aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/shen_ed25519_ref/ietf.txt
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/shen_ed25519_ref/ietf.txt')
-rw-r--r--src/crypto/shen_ed25519_ref/ietf.txt1402
1 files changed, 0 insertions, 1402 deletions
diff --git a/src/crypto/shen_ed25519_ref/ietf.txt b/src/crypto/shen_ed25519_ref/ietf.txt
deleted file mode 100644
index 0736f71ec..000000000
--- a/src/crypto/shen_ed25519_ref/ietf.txt
+++ /dev/null
@@ -1,1402 +0,0 @@
-
-
-[Docs] [txt|pdf] [Tracker] [Email] [Diff1] [Diff2] [Nits]
-
-Versions: 00 01 02
-
-Network Working Group S. Josefsson
-Internet-Draft SJD AB
-Intended status: Informational N. Moeller
-Expires: August 26, 2015
- February 22, 2015
-
-
- EdDSA and Ed25519
-
- draft-josefsson-eddsa-ed25519-02
-
-
-Abstract
-
- The elliptic curve signature scheme EdDSA and one instance of it
- called Ed25519 is described. An example implementation and test
- vectors are provided.
-
-Status of This Memo
-
- This Internet-Draft is submitted in full conformance with the
- provisions of BCP 78 and BCP 79.
-
- Internet-Drafts are working documents of the Internet Engineering
- Task Force (IETF). Note that other groups may also distribute
- working documents as Internet-Drafts. The list of current Internet-
- Drafts is at http://datatracker.ietf.org/drafts/current/.
-
- Internet-Drafts are draft documents valid for a maximum of six months
- and may be updated, replaced, or obsoleted by other documents at any
- time. It is inappropriate to use Internet-Drafts as reference
- material or to cite them other than as "work in progress."
-
- This Internet-Draft will expire on August 26, 2015.
-
-Copyright Notice
-
- Copyright (c) 2015 IETF Trust and the persons identified as the
- document authors. All rights reserved.
-
- This document is subject to BCP 78 and the IETF Trust's Legal
- Provisions Relating to IETF Documents
- (http://trustee.ietf.org/license-info) in effect on the date of
- publication of this document. Please review these documents
- carefully, as they describe your rights and restrictions with respect
- to this document. Code Components extracted from this document must
- include Simplified BSD License text as described in Section 4.e of
- the Trust Legal Provisions and are provided without warranty as
- described in the Simplified BSD License.
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 1]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
-Table of Contents
-
- 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
- 2. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
- 3. Background . . . . . . . . . . . . . . . . . . . . . . . . . 3
- 4. EdDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
- 4.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . . 4
- 4.2. Keys . . . . . . . . . . . . . . . . . . . . . . . . . . 5
- 4.3. Sign . . . . . . . . . . . . . . . . . . . . . . . . . . 5
- 4.4. Verify . . . . . . . . . . . . . . . . . . . . . . . . . 5
- 5. Ed25519 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
- 5.1. Modular arithmetic . . . . . . . . . . . . . . . . . . . 6
- 5.2. Encoding . . . . . . . . . . . . . . . . . . . . . . . . 6
- 5.3. Decoding . . . . . . . . . . . . . . . . . . . . . . . . 6
- 5.4. Point addition . . . . . . . . . . . . . . . . . . . . . 7
- 5.5. Key Generation . . . . . . . . . . . . . . . . . . . . . 8
- 5.6. Sign . . . . . . . . . . . . . . . . . . . . . . . . . . 8
- 5.7. Verify . . . . . . . . . . . . . . . . . . . . . . . . . 9
- 5.8. Python illustration . . . . . . . . . . . . . . . . . . . 9
- 6. Test Vectors for Ed25519 . . . . . . . . . . . . . . . . . . 14
- 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 17
- 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 18
- 9. Security Considerations . . . . . . . . . . . . . . . . . . . 18
- 9.1. Side-channel leaks . . . . . . . . . . . . . . . . . . . 18
- 10. References . . . . . . . . . . . . . . . . . . . . . . . . . 18
- 10.1. Normative References . . . . . . . . . . . . . . . . . . 18
- 10.2. Informative References . . . . . . . . . . . . . . . . . 18
- Appendix A. Ed25519 Python Library . . . . . . . . . . . . . . . 19
- Appendix B. Library driver . . . . . . . . . . . . . . . . . . . 23
- Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 24
-
-1. Introduction
-
-
- The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of
- Schnorr's signature system with Twisted Edwards curves. EdDSA needs
- to be instantiated with certain parameters and this document describe
- Ed25519 - an instantiation of EdDSA in a curve over GF(2^255-19). To
- facilitate adoption in the Internet community of Ed25519, this
- document describe the signature scheme in an implementation-oriented
- way, and we provide sample code and test vectors.
-
- The advantages with EdDSA and Ed25519 include:
-
- 1. High-performance on a variety of platforms.
-
- 2. Does not require the use of a unique random number for each
- signature.
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 2]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- 3. More resilient to side-channel attacks.
-
- 4. Small public keys (32 bytes) and signatures (64 bytes).
