);
  RND512Q((uint8_t*)y, z, 0x03000000);
  RND512Q((uint8_t*)z, y, 0x04000000);
  RND512Q((uint8_t*)y, z, 0x05000000);
  RND512Q((uint8_t*)z, y, 0x06000000);
  RND512Q((uint8_t*)y, z, 0x07000000);
  RND512Q((uint8_t*)z, y, 0x08000000);
  RND512Q((uint8_t*)y, Qtmp, 0x09000000);

  /* compute P(h+m) */
  RND512P((uint8_t*)Ptmp, y, 0x00000000);
  RND512P((uint8_t*)y, z, 0x00000001);
  RND512P((uint8_t*)z, y, 0x00000002);
  RND512P((uint8_t*)y, z, 0x00000003);
  RND512P((uint8_t*)z, y, 0x00000004);
  RND512P((uint8_t*)y, z, 0x00000005);
  RND512P((uint8_t*)z, y, 0x00000006);
  RND512P((uint8_t*)y, z, 0x00000007);
  RND512P((uint8_t*)z, y, 0x00000008);
  RND512P((uint8_t*)y, Ptmp, 0x00000009);

  /* compute P(h+m) + Q(m) + h */
  for (i = 0; i < 2*COLS512; i++) {
    h[i] ^= Ptmp[i]^Qtmp[i];
  }
}


/* digest up to msglen bytes of input (full blocks only) */
static void Transform(hashState *ctx, 
	       const uint8_t *input, 
	       int msglen) {

  /* digest message, one block at a time */
  for (; msglen >= SIZE512; 
       msglen -= SIZE512, input += SIZE512) {
    F512(ctx->chaining,(uint32_t*)input);

    /* increment block counter */
    ctx->block_counter1++;
    if (ctx->block_counter1 == 0) ctx->block_counter2++;
  }
}

/* given state h, do h <- P(h)+h */
static void OutputTransformation(hashState *ctx) {
  int j;
  uint32_t temp[2*COLS512];
  uint32_t y[2*COLS512];
  uint32_t z[2*COLS512];



	for (j = 0; j < 2*COLS512; j++) {
	  temp[j] = ctx->chaining[j];
	}
	RND512P((uint8_t*)temp, y, 0x00000000);
	RND512P((uint8_t*)y, z, 0x00000001);
	RND512P((uint8_t*)z, y, 0x00000002);
	RND512P((uint8_t*)y, z, 0x00000003);
	RND512P((uint8_t*)z, y, 0x00000004);
	RND512P((uint8_t*)y, z, 0x00000005);
	RND512P((uint8_t*)z, y, 0x00000006);
	RND512P((uint8_t*)y, z, 0x00000007);
	RND512P((uint8_t*)z, y, 0x00000008);
	RND512P((uint8_t*)y, temp, 0x00000009);
	for (j = 0; j < 2*COLS512; j++) {
	  ctx->chaining[j] ^= temp[j];
	}									  
}

/* initialise context */
static void Init(hashState* ctx) {
  int i = 0;
  /* allocate memory for state and data buffer */

  for(;i<(SIZE512/sizeof(uint32_t));i++)
  {
	ctx->chaining[i] = 0;
  }

  /* set initial value */
  ctx->chaining[2*COLS512-1] = u32BIG((uint32_t)HASH_BIT_LEN);

  /* set other variables */
  ctx->buf_ptr = 0;
  ctx->block_counter1 = 0;
  ctx->block_counter2 = 0;
  ctx->bits_in_last_byte = 0;
}

/* update state with databitlen bits of input */
static void Update(hashState* ctx,
		  const BitSequence* input,
		  DataLength databitlen) {
  int index = 0;
  int msglen = (int)(databitlen/8);
  int rem = (int)(databitlen%8);

  /* if the buffer contains data that has not yet been digested, first
     add data to buffer until full */
  if (ctx->buf_ptr) {
    while (ctx->buf_ptr < SIZE512 && index < msglen) {
      ctx->buffer[(int)ctx->buf_ptr++] = input[index++];
    }
    if (ctx->buf_ptr < SIZE512) {
      /* buffer still not full, return */
      if (rem) {
	ctx->bits_in_last_byte = rem;
	ctx->buffer[(int)ctx->buf_ptr++] = input[index];
      }
      return;
    }

