aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/crypto/chacha.h8
-rw-r--r--src/crypto/hash-ops.h2
-rw-r--r--src/crypto/hash.h8
-rw-r--r--src/crypto/slow-hash.c64
-rw-r--r--src/crypto/variant4_random_math.h441
-rw-r--r--src/cryptonote_basic/cryptonote_format_utils.cpp2
-rw-r--r--tests/hash/CMakeLists.txt2
-rw-r--r--tests/hash/main.cpp29
-rw-r--r--tests/hash/tests-slow-4.txt10
9 files changed, 543 insertions, 23 deletions
diff --git a/src/crypto/chacha.h b/src/crypto/chacha.h
index 6e85ad0e9..0610f7051 100644
--- a/src/crypto/chacha.h
+++ b/src/crypto/chacha.h
@@ -73,18 +73,18 @@ namespace crypto {
inline void generate_chacha_key(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
- crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
+ crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
for (uint64_t n = 1; n < kdf_rounds; ++n)
- crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
+ crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
}
inline void generate_chacha_key_prehashed(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
- crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 1/*prehashed*/);
+ crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 1/*prehashed*/, 0/*height*/);
for (uint64_t n = 1; n < kdf_rounds; ++n)
- crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
+ crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
}
diff --git a/src/crypto/hash-ops.h b/src/crypto/hash-ops.h
index d77d55cf3..891896120 100644
--- a/src/crypto/hash-ops.h
+++ b/src/crypto/hash-ops.h
@@ -79,7 +79,7 @@ enum {
};
void cn_fast_hash(const void *data, size_t length, char *hash);
-void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed);
+void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height);
void hash_extra_blake(const void *data, size_t length, char *hash);
void hash_extra_groestl(const void *data, size_t length, char *hash);
diff --git a/src/crypto/hash.h b/src/crypto/hash.h
index 995e2294e..165fe6bb0 100644
--- a/src/crypto/hash.h
+++ b/src/crypto/hash.h
@@ -71,12 +71,12 @@ namespace crypto {
return h;
}
- inline void cn_slow_hash(const void *data, std::size_t length, hash &hash, int variant = 0) {
- cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 0/*prehashed*/);
+ inline void cn_slow_hash(const void *data, std::size_t length, hash &hash, int variant = 0, uint64_t height = 0) {
+ cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 0/*prehashed*/, height);
}
- inline void cn_slow_hash_prehashed(const void *data, std::size_t length, hash &hash, int variant = 0) {
- cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 1/*prehashed*/);
+ inline void cn_slow_hash_prehashed(const void *data, std::size_t length, hash &hash, int variant = 0, uint64_t height = 0) {
+ cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 1/*prehashed*/, height);
}
inline void tree_hash(const hash *hashes, std::size_t count, hash &root_hash) {
diff --git a/src/crypto/slow-hash.c b/src/crypto/slow-hash.c
index dcbabccab..6768d1538 100644
--- a/src/crypto/slow-hash.c
+++ b/src/crypto/slow-hash.c
@@ -39,6 +39,7 @@
#include "hash-ops.h"
#include "oaes_lib.h"
#include "variant2_int_sqrt.h"
+#include "variant4_random_math.h"
#define MEMORY (1 << 21) // 2MB scratchpad
#define ITER (1 << 20)
@@ -172,7 +173,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
const uint64_t sqrt_input = SWAP64LE(((uint64_t*)(ptr))[0]) + division_result
#define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \
- do if (variant >= 2) \
+ do if ((variant == 2) || (variant == 3)) \
{ \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \
@@ -182,7 +183,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50)