-
- 5. The formulas are "strongly unified", i.e., they are valid for all
- points on the curve, with no exceptions. This obviates the need
- for EdDSA to perform expensive point validation on untrusted
- public values.
-
- 6. Collision resilience, meaning that hash-function collisions do
- not break this system.
-
- For further background, see the original EdDSA paper [EDDSA].
-
-2. Notation
-
-
- The following notation is used throughout the document:
-
- GF(p) finite field with p elements
-
- x^y x multiplied by itself y times
-
- B generator of the group or subgroup of interest
-
- n B B added to itself n times.
-
- h_i the i'th bit of h
-
- a || b (bit-)string a concatenated with (bit-)string b
-
-3. Background
-
-
- EdDSA is defined using an elliptic curve over GF(p) of the form
-
- -x^2 + y^2 = 1 + d x^2 y^2
-
- In general, p could be a prime power, but it is usually chosen as a
- prime number. It is required that p = 1 modulo 4 (which implies that
- -1 is a square modulo p) and that d is a non-square modulo p. For
- Ed25519, the curve used is equivalent to Curve25519 [CURVE25519],
- under a change of coordinates, which means that the difficulty of the
- discrete logarithm problem is the same as for Curve25519.
-
- Points on this curve form a group under addition, (x3, y3) = (x1, y1)
- + (x2, y2), with the formulas
-
-
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 3]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- x1 y2 + x2 y1 y1 y2 + x1 x2
- x3 = -------------------, y3 = -------------------
- 1 + d x1 x2 y1 y2 1 - d x1 x2 y1 y2
-
- The neutral element in the group is (0, 1).
-
- Unlike manyy other curves used for cryptographic applications, these
- formulas are "strongly unified": they are valid for all points on the
- curve, with no exceptions. In particular, the denominators are non-
- zero for all input points.
-
- There are more efficient formulas, which are still strongly unified,
- which use homogeneous coordinates to avoid the expensive modulo p
- inversions. See [Faster-ECC] and [Edwards-revisited].
-
-4. EdDSA
-
-
- EdDSA is a digital signature system with several parameters. The
- generic EdDSA digital signature system is normally not implemented
- directly, but instead a particular instance of EdDSA (like Ed25519)
- is implemented. A precise explanation of the generic EdDSA is thus
- not particulary useful for implementers, but for background and
- completeness, a succint description of the generic EdDSA algorithm is
- given here.
-
- EdDSA has seven parameters:
-
- 1. an integer b >= 10.
-
- 2. a cryptographic hash function H producing 2b-bit outputs.
-
- 3. a prime power p congruent to 1 modulo 4.
-
- 4. a (b-1)-bit encoding of elements of the finite field GF(p).
-
- 5. a non-square element d of GF(p)
-
- 6. an element B != (0,1) of the set E = { (x,y) is a member of GF(p)
- x GF(p) such that -x^2 + y^2 = 1 + dx^2y^2 }.
-
- 7. a prime q, of size b-3 bits, such that qB = (0, 1), i.e., q is
- the order of B or a multiple thereof.
-
-4.1. Encoding
-
-
- An element (x,y) of E is encoded as a b-bit string called ENC(x,y)
- which is the (b-1)-bit encoding of y concatenated with one bit that
- is 1 if x is negative and 0 if x is not negative. Negative elements
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 4]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- of GF(q) are those x which the (b-1)-bit encoding of x is
- lexicographically larger than the (b-1)-bit encoding of -x.
-
-4.2. Keys
-
-
- An EdDSA secret key is a b-bit string k. Let the hash H(k) = (h_0,
- h_1, ..., h_(2b-1)) determine an integer a which is 2^(b-2) plus the
- sum of m = 2^i * h_i for all i equal or larger than 3 and equal to or
- less than b-3 such that m is a member of the set { 2^(b-2), 2^(b-2) +
- 8, ..., 2^(b-1) - 8 }. The EdDSA public key is ENC(A) = ENC(aB).
- The bits h_b, ..., h_(2b-1) is used below during signing.
-
-4.3. Sign
-
-
- The signature of a message M under a secret key k is the 2b-bit
- string ENC(R) || ENC'(S), where ENC'(S) is defined as the b-bit
- little-endian encoding of S. R and S are derived as follows. First
- define r = H(h_b, ... h_(2b-1)), M) interpreting 2b-bit strings in
- little-endian form as integers in {0, 1, ..., 2^(2b)-1}. Let R=rB
- and S=(r+H(ENC(R) || ENC(A) || M)a) mod l.
-
-4.4. Verify
-
-
- To verify a signature ENC(R) || ENC'(S) on a message M under a public
- key ENC(A), proceed as follows. Parse the inputs so that A and R is
- an element of E, and S is a member of the set {0, 1, ..., l-1 }.
- Compute H' = H(ENC(R) || ENC(A) || M) and check the group equation
- 8SB = 8R + 8H'A in E. Verification is rejected if parsing fails or
- the group equation does not hold.