    /* digest buffer */
    ctx->buf_ptr = 0;
    Transform(ctx, ctx->buffer, SIZE512);
  }

  /* digest bulk of message */
  Transform(ctx, input+index, msglen-index);
  index += ((msglen-index)/SIZE512)*SIZE512;

  /* store remaining data in buffer */
  while (index < msglen) {
    ctx->buffer[(int)ctx->buf_ptr++] = input[index++];
  }

  /* if non-integral number of bytes have been supplied, store
     remaining bits in last byte, together with information about
     number of bits */
  if (rem) {
    ctx->bits_in_last_byte = rem;
    ctx->buffer[(int)ctx->buf_ptr++] = input[index];
  }
}

#define BILB ctx->bits_in_last_byte

/* finalise: process remaining data (including padding), perform
   output transformation, and write hash result to 'output' */
static void Final(hashState* ctx,
		 BitSequence* output) {
  int i, j = 0, hashbytelen = HASH_BIT_LEN/8;
  uint8_t *s = (BitSequence*)ctx->chaining;

  /* pad with '1'-bit and first few '0'-bits */
  if (BILB) {
    ctx->buffer[(int)ctx->buf_ptr-1] &= ((1<<BILB)-1)<<(8-BILB);
    ctx->buffer[(int)ctx->buf_ptr-1] ^= 0x1<<(7-BILB);
    BILB = 0;
  }
  else ctx->buffer[(int)ctx->buf_ptr++] = 0x80;

  /* pad with '0'-bits */
  if (ctx->buf_ptr > SIZE512-LENGTHFIELDLEN) {
    /* padding requires two blocks */
    while (ctx->buf_ptr < SIZE512) {
      ctx->buffer[(int)ctx->buf_ptr++] = 0;
    }
    /* digest first padding block */
    Transform(ctx, ctx->buffer, SIZE512);
    ctx->buf_ptr = 0;
  }
  while (ctx->buf_ptr < SIZE512-LENGTHFIELDLEN) {
    ctx->buffer[(int)ctx->buf_ptr++] = 0;
  }

  /* length padding */
  ctx->block_counter1++;
  if (ctx->block_counter1 == 0) ctx->block_counter2++;
  ctx->buf_ptr = SIZE512;

  while (ctx->buf_ptr > SIZE512-(int)sizeof(uint32_t)) {
    ctx->buffer[(int)--ctx->buf_ptr] = (uint8_t)ctx->block_counter1;
    ctx->block_counter1 >>= 8;
  }
  while (ctx->buf_ptr > SIZE512-LENGTHFIELDLEN) {
    ctx->buffer[(int)--ctx->buf_ptr] = (uint8_t)ctx->block_counter2;
    ctx->block_counter2 >>= 8;
  }
  /* digest final padding block */
  Transform(ctx, ctx->buffer, SIZE512); 
  /* perform output transformation */
  OutputTransformation(ctx);

  /* store hash result in output */
  for (i = SIZE512-hashbytelen; i < SIZE512; i++,j++) {
    output[j] = s[i];
  }

  /* zeroise relevant variables and deallocate memory */
  for (i = 0; i < COLS512; i++) {
    ctx->chaining[i] = 0;
  }
  for (i = 0; i < SIZE512; i++) {
    ctx->buffer[i] = 0;
  }
}

/* hash bit sequence */
void groestl(const BitSequence* data, 
		DataLength databitlen,
		BitSequence* hashval) {

  hashState context;

  /* initialise */
    Init(&context);


  /* process message */
  Update(&context, data, databitlen);

  /* finalise */
  Final(&context, hashval);
}
/*
static int crypto_hash(unsigned char *out,
		const unsigned char *in,
		unsigned long long len)
{
  groestl(in, 8*len, out);
  return 0;
}

*/