// double precision floating point type has enough bits of precision on current platform
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
- do if (variant >= 2) \
+ do if ((variant == 2) || (variant == 3)) \
{ \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \
@@ -192,7 +193,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
// double precision floating point type is not good enough on current platform
// fall back to the reference code (integer only)
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
- do if (variant >= 2) \
+ do if ((variant == 2) || (variant == 3)) \
{ \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \
@@ -214,6 +215,47 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
lo ^= SWAP64LE(*(U64(hp_state + (j ^ 0x20)) + 1)); \
} while (0)
+#define V4_REG_LOAD(dst, src) \
+ do { \
+ memcpy((dst), (src), sizeof(v4_reg)); \
+ if (sizeof(v4_reg) == sizeof(uint32_t)) \
+ *(dst) = SWAP32LE(*(dst)); \
+ else \
+ *(dst) = SWAP64LE(*(dst)); \
+ } while (0)
+
+#define VARIANT4_RANDOM_MATH_INIT() \
+ v4_reg r[9]; \
+ struct V4_Instruction code[NUM_INSTRUCTIONS_MAX + 1]; \
+ do if (variant >= 4) \
+ { \
+ for (int i = 0; i < 4; ++i) \
+ V4_REG_LOAD(r + i, (uint8_t*)(state.hs.w + 12) + sizeof(v4_reg) * i); \
+ v4_random_math_init(code, height); \
+ } while (0)
+
+#define VARIANT4_RANDOM_MATH(a, b, r, _b, _b1) \
+ do if (variant >= 4) \
+ { \
+ uint64_t t; \
+ memcpy(&t, b, sizeof(uint64_t)); \
+ \
+ if (sizeof(v4_reg) == sizeof(uint32_t)) \
+ t ^= SWAP64LE((r[0] + r[1]) | ((uint64_t)(r[2] + r[3]) << 32)); \
+ else \
+ t ^= SWAP64LE((r[0] + r[1]) ^ (r[2] + r[3])); \
+ \
+ memcpy(b, &t, sizeof(uint64_t)); \
+ \
+ V4_REG_LOAD(r + 4, a); \
+ V4_REG_LOAD(r + 5, (uint64_t*)(a) + 1); \
+ V4_REG_LOAD(r + 6, _b); \
+ V4_REG_LOAD(r + 7, _b1); \
+ V4_REG_LOAD(r + 8, (uint64_t*)(_b1) + 1); \
+ \
+ v4_random_math(code, r); \
+ } while (0)
+
#if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64)))
// Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI
@@ -298,6 +340,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
p = U64(&hp_state[j]); \
b[0] = p[0]; b[1] = p[1]; \
VARIANT2_INTEGER_MATH_SSE2(b, c); \
+ VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
__mul(); \
VARIANT2_2(); \
VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
@@ -694,7 +737,7 @@ void slow_hash_free_state(void)
* @param length the length in bytes of the data
* @param hash a pointer to a buffer in which the final 256 bit hash will be stored
*/
-void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
+void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{
RDATA_ALIGN16 uint8_t expandedKey[240]; /* These buffers are aligned to use later with SSE functions */
@@ -730,6 +773,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_INIT64();
VARIANT2_INIT64();
+ VARIANT4_RANDOM_MATH_INIT();
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
* the 2MB large random access buffer.
@@ -901,6 +945,7 @@ union cn_slow_hash_state
p = U64(&hp_state[j]); \
b[0] = p[0]; b[1] = p[1]; \
VARIANT2_PORTABLE_INTEGER_MATH(b, c); \
+ VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
__mul(); \
VARIANT2_2(); \
VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
@@ -1063,7 +1108,7 @@ STATIC INLINE void aligned_free(void *ptr)
}
#endif /* FORCE_USE_HEAP */
-void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
+void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{
RDATA_ALIGN16 uint8_t expandedKey[240];
@@ -1100,6 +1145,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_INIT64();
VARIANT2_INIT64();
+ VARIANT4_RANDOM_MATH_INIT();
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
* the 2MB large random access buffer.