-
-5. Ed25519
-
-
- Theoretically, Ed25519 is EdDSA instantiated with b=256, H being
- SHA-512 [RFC4634], p is the prime 2^255-19, the 255-bit encoding of
- GF(2^255-19) being the little-endian encoding of {0, 1, ...,
- 2^255-20}, q is the prime 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed,
- d = -121665/121666 which is a member of GF(p), and B is the unique
- point (x, 4/5) in E for which x is "positive", which with the
- encoding used simply means that the least significant bit of x is 0.
- The curve p, prime q, d and B follows from [I-D.irtf-cfrg-curves].
-
- Written out explicitly, B is the point (15112221349535400772501151409
- 588531511454012693041857206046113283949847762202, 4631683569492647816
- 9428394003475163141307993866256225615783033603165251855960).
-
-
-
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 5]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
-5.1. Modular arithmetic
-
-
- For advise on how to implement arithmetic modulo p = 2^255 - 1
- efficiently and securely, see Curve25519 [CURVE25519]. For inversion
- modulo p, it is recommended to use the identity x^-1 = x^(p-2) (mod
- p).
-
- For point decoding or "decompression", square roots modulo p are
- needed. They can be computed using the Tonelli-Shanks algorithm, or
- the special case for p = 5 (mod 8). To find a square root of a,
- first compute the candidate root x = a^((p+3)/8) (mod p). Then there
- are three cases:
-
- x^2 = a (mod p). Then x is a square root.
-
- x^2 = -a (mod p). Then 2^((p-1)/4) x is a square root.
-
- a is not a square modulo p.
-
-5.2. Encoding
-
-
- All values are coded as octet strings, and integers are coded using
- little endian convention. I.e., a 32-octet string h h[0],...h[31]
- represents the integer h[0] + 2^8 h[1] + ... + 2^248 h[31].
-
- A curve point (x,y), with coordiantes in the range 0 <= x,y < p, is
- coded as follows. First encode the y-coordinate as a little-endian
- string of 32 octets. The most significant bit of the final octet is
- always zero. To form the encoding of the point, copy the least
- significant bit of the x-coordinate to the most significant bit of
- the final octet.
-
-5.3. Decoding
-
-
- Decoding a point, given as a 32-octet string, is a little more
- complicated.
-
- 1. First interpret the string as an integer in little-endian
- representation. Bit 255 of this number is the least significant
- bit of the x-coordinate, and denote this value x_0. The
- y-coordinate is recovered simply by clearing this bit. If the
- resulting value is >= p, decoding fails.
-
- 2. To recover the x coordinate, the curve equation implies x^2 =
- (y^2 - 1) / (d y^2 + 1) (mod p). Since d is a non-square and -1
- is a square, the numerator, (d y^2 + 1), is always invertible
- modulo p. Let u = y^2 - 1 and v = d y^2 + 1. To compute the
- square root of (u/v), the first step is to compute the candidate
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 6]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- root x = (u/v)^((p+3)/8). This can be done using the following
- trick, to use a single modular powering for both the inversion of
- v and the square root:
-
- (p+3)/8 3 (p-5)/8
- x = (u/v) = u v (u v^7) (mod p)
-
- 3. Again, there are three cases:
-
- 1. If v x^2 = u (mod p), x is a square root.
-
- 2. If v x^2 = -u (mod p), set x <-- x 2^((p-1)/4), which is a
- square root.
-
- 3. Otherwise, no square root exists modulo p, and decoding
- fails.
-
- 4. Finally, use the x_0 bit to select the right square root. If x =
- 0, and x_0 = 1, decoding fails. Otherwise, if x_0 != x mod 2,
- set x <-- p - x. Return the decoded point (x,y).
-
-5.4. Point addition
-
-
- For point addition, the following method is recommended. A point
- (x,y) is represented in extended homogeneous coordinates (X, Y, Z,
- T), with x = X/Z, y = Y/Z, x y = T/Z.
-
- The following formulas for adding two points, (x3,y3) =
- (x1,y1)+(x2,y2) are described in [Edwards-revisited], section 3.1.
- They are strongly unified, i.e., they work for any pair of valid
- input points.
-
- A = (Y1-X1)*(Y2-X2)
- B = (Y1+X1)*(Y2+X2)
- C = T1*2*d*T2
- D = Z1*2*Z2
- E = B-A
- F = D-C
- G = D+C
- H = B+A
- X3 = E*F
- Y3 = G*H
- T3 = E*H
- Z3 = F*G
-
-
-
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 7]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
-5.5. Key Generation
-
-
- The secret is 32 octets (256 bits, corresponding to b) of
- cryptographically-secure random data. See [RFC4086] for a discussion
- about randomness.
-
- The 32-byte public key is generated by the following steps.
-
- 1. Hash the 32-byte secret using SHA-512, storing the digest in a
- 64-octet large buffer, denoted h. Only the lower 32 bytes are
- used for generating the public key.
-
- 2. Prune the buffer. In C terminology:
-
- h[0] &= ~0x07;
- h[31] &= 0x7F;
- h[31] |= 0x40;
-
- 3. Interpret the buffer as the little-endian integer, forming a
- secret scalar a. Perform a known-base-point scalar
- multiplication a B.
-
- 4. The public key A is the encoding of the point aB. First encode
- the y coordinate (in the range 0 <= y < p) as a little-endian
- string of 32 octets. The most significant bit of the final octet
- is always zero. To form the encoding of the point aB, copy the
- least significant bit of the x coordinate to the most significant
- bit of the final octet. The result is the public key.
-
-5.6. Sign
-
-
- The imputs to the signing procedure is the secret key, a 32-octet
- string, and a message M of arbitrary size.
-
- 1. Hash the secret key, 32-octets, using SHA-512. Let h denote the
- resulting digest. Construct the secret scalar a from the first
- half of the digest, and the corresponding public key A, as
- described in the previous section. Let prefix denote the second
- half of the hash digest, h[32],...,h[63].
-
- 2. Compute SHA-512(prefix || M), where M is the message to be
- signed. Interpret the 64-octet digest as a little-endian integer
- r.
-
- 3. Compute the point rB. For efficiency, do this by first reducing
- r modulo q, the group order of B. Let the string R be the
- encoding of this point.
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 8]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- 4. Compute SHA512(R || A || M), and interpret the 64-octet digest as
- a little-endian integer k.
-
- 5. Compute s = (r + k a) mod q. For efficiency, again reduce k
- modulo q first.
-
- 6. Form the signature of the concatenation of R (32 octets) and the
- little-endian encoding of s (32 octets, three most significant
- bits of the final octets always zero).
-
-5.7. Verify
-
-
- 1. To verify a signature on a message M, first split the signature
- into two 32-octet halves. Decode the first half as a point R,
- and the second half as an integer s, in the range 0 <= s < q. If
- the decoding fails, the signature is invalid.
-
- 2. Compute SHA512(R || A || M), and interpret the 64-octet digest as
- a little-endian integer k.
-
- 3. Check the group equation 8s B = 8 R + 8k A. It's sufficient, but
- not required, to instead check s B = R + k A.
-
-5.8. Python illustration
-
-
- The rest of this section describes how Ed25519 can be implemented in
- Python (version 3.2 or later) for illustration. See appendix A for
- the complete implementation and appendix B for a test-driver to run
- it through some test vectors.
-
- First some preliminaries that will be needed.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 9]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- import hashlib
-
- def sha512(s):
- return hashlib.sha512(s).digest()
-
- # Base field Z_p
- p = 2**255 - 19
-
- def modp_inv(x):
- return pow(x, p-2, p)
-
- # Curve constant
- d = -121665 * modp_inv(121666) % p
-
- # Group order
- q = 2**252 + 27742317777372353535851937790883648493
-
- def sha512_modq(s):
- return int.from_bytes(sha512(s), "little") % q
-
- Then follows functions to perform point operations.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 10]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
-# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
-# with x = X/Z, y = Y/Z, x*y = T/Z
-
-def point_add(P, Q):
- A = (P[1]-P[0])*(Q[1]-Q[0]) % p
- B = (P[1]+P[0])*(Q[1]+Q[0]) % p
- C = 2 * P[3] * Q[3] * d % p
- D = 2 * P[2] * Q[2] % p
- E = B-A
- F = D-C
- G = D+C
- H = B+A
- return (E*F, G*H, F*G, E*H)
-
-# Computes Q = s * Q
-def point_mul(s, P):
- Q = (0, 1, 1, 0) # Neutral element
- while s > 0:
- # Is there any bit-set predicate?
- if s & 1:
- Q = point_add(Q, P)
- P = point_add(P, P)
- s >>= 1
- return Q
-
-def point_equal(P, Q):
- # x1 / z1 == x2 / z2 <==> x1 * z2 == x2 * z1
- if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
- return False
- if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
- return False
- return True
-
- Now follows functions for point compression.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 11]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
-# Square root of -1
-modp_sqrt_m1 = pow(2, (p-1) // 4, p)
-
-# Compute corresponding x coordinate, with low bit corresponding to sign,
-# or return None on failure
-def recover_x(y, sign):
- x2 = (y*y-1) * modp_inv(d*y*y+1)
- if x2 == 0:
- if sign:
- return None
- else:
- return 0
-
- # Compute square root of x2
- x = pow(x2, (p+3) // 8, p)
- if (x*x - x2) % p != 0:
- x = x * modp_sqrt_m1 % p
- if (x*x - x2) % p != 0:
- return None
-
- if (x & 1) != sign:
- x = p - x
- return x
-
-# Base point
-g_y = 4 * modp_inv(5) % p
-g_x = recover_x(g_y, 0)
-G = (g_x, g_y, 1, g_x * g_y % p)
-
-def point_compress(P):
- zinv = modp_inv(P[2])
- x = P[0] * zinv % p
- y = P[1] * zinv % p
- return int.to_bytes(y | ((x & 1) << 255), 32, "little")
-
-def point_decompress(s):
- if len(s) != 32:
- raise Exception("Invalid input length for decompression")
- y = int.from_bytes(s, "little")
- sign = y >> 255
- y &= (1 << 255) - 1
-
- x = recover_x(y, sign)
- if x is None:
- return None
- else:
- return (x, y, 1, x*y % p)
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 12]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- These are functions for manipulating the secret.