@@ -1278,7 +1324,7 @@ STATIC INLINE void xor_blocks(uint8_t* a, const uint8_t* b)
U64(a)[1] ^= U64(b)[1];
}
-void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
+void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{
uint8_t text[INIT_SIZE_BYTE];
uint8_t a[AES_BLOCK_SIZE];
@@ -1317,6 +1363,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_INIT64();
VARIANT2_INIT64();
+ VARIANT4_RANDOM_MATH_INIT();
// use aligned data
memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
@@ -1353,6 +1400,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
copy_block(c, p);
VARIANT2_PORTABLE_INTEGER_MATH(c, c1);
+ VARIANT4_RANDOM_MATH(a, c, r, b, b + AES_BLOCK_SIZE);
mul(c1, c, d);
VARIANT2_2_PORTABLE();
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
@@ -1476,7 +1524,7 @@ union cn_slow_hash_state {
};
#pragma pack(pop)
-void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) {
+void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height) {
#ifndef FORCE_USE_HEAP
uint8_t long_state[MEMORY];
#else
@@ -1505,6 +1553,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_PORTABLE_INIT();
VARIANT2_PORTABLE_INIT();
+ VARIANT4_RANDOM_MATH_INIT();
oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
@@ -1537,6 +1586,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
copy_block(c2, &long_state[j]);
VARIANT2_PORTABLE_INTEGER_MATH(c2, c1);
+ VARIANT4_RANDOM_MATH(a, c2, r, b, b + AES_BLOCK_SIZE);
mul(c1, c2, d);
VARIANT2_2_PORTABLE();
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
diff --git a/src/crypto/variant4_random_math.h b/src/crypto/variant4_random_math.h
new file mode 100644
index 000000000..8549498c4
--- /dev/null
+++ b/src/crypto/variant4_random_math.h
@@ -0,0 +1,441 @@
+#ifndef VARIANT4_RANDOM_MATH_H
+#define VARIANT4_RANDOM_MATH_H
+
+// Register size can be configured to either 32 bit (uint32_t) or 64 bit (uint64_t)
+typedef uint32_t v4_reg;
+
+enum V4_Settings
+{
+ // Generate code with minimal theoretical latency = 45 cycles, which is equivalent to 15 multiplications
+ TOTAL_LATENCY = 15 * 3,
+
+ // Always generate at least 60 instructions
+ NUM_INSTRUCTIONS_MIN = 60,
+
+ // Never generate more than 70 instructions (final RET instruction doesn't count here)
+ NUM_INSTRUCTIONS_MAX = 70,
+
+ // Available ALUs for MUL
+ // Modern CPUs typically have only 1 ALU which can do multiplications
+ ALU_COUNT_MUL = 1,
+
+ // Total available ALUs
+ // Modern CPUs have 4 ALUs, but we use only 3 because random math executes together with other main loop code
+ ALU_COUNT = 3,
+};
+
+enum V4_InstructionList
+{
+ MUL, // a*b
+ ADD, // a+b + C, C is an unsigned 32-bit constant
+ SUB, // a-b
+ ROR, // rotate right "a" by "b & 31" bits
+ ROL, // rotate left "a" by "b & 31" bits
+ XOR, // a^b
+ RET, // finish execution
+ V4_INSTRUCTION_COUNT = RET,
+};
+
+// V4_InstructionDefinition is used to generate code from random data
+// Every random sequence of bytes is a valid code
+//
+// There are 8 registers in total:
+// - 4 variable registers
+// - 4 constant registers initialized from loop variables
+//
+// This is why dst_index is 2 bits
+enum V4_InstructionDefinition
+{
+ V4_OPCODE_BITS = 3,
+ V4_DST_INDEX_BITS = 2,
+ V4_SRC_INDEX_BITS = 3,
+};
+
+struct V4_Instruction
+{
+ uint8_t opcode;
+ uint8_t dst_index;
+ uint8_t src_index;
+ uint32_t C;
+};
+
+#ifndef FORCEINLINE
+#if defined(__GNUC__)
+#define FORCEINLINE __attribute__((always_inline)) inline
+#elif defined(_MSC_VER)
+#define FORCEINLINE __forceinline
+#else
+#define FORCEINLINE inline
+#endif
+#endif
+
+#ifndef UNREACHABLE_CODE
+#if defined(__GNUC__)
+#define UNREACHABLE_CODE __builtin_unreachable()
+#elif defined(_MSC_VER)
+#define UNREACHABLE_CODE __assume(false)
+#else
+#define UNREACHABLE_CODE
+#endif
+#endif
+
+// Random math interpreter's loop is fully unrolled and inlined to achieve 100% branch prediction on CPU:
+// every switch-case will point to the same destination on every iteration of Cryptonight main loop
+//
+// This is about as fast as it can get without using low-level machine code generation
+static FORCEINLINE void v4_random_math(const struct V4_Instruction* code, v4_reg* r)
+{
+ enum
+ {
+ REG_BITS = sizeof(v4_reg) * 8,
+ };
+
+#define V4_EXEC(i) \
+ { \
+ const struct V4_Instruction* op = code + i; \
+ const v4_reg src = r[op->src_index]; \
+ v4_reg* dst = r + op->dst_index; \
+ switch (op->opcode) \
+ { \
+ case MUL: \
+ *dst *= src; \
+ break; \
+ case ADD: \
+ *dst += src + op->C; \
+ break; \
+ case SUB: \
+ *dst -= src; \
+ break; \
+ case ROR: \
+ { \
+ const uint32_t shift = src % REG_BITS; \
+ *dst = (*dst >> shift) | (*dst << ((REG_BITS - shift) % REG_BITS)); \
+ } \
+ break; \
+ case ROL: \
+ { \
+ const uint32_t shift = src % REG_BITS; \
+ *dst = (*dst << shift) | (*dst >> ((REG_BITS - shift) % REG_BITS)); \
+ } \
+ break; \
+ case XOR: \
+ *dst ^= src; \
+ break; \
+ case RET: \
+ return; \
+ default: \
+ UNREACHABLE_CODE; \
+ break; \
+ } \
+ }
+
+#define V4_EXEC_10(j) \
+ V4_EXEC(j + 0) \
+ V4_EXEC(j + 1) \
+ V4_EXEC(j + 2) \
+ V4_EXEC(j + 3) \
+ V4_EXEC(j + 4) \
+ V4_EXEC(j + 5) \
+ V4_EXEC(j + 6) \
+ V4_EXEC(j + 7) \
+ V4_EXEC(j + 8) \
+ V4_EXEC(j + 9)
+
+ // Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency
+ // I've checked all block heights < 10,000,000 and here is the distribution of program sizes:
+ //
+ // 60 27960
+ // 61 105054
+ // 62 2452759
+ // 63 5115997
+ // 64 1022269
+ // 65 1109635
+ // 66 153145
+ // 67 8550
+ // 68 4529
+ // 69 102
+
+ // Unroll 70 instructions here
+ V4_EXEC_10(0); // instructions 0-9
+ V4_EXEC_10(10); // instructions 10-19
+ V4_EXEC_10(20); // instructions 20-29
+ V4_EXEC_10(30); // instructions 30-39
+ V4_EXEC_10(40); // instructions 40-49
+ V4_EXEC_10(50); // instructions 50-59
+ V4_EXEC_10(60); // instructions 60-69
+
+#undef V4_EXEC_10
+#undef V4_EXEC
+}
+
+// If we don't have enough data available, generate more
+static FORCEINLINE void check_data(size_t* data_index, const size_t bytes_needed, int8_t* data, const size_t data_size)
+{
+ if (*data_index + bytes_needed > data_size)
+ {
+ hash_extra_blake(data, data_size, (char*) data);
+ *data_index = 0;
+ }
+}
+
+// Generates as many random math operations as possible with given latency and ALU restrictions
+// "code" array must have space for NUM_INSTRUCTIONS_MAX+1 instructions
+static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_t height)
+{
+ // MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle
+ // These latencies match real-life instruction latencies for Intel CPUs starting from Sandy Bridge and up to Skylake/Coffee lake
+ //