-
- def secret_expand(secret):
- if len(secret) != 32:
- raise Exception("Bad size of private key")
- h = sha512(secret)
- a = int.from_bytes(h[:32], "little")
- a &= (1 << 254) - 8
- a |= (1 << 254)
- return (a, h[32:])
-
- def secret_to_public(secret):
- (a, dummy) = secret_expand(secret)
- return point_compress(point_mul(a, G))
-
- The signature function works as below.
-
- def sign(secret, msg):
- a, prefix = secret_expand(secret)
- A = point_compress(point_mul(a, G))
- r = sha512_modq(prefix + msg)
- R = point_mul(r, G)
- Rs = point_compress(R)
- h = sha512_modq(Rs + A + msg)
- s = (r + h * a) % q
- return Rs + int.to_bytes(s, 32, "little")
-
- And finally the verification function.
-
- def verify(public, msg, signature):
- if len(public) != 32:
- raise Exception("Bad public-key length")
- if len(signature) != 64:
- Exception("Bad signature length")
- A = point_decompress(public)
- if not A:
- return False
- Rs = signature[:32]
- R = point_decompress(Rs)
- if not R:
- return False
- s = int.from_bytes(signature[32:], "little")
- h = sha512_modq(Rs + public + msg)
- sB = point_mul(s, G)
- hA = point_mul(h, A)
- return point_equal(sB, point_add(R, hA))
-
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 13]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
-6. Test Vectors for Ed25519
-
-
- Below is a sequence of octets with test vectors for the the Ed25519
- signature algorithm. The octets are hex encoded and whitespace is
- inserted for readability. Private keys are 64 bytes, public keys 32
- bytes, message of arbitrary length, and signatures are 64 bytes. The
- test vectors are taken from [ED25519-TEST-VECTORS] (but we removed
- the public key as a suffix of the secret key, and removed the message
- from the signature) and [ED25519-LIBGCRYPT-TEST-VECTORS].
-
- -----TEST 1
- SECRET KEY:
- 9d61b19deffd5a60ba844af492ec2cc4
- 4449c5697b326919703bac031cae7f60
-
- PUBLIC KEY:
- d75a980182b10ab7d54bfed3c964073a
- 0ee172f3daa62325af021a68f707511a
-
- MESSAGE (length 0 bytes):
-
- SIGNATURE:
- e5564300c360ac729086e2cc806e828a
- 84877f1eb8e5d974d873e06522490155
- 5fb8821590a33bacc61e39701cf9b46b
- d25bf5f0595bbe24655141438e7a100b
-
- -----TEST 2
- SECRET KEY:
- 4ccd089b28ff96da9db6c346ec114e0f
- 5b8a319f35aba624da8cf6ed4fb8a6fb
-
- PUBLIC KEY:
- 3d4017c3e843895a92b70aa74d1b7ebc
- 9c982ccf2ec4968cc0cd55f12af4660c
-
- MESSAGE (length 1 byte):
- 72
-
- SIGNATURE:
- 92a009a9f0d4cab8720e820b5f642540
- a2b27b5416503f8fb3762223ebdb69da
- 085ac1e43e15996e458f3613d0f11d8c
- 387b2eaeb4302aeeb00d291612bb0c00
-
- -----TEST 3
- SECRET KEY:
- c5aa8df43f9f837bedb7442f31dcb7b1
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 14]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- 66d38535076f094b85ce3a2e0b4458f7
-
- PUBLIC KEY:
- fc51cd8e6218a1a38da47ed00230f058
- 0816ed13ba3303ac5deb911548908025
-
- MESSAGE (length 2 bytes):
- af82
-
- SIGNATURE:
- 6291d657deec24024827e69c3abe01a3
- 0ce548a284743a445e3680d7db5ac3ac
- 18ff9b538d16f290ae67f760984dc659
- 4a7c15e9716ed28dc027beceea1ec40a
-
- -----TEST 1024
- SECRET KEY:
- f5e5767cf153319517630f226876b86c
- 8160cc583bc013744c6bf255f5cc0ee5
-
- PUBLIC KEY:
- 278117fc144c72340f67d0f2316e8386
- ceffbf2b2428c9c51fef7c597f1d426e
-
- MESSAGE:
- 08b8b2b733424243760fe426a4b54908
- 632110a66c2f6591eabd3345e3e4eb98
- fa6e264bf09efe12ee50f8f54e9f77b1
- e355f6c50544e23fb1433ddf73be84d8
- 79de7c0046dc4996d9e773f4bc9efe57
- 38829adb26c81b37c93a1b270b20329d
- 658675fc6ea534e0810a4432826bf58c