+ // AMD Ryzen has the same latencies except 1-cycle ROR/ROL, so it'll be a bit faster than Intel Sandy Bridge and newer processors
+ // Surprisingly, Intel Nehalem also has 1-cycle ROR/ROL, so it'll also be faster than Intel Sandy Bridge and newer processors
+ // AMD Bulldozer has 4 cycles latency for MUL (slower than Intel) and 1 cycle for ROR/ROL (faster than Intel), so average performance will be the same
+ // Source: https://www.agner.org/optimize/instruction_tables.pdf
+ const int op_latency[V4_INSTRUCTION_COUNT] = { 3, 2, 1, 2, 2, 1 };
+
+ // Instruction latencies for theoretical ASIC implementation
+ const int asic_op_latency[V4_INSTRUCTION_COUNT] = { 3, 1, 1, 1, 1, 1 };
+
+ // Available ALUs for each instruction
+ const int op_ALUs[V4_INSTRUCTION_COUNT] = { ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT };
+
+ int8_t data[32];
+ memset(data, 0, sizeof(data));
+ uint64_t tmp = SWAP64LE(height);
+ memcpy(data, &tmp, sizeof(uint64_t));
+
+ // Set data_index past the last byte in data
+ // to trigger full data update with blake hash
+ // before we start using it
+ size_t data_index = sizeof(data);
+
+ int code_size;
+
+ // There is a small chance (1.8%) that register R8 won't be used in the generated program
+ // So we keep track of it and try again if it's not used
+ bool r8_used;
+ do {
+ int latency[9];
+ int asic_latency[9];
+
+ // Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
+ // byte 0: current value of the destination register
+ // byte 1: instruction opcode
+ // byte 2: current value of the source register
+ //
+ // Registers R4-R8 are constant and are treated as having the same value because when we do
+ // the same operation twice with two constant source registers, it can be optimized into a single operation
+ uint32_t inst_data[9] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF };
+
+ bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT];
+ bool is_rotation[V4_INSTRUCTION_COUNT];
+ bool rotated[4];
+ int rotate_count = 0;
+
+ memset(latency, 0, sizeof(latency));
+ memset(asic_latency, 0, sizeof(asic_latency));
+ memset(alu_busy, 0, sizeof(alu_busy));
+ memset(is_rotation, 0, sizeof(is_rotation));
+ memset(rotated, 0, sizeof(rotated));
+ is_rotation[ROR] = true;
+ is_rotation[ROL] = true;
+
+ int num_retries = 0;
+ code_size = 0;
+
+ int total_iterations = 0;
+ r8_used = false;
+
+ // Generate random code to achieve minimal required latency for our abstract CPU
+ // Try to get this latency for all 4 registers
+ while (((latency[0] < TOTAL_LATENCY) || (latency[1] < TOTAL_LATENCY) || (latency[2] < TOTAL_LATENCY) || (latency[3] < TOTAL_LATENCY)) && (num_retries < 64))
+ {
+ // Fail-safe to guarantee loop termination
+ ++total_iterations;
+ if (total_iterations > 256)
+ break;
+
+ check_data(&data_index, 1, data, sizeof(data));
+
+ const uint8_t c = ((uint8_t*)data)[data_index++];
+
+ // MUL = opcodes 0-2
+ // ADD = opcode 3
+ // SUB = opcode 4
+ // ROR/ROL = opcode 5, shift direction is selected randomly
+ // XOR = opcodes 6-7
+ uint8_t opcode = c & ((1 << V4_OPCODE_BITS) - 1);
+ if (opcode == 5)
+ {
+ check_data(&data_index, 1, data, sizeof(data));
+ opcode = (data[data_index++] >= 0) ? ROR : ROL;
+ }
+ else if (opcode >= 6)
+ {
+ opcode = XOR;
+ }
+ else
+ {
+ opcode = (opcode <= 2) ? MUL : (opcode - 2);
+ }
+
+ uint8_t dst_index = (c >> V4_OPCODE_BITS) & ((1 << V4_DST_INDEX_BITS) - 1);