- 941efb65d57a338bbd2e26640f89ffbc
- 1a858efcb8550ee3a5e1998bd177e93a
- 7363c344fe6b199ee5d02e82d522c4fe
- ba15452f80288a821a579116ec6dad2b
- 3b310da903401aa62100ab5d1a36553e
- 06203b33890cc9b832f79ef80560ccb9
- a39ce767967ed628c6ad573cb116dbef
- efd75499da96bd68a8a97b928a8bbc10
- 3b6621fcde2beca1231d206be6cd9ec7
- aff6f6c94fcd7204ed3455c68c83f4a4
- 1da4af2b74ef5c53f1d8ac70bdcb7ed1
- 85ce81bd84359d44254d95629e9855a9
- 4a7c1958d1f8ada5d0532ed8a5aa3fb2
- d17ba70eb6248e594e1a2297acbbb39d
- 502f1a8c6eb6f1ce22b3de1a1f40cc24
- 554119a831a9aad6079cad88425de6bd
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 15]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- e1a9187ebb6092cf67bf2b13fd65f270
- 88d78b7e883c8759d2c4f5c65adb7553
- 878ad575f9fad878e80a0c9ba63bcbcc
- 2732e69485bbc9c90bfbd62481d9089b
- eccf80cfe2df16a2cf65bd92dd597b07
- 07e0917af48bbb75fed413d238f5555a
- 7a569d80c3414a8d0859dc65a46128ba
- b27af87a71314f318c782b23ebfe808b
- 82b0ce26401d2e22f04d83d1255dc51a
- ddd3b75a2b1ae0784504df543af8969b
- e3ea7082ff7fc9888c144da2af58429e
- c96031dbcad3dad9af0dcbaaaf268cb8
- fcffead94f3c7ca495e056a9b47acdb7
- 51fb73e666c6c655ade8297297d07ad1
- ba5e43f1bca32301651339e22904cc8c
- 42f58c30c04aafdb038dda0847dd988d
- cda6f3bfd15c4b4c4525004aa06eeff8
- ca61783aacec57fb3d1f92b0fe2fd1a8
- 5f6724517b65e614ad6808d6f6ee34df
- f7310fdc82aebfd904b01e1dc54b2927
- 094b2db68d6f903b68401adebf5a7e08
- d78ff4ef5d63653a65040cf9bfd4aca7
- 984a74d37145986780fc0b16ac451649
- de6188a7dbdf191f64b5fc5e2ab47b57
- f7f7276cd419c17a3ca8e1b939ae49e4
- 88acba6b965610b5480109c8b17b80e1
- b7b750dfc7598d5d5011fd2dcc5600a3
- 2ef5b52a1ecc820e308aa342721aac09
- 43bf6686b64b2579376504ccc493d97e
- 6aed3fb0f9cd71a43dd497f01f17c0e2
- cb3797aa2a2f256656168e6c496afc5f
- b93246f6b1116398a346f1a641f3b041
- e989f7914f90cc2c7fff357876e506b5
- 0d334ba77c225bc307ba537152f3f161
- 0e4eafe595f6d9d90d11faa933a15ef1
- 369546868a7f3a45a96768d40fd9d034
- 12c091c6315cf4fde7cb68606937380d
- b2eaaa707b4c4185c32eddcdd306705e
- 4dc1ffc872eeee475a64dfac86aba41c
- 0618983f8741c5ef68d3a101e8a3b8ca
- c60c905c15fc910840b94c00a0b9d0
-
- SIGNATURE:
- 0aab4c900501b3e24d7cdf4663326a3a
- 87df5e4843b2cbdb67cbf6e460fec350
- aa5371b1508f9f4528ecea23c436d94b
- 5e8fcd4f681e30a6ac00a9704a188a03
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 16]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- -----TEST 1A
- -----An additional test with the data from test 1 but using an
- -----uncompressed public key.
- SECRET KEY:
- 9d61b19deffd5a60ba844af492ec2cc4
- 4449c5697b326919703bac031cae7f60
-
- PUBLIC KEY:
- 0455d0e09a2b9d34292297e08d60d0f6
- 20c513d47253187c24b12786bd777645
- ce1a5107f7681a02af2523a6daf372e1
- 0e3a0764c9d3fe4bd5b70ab18201985a
- d7
-
- MSG (length 0 bytes):
-
- SIGNATURE:
- e5564300c360ac729086e2cc806e828a
- 84877f1eb8e5d974d873e06522490155
- 5fb8821590a33bacc61e39701cf9b46b
- d25bf5f0595bbe24655141438e7a100b
-
- -----TEST 1B
- -----An additional test with the data from test 1 but using an
- -----compressed prefix.
- SECRET KEY:
- 9d61b19deffd5a60ba844af492ec2cc4
- 4449c5697b326919703bac031cae7f60
-
- PUBLIC KEY:
- 40d75a980182b10ab7d54bfed3c96407
- 3a0ee172f3daa62325af021a68f70751
- 1a
-
- MESSAGE (length 0 bytes):
-
- SIGNATURE:
- e5564300c360ac729086e2cc806e828a
- 84877f1eb8e5d974d873e06522490155
- 5fb8821590a33bacc61e39701cf9b46b
- d25bf5f0595bbe24655141438e7a100b
- -----
-
-7. Acknowledgements
-
-
- Feedback on this document was received from Werner Koch and Damien
- Miller.