+ uint8_t src_index = (c >> (V4_OPCODE_BITS + V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1);
+
+ const int a = dst_index;
+ int b = src_index;
+
+ // Don't do ADD/SUB/XOR with the same register
+ if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b))
+ {
+ // Use register R8 as source instead
+ b = 8;
+ src_index = 8;
+ }
+
+ // Don't do rotation with the same destination twice because it's equal to a single rotation
+ if (is_rotation[opcode] && rotated[a])
+ {
+ continue;
+ }
+
+ // Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized:
+ // 2xADD(a, b, C) = ADD(a, b*2, C1+C2), same for SUB and rotations
+ // 2xXOR(a, b) = NOP
+ if ((opcode != MUL) && ((inst_data[a] & 0xFFFF00) == (opcode << 8) + ((inst_data[b] & 255) << 16)))
+ {
+ continue;
+ }
+
+ // Find which ALU is available (and when) for this instruction
+ int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b];
+ int alu_index = -1;
+ while (next_latency < TOTAL_LATENCY)
+ {
+ for (int i = op_ALUs[opcode] - 1; i >= 0; --i)
+ {
+ if (!alu_busy[next_latency][i])
+ {
+ // ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
+ if ((opcode == ADD) && alu_busy[next_latency + 1][i])
+ {
+ continue;
+ }
+
+ // Rotation can only start when previous rotation is finished, so do an additional availability check
+ if (is_rotation[opcode] && (next_latency < rotate_count * op_latency[opcode]))
+ {
+ continue;
+ }
+
+ alu_index = i;
+ break;
+ }
+ }
+ if (alu_index >= 0)
+ {
+ break;
+ }
+ ++next_latency;
+ }
+
+ // Don't generate instructions that leave some register unchanged for more than 7 cycles
+ if (next_latency > latency[a] + 7)
+ {
+ continue;
+ }
+
+ next_latency += op_latency[opcode];
+
+ if (next_latency <= TOTAL_LATENCY)
+ {
+ if (is_rotation[opcode])
+ {
+ ++rotate_count;
+ }
+
+ // Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined
+ alu_busy[next_latency - op_latency[opcode]][alu_index] = true;
+ latency[a] = next_latency;
+
+ // ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple
+ asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[opcode];
+
+ rotated[a] = is_rotation[opcode];
+
+ inst_data[a] = code_size + (opcode << 8) + ((inst_data[b] & 255) << 16);
+
+ code[code_size].opcode = opcode;
+ code[code_size].dst_index = dst_index;
+ code[code_size].src_index = src_index;
+ code[code_size].C = 0;
+
+ if (src_index == 8)
+ {
+ r8_used = true;
+ }
+
+ if (opcode == ADD)
+ {
+ // ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
+ alu_busy[next_latency - op_latency[opcode] + 1][alu_index] = true;
+
+ // ADD instruction requires 4 more random bytes for 32-bit constant "C" in "a = a + b + C"
+ check_data(&data_index, sizeof(uint32_t), data, sizeof(data));
+ uint32_t t;
+ memcpy(&t, data + data_index, sizeof(uint32_t));
+ code[code_size].C = SWAP32LE(t);
+ data_index += sizeof(uint32_t);
+ }
+
+ ++code_size;
+ if (code_size >= NUM_INSTRUCTIONS_MIN)
+ {
+ break;
+ }
+ }
+ else
+ {
+ ++num_retries;
+ }
+ }
+
+ // ASIC has more execution resources and can extract as much parallelism from the code as possible
+ // We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
+ // Get this latency for at least 1 of the 4 registers
+ const int prev_code_size = code_size;
+ while ((code_size < NUM_INSTRUCTIONS_MAX) && (asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY))
+ {
+ int min_idx = 0;
+ int max_idx = 0;
+ for (int i = 1; i < 4; ++i)
+ {
+ if (asic_latency[i] < asic_latency[min_idx]) min_idx = i;
+ if (asic_latency[i] > asic_latency[max_idx]) max_idx = i;
+ }
+
+ const uint8_t pattern[3] = { ROR, MUL, MUL };
+ const uint8_t opcode = pattern[(code_size - prev_code_size) % 3];
+ latency[min_idx] = latency[max_idx] + op_latency[opcode];
+ asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[opcode];
+
+ code[code_size].opcode = opcode;
+ code[code_size].dst_index = min_idx;
+ code[code_size].src_index = max_idx;
+ code[code_size].C = 0;
+ ++code_size;
+ }
+
+ // There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time
+ // It never does more than 4 iterations for all block heights < 10,000,000
+ } while (!r8_used || (code_size < NUM_INSTRUCTIONS_MIN) || (code_size > NUM_INSTRUCTIONS_MAX));
+
+ // It's guaranteed that NUM_INSTRUCTIONS_MIN <= code_size <= NUM_INSTRUCTIONS_MAX here
+ // Add final instruction to stop the interpreter
+ code[code_size].opcode = RET;
+ code[code_size].dst_index = 0;
+ code[code_size].src_index = 0;
+ code[code_size].C = 0;
+
+ return code_size;
+}
+
+#endif
diff --git a/src/cryptonote_basic/cryptonote_format_utils.cpp b/src/cryptonote_basic/cryptonote_format_utils.cpp
index 5fcfa33f6..a82280c4d 100644
--- a/src/cryptonote_basic/cryptonote_format_utils.cpp
+++ b/src/cryptonote_basic/cryptonote_format_utils.cpp
@@ -1054,7 +1054,7 @@ namespace cryptonote
}
blobdata bd = get_block_hashing_blob(b);
const int cn_variant = b.major_version >= 7 ? b.major_version - 6 : 0;
- crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_variant);
+ crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_variant, height);
return true;
}
//---------------------------------------------------------------
diff --git a/tests/hash/CMakeLists.txt b/tests/hash/CMakeLists.txt
index 433cf94e9..105cf2c13 100644
--- a/tests/hash/CMakeLists.txt
+++ b/tests/hash/CMakeLists.txt
@@ -43,7 +43,7 @@ set_property(TARGET hash-tests
PROPERTY
FOLDER "tests")
-foreach (hash IN ITEMS fast slow slow-1 slow-2 tree extra-blake extra-groestl extra-jh extra-skein)
+foreach (hash IN ITEMS fast slow slow-1 slow-2 slow-4 tree extra-blake extra-groestl extra-jh extra-skein)
add_test(
NAME "hash-${hash}"
COMMAND hash-tests "${hash}" "${CMAKE_CURRENT_SOURCE_DIR}/tests-${hash}.txt")
diff --git a/tests/hash/main.cpp b/tests/hash/main.cpp
index 7767d0d3b..acfd99e96 100644
--- a/tests/hash/main.cpp
+++ b/tests/hash/main.cpp
@@ -44,6 +44,13 @@ using namespace std;
using namespace crypto;
typedef crypto::hash chash;
+struct V4_Data
+{
+ const void* data;
+ size_t length;
+ uint64_t height;
+};
+
PUSH_WARNINGS
DISABLE_VS_WARNINGS(4297)
extern "C" {
@@ -54,13 +61,17 @@ extern "C" {
tree_hash((const char (*)[crypto::HASH_SIZE]) data, length >> 5, hash);
}
static void cn_slow_hash_0(const void *data, size_t length, char *hash) {
- return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/);
+ return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/, 0/*height*/);
}
static void cn_slow_hash_1(const void *data, size_t length, char *hash) {
- return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/);
+ return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/, 0/*height*/);
}
static void cn_slow_hash_2(const void *data, size_t length, char *hash) {