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 17]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
-8. IANA Considerations
-
-
- None.
-
-9. Security Considerations
-
-
-9.1. Side-channel leaks
-
-
- For implementations performing signatures, secrecy of the key is
- fundamental. It is possible to protect against some side-channel
- attacks by ensuring that the implementation executes exactly the same
- sequence of instructions and performs exactly the same memory
- accesses, for any value of the secret key.
-
- To make an implementation side-channel silent in this way, the modulo
- p arithmetic must not use any data-dependent branches, e.g., related
- to carry propagation. Side channel-silent point addition is
- straight-forward, thanks to the unified formulas.
-
- Scalar multiplication, multiplying a point by an integer, needs some
- additional effort to implement in a side-channel silent manner. One
- simple approach is to implement a side-channel silent conditional
- assignment, and use together with the binary algorithm to examine one
- bit of the integer at a time.
-
- Note that the example implementation in this document does not
- attempt to be side-channel silent.
-
-10. References
-
-
-10.1. Normative References
-
-
- [RFC4634] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
- (SHA and HMAC-SHA)", RFC 4634, July 2006.
-
- [I-D.irtf-cfrg-curves]
- Langley, A., Salz, R., and S. Turner, "Elliptic Curves for
- Security", draft-irtf-cfrg-curves-01 (work in progress),
- January 2015.
-
-10.2. Informative References
-
-
- [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
- Requirements for Security", BCP 106, RFC 4086, June 2005.
-
-
-
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 18]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- [EDDSA] Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
- Yang, "High-speed high-security signatures", WWW
- http://ed25519.cr.yp.to/ed25519-20110926.pdf, September
- 2011.
-
- [Faster-ECC]
- Bernstein, D. and T. Lange, "Faster addition and doubling
- on elliptic curves", WWW http://eprint.iacr.org/2007/286,
- July 2007.
-
- [Edwards-revisited]
- Hisil, H., Wong, K., Carter, G., and E. Dawson, "Twisted
- Edwards Curves Revisited", WWW
- http://eprint.iacr.org/2008/522, December 2008.
-
- [CURVE25519]
- Bernstein, D., "Curve25519: new Diffie-Hellman speed
- records", WWW http://cr.yp.to/ecdh.html, February 2006.
-
- [ED25519-TEST-VECTORS]
- Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
- Yang, "Ed25519 test vectors", WWW
- http://ed25519.cr.yp.to/python/sign.input, July 2011.
-
- [ED25519-LIBGCRYPT-TEST-VECTORS]
- Koch, W., "Ed25519 Libgcrypt test vectors", WWW
- http://git.gnupg.org/cgi-
- bin/gitweb.cgi?p=libgcrypt.git;a=blob;f=tests/t-ed25519.in
- p;h=e13566f826321eece65e02c593bc7d885b3dbe23;hb=refs/
- heads/master, July 2014.
-
-Appendix A. Ed25519 Python Library
-
-
- Below is an example implementation of Ed25519 written in Python,
- version 3.2 or higher is required.
-
-# Loosely based on the public domain code at
-# http://ed25519.cr.yp.to/software.html
-#
-# Needs python-3.2
-
-import hashlib
-
-
-def sha512(s):
- return hashlib.sha512(s).digest()
-
-# Base field Z_p
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 19]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
-p = 2**255 - 19
-
-
-def modp_inv(x):
- return pow(x, p-2, p)
-
-# Curve constant
-d = -121665 * modp_inv(121666) % p
-
-# Group order
-q = 2**252 + 27742317777372353535851937790883648493
-
-
-def sha512_modq(s):
- return int.from_bytes(sha512(s), "little") % q
-
-# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
-# with x = X/Z, y = Y/Z, x*y = T/Z
-
-
-def point_add(P, Q):
- A = (P[1]-P[0])*(Q[1]-Q[0]) % p
- B = (P[1]+P[0])*(Q[1]+Q[0]) % p
- C = 2 * P[3] * Q[3] * d % p
- D = 2 * P[2] * Q[2] % p
- E = B-A
- F = D-C
- G = D+C
- H = B+A
- return (E*F, G*H, F*G, E*H)
-
-
-# Computes Q = s * Q
-def point_mul(s, P):
- Q = (0, 1, 1, 0) # Neutral element
- while s > 0:
- # Is there any bit-set predicate?
- if s & 1:
- Q = point_add(Q, P)
- P = point_add(P, P)
- s >>= 1
- return Q
-
-
-def point_equal(P, Q):
- # x1 / z1 == x2 / z2 <==> x1 * z2 == x2 * z1
- if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
- return False
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 20]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
- return False
- return True
-
-# Square root of -1
-modp_sqrt_m1 = pow(2, (p-1) // 4, p)
-
-
-# Compute corresponding x coordinate, with low bit corresponding to sign,
-# or return None on failure
-def recover_x(y, sign):
- x2 = (y*y-1) * modp_inv(d*y*y+1)
- if x2 == 0:
- if sign:
- return None
- else:
- return 0
-
- # Compute square root of x2
- x = pow(x2, (p+3) // 8, p)
- if (x*x - x2) % p != 0:
- x = x * modp_sqrt_m1 % p
- if (x*x - x2) % p != 0:
- return None
-
- if (x & 1) != sign:
- x = p - x
- return x
-
-# Base point
-g_y = 4 * modp_inv(5) % p
-g_x = recover_x(g_y, 0)
-G = (g_x, g_y, 1, g_x * g_y % p)
-
-
-def point_compress(P):
- zinv = modp_inv(P[2])
- x = P[0] * zinv % p
- y = P[1] * zinv % p
- return int.to_bytes(y | ((x & 1) << 255), 32, "little")
-
-
-def point_decompress(s):
- if len(s) != 32:
- raise Exception("Invalid input length for decompression")
- y = int.from_bytes(s, "little")
- sign = y >> 255
- y &= (1 << 255) - 1
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 21]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- x = recover_x(y, sign)
- if x is None:
- return None
- else:
- return (x, y, 1, x*y % p)
-
-
-def secret_expand(secret):
- if len(secret) != 32:
- raise Exception("Bad size of private key")
- h = sha512(secret)
- a = int.from_bytes(h[:32], "little")
- a &= (1 << 254) - 8
- a |= (1 << 254)
- return (a, h[32:])
-
-
-def secret_to_public(secret):
- (a, dummy) = secret_expand(secret)
- return point_compress(point_mul(a, G))
-
-
-def sign(secret, msg):
- a, prefix = secret_expand(secret)
- A = point_compress(point_mul(a, G))
- r = sha512_modq(prefix + msg)
- R = point_mul(r, G)
- Rs = point_compress(R)
- h = sha512_modq(Rs + A + msg)
- s = (r + h * a) % q
- return Rs + int.to_bytes(s, 32, "little")
-
-
-def verify(public, msg, signature):
- if len(public) != 32:
- raise Exception("Bad public-key length")
- if len(signature) != 64:
- Exception("Bad signature length")
- A = point_decompress(public)
- if not A:
- return False
- Rs = signature[:32]
- R = point_decompress(Rs)
- if not R:
- return False
- s = int.from_bytes(signature[32:], "little")
- h = sha512_modq(Rs + public + msg)
- sB = point_mul(s, G)
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 22]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- hA = point_mul(h, A)
- return point_equal(sB, point_add(R, hA))
-
-Appendix B. Library driver
-
-
- Below is a command-line tool that uses the library above to perform
- computations, for interactive use or for self-checking.
-
- import sys
- import binascii
-
- from ed25519 import *
-
- def point_valid(P):
- zinv = modp_inv(P[2])
- x = P[0] * zinv % p
- y = P[1] * zinv % p
- assert (x*y - P[3]*zinv) % p == 0
- return (-x*x + y*y - 1 - d*x*x*y*y) % p == 0
-
- assert point_valid(G)
- Z = (0, 1, 1, 0)
- assert point_valid(Z)
-
- assert point_equal(Z, point_add(Z, Z))
- assert point_equal(G, point_add(Z, G))
- assert point_equal(Z, point_mul(0, G))
- assert point_equal(G, point_mul(1, G))
- assert point_equal(point_add(G, G), point_mul(2, G))
- for i in range(0, 100):
- assert point_valid(point_mul(i, G))
- assert point_equal(Z, point_mul(q, G))
-
- def munge_string(s, pos, change):
- return (s[:pos] +
- int.to_bytes(s[pos] ^ change, 1, "little") +
- s[pos+1:])
-
- # Read a file in the format of
- # http://ed25519.cr.yp.to/python/sign.input
- lineno = 0
- while True:
- line = sys.stdin.readline()
- if not line:
- break
- lineno = lineno + 1
- print(lineno)
- fields = line.split(":")
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 23]
-
-
-Internet-Draft EdDSA & Ed25519 February 2015
-
-
- secret = (binascii.unhexlify(fields[0]))[:32]
- public = binascii.unhexlify(fields[1])
- msg = binascii.unhexlify(fields[2])
- signature = binascii.unhexlify(fields[3])[:64]
-
- assert public == secret_to_public(secret)
- assert signature == sign(secret, msg)
- assert verify(public, msg, signature)
- if len(msg) == 0:
- bad_msg = b"x"
- else:
- bad_msg = munge_string(msg, len(msg) // 3, 4)
- assert not verify(public, bad_msg, signature)
- bad_signature = munge_string(signature, 20, 8)
- assert not verify(public, msg, bad_signature)
- bad_signature = munge_string(signature, 40, 16)
- assert not verify(public, msg, bad_signature)
-
-Authors' Addresses
-
- Simon Josefsson
- SJD AB
-
- Email: simon@josefsson.org
- URI: http://josefsson.org/
-
-
- Niels Moeller
-
- Email: nisse@lysator.liu.se
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Josefsson & Moeller Expires August 26, 2015 [Page 24]
-
-
-
-Html markup produced by rfcmarkup 1.113, available from https://tools.ietf.org/tools/rfcmarkup/