- return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/);
+ return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/, 0/*height*/);
+ }
+ static void cn_slow_hash_4(const void *data, size_t, char *hash) {
+ const V4_Data* p = reinterpret_cast<const V4_Data*>(data);
+ return cn_slow_hash(p->data, p->length, hash, 4/*variant*/, 0/*prehashed*/, p->height);
}
}
POP_WARNINGS
@@ -72,7 +83,7 @@ struct hash_func {
} hashes[] = {{"fast", cn_fast_hash}, {"slow", cn_slow_hash_0}, {"tree", hash_tree},
{"extra-blake", hash_extra_blake}, {"extra-groestl", hash_extra_groestl},
{"extra-jh", hash_extra_jh}, {"extra-skein", hash_extra_skein},
- {"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}};
+ {"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}, {"slow-4", cn_slow_hash_4}};
int test_variant2_int_sqrt();
int test_variant2_int_sqrt_ref();
@@ -140,7 +151,15 @@ int main(int argc, char *argv[]) {
input.exceptions(ios_base::badbit | ios_base::failbit | ios_base::eofbit);
input.clear(input.rdstate());
get(input, data);
- f(data.data(), data.size(), (char *) &actual);
+ if (f == cn_slow_hash_4) {
+ V4_Data d;
+ d.data = data.data();
+ d.length = data.size();
+ get(input, d.height);
+ f(&d, 0, (char *) &actual);
+ } else {
+ f(data.data(), data.size(), (char *) &actual);
+ }
if (expected != actual) {
size_t i;
cerr << "Hash mismatch on test " << test << endl << "Input: ";
diff --git a/tests/hash/tests-slow-4.txt b/tests/hash/tests-slow-4.txt
new file mode 100644
index 000000000..e9eef60e5
--- /dev/null
+++ b/tests/hash/tests-slow-4.txt
@@ -0,0 +1,10 @@
+47c996e2d6aa453f50b15a6e829a8c6e5070500c08ba2426019510753e31af42 5468697320697320612074657374205468697320697320612074657374205468697320697320612074657374 1806260
+eb17f755e8f394ff911603826b0e2a37c3f40a5990693a1be7e39cd5c178f0b4 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656374657475722061646970697363696e67 1806261
+f4de6adc61efa498fd4929ed00e88ed8e12caa2907f99cb42442567d3da9daec 656c69742c2073656420646f20656975736d6f642074656d706f7220696e6369646964756e74207574206c61626f7265 1806262
+03004aaa1cdbda343fcbc835aaca191b8577c21267dadd0e4e86a57e68614a71 657420646f6c6f7265206d61676e6120616c697175612e20557420656e696d206164206d696e696d2076656e69616d2c 1806263
+2081cb5646549b44356f5c81787c529367751bc1cdd5f1ea8c0a333b5e49e220 71756973206e6f737472756420657865726369746174696f6e20756c6c616d636f206c61626f726973206e697369 1806264
+653c57f666f6fa1121b82f217485f6fda64ce58bf311d664e92da9119c7d5b95 757420616c697175697020657820656120636f6d6d6f646f20636f6e7365717561742e20447569732061757465 1806265
+20c4b9f8ded7fd1e348341ce2b6297e5ac330e588e5f34985446fd20346b69e3 697275726520646f6c6f7220696e20726570726568656e646572697420696e20766f6c7570746174652076656c6974 1806266
+82e35ae2f7258fb5cb6b53b332f898ac19c385b49fc35e32ae0c5ab56025f763 657373652063696c6c756d20646f6c6f726520657520667567696174206e756c6c612070617269617475722e 1806267
+ddcf95b7d0066668a1d36d4115de1a2bc52dd1f95d94366ec34c8c3c7196e5dd 4578636570746575722073696e74206f6363616563617420637570696461746174206e6f6e2070726f6964656e742c 1806268
+882c2bddf05736ab1072c678c3b75661813709a2ac1fd6e861f2dcc65d466b90 73756e7420696e2063756c706120717569206f666669636961206465736572756e74206d6f6c6c697420616e696d20696420657374206c61626f72756d2e 1806269