aboutsummaryrefslogblamecommitdiff
path: root/src/multisig/multisig_tx_builder_ringct.cpp
blob: e968fe00b07c83dbe42a4e69017f712af6cd3d9b (plain) (tree)
1
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
                                              


































                                                                                          
                              












                                                
                 


































































































































































































                                                                                                                        









































































                                                                                                                        







                                                                    
                                               





































                                                                                    




























                                                                                                           





















                                                                                                                           



















































































































































































































































































































































































































                                                                                                                                 









                                                              
                                            





















                                                                     
                              



                        
















                                                                                                                     

























                                                                                                                            
                         

































































































































                                                                                                                             
           






                                                                

                           






                                                                                  
 





                                                                                                                        
// Copyright (c) 2021-2024, The Monero Project
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this list of
//    conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
//    of conditions and the following disclaimer in the documentation and/or other
//    materials provided with the distribution.
// 
// 3. Neither the name of the copyright holder nor the names of its contributors may be
//    used to endorse or promote products derived from this software without specific
//    prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "multisig_tx_builder_ringct.h"

#include "int-util.h"
#include "memwipe.h"

#include "cryptonote_basic/cryptonote_basic.h"
#include "cryptonote_basic/account.h"
#include "cryptonote_basic/cryptonote_format_utils.h"
#include "cryptonote_config.h"
#include "cryptonote_core/cryptonote_tx_utils.h"
#include "device/device.hpp"
#include "multisig_clsag_context.h"
#include "ringct/bulletproofs.h"
#include "ringct/bulletproofs_plus.h"
#include "ringct/rctSigs.h"

#include <boost/multiprecision/cpp_int.hpp>

#include <algorithm>
#include <cstring>
#include <limits>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "multisig"

namespace multisig {

namespace signing {
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
bool view_tag_required(const int bp_version)
{
  // view tags were introduced at the same time as BP+, so they are needed after BP+ (v4 and later)
  if (bp_version <= 3)
    return false;
  else
    return true;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static void sort_sources(
  std::vector<cryptonote::tx_source_entry>& sources
)
{
  std::sort(sources.begin(), sources.end(), [](const auto& lhs, const auto& rhs){
    const rct::key& ki0 = lhs.multisig_kLRki.ki;
    const rct::key& ki1 = rhs.multisig_kLRki.ki;
    return memcmp(&ki0, &ki1, sizeof(rct::key)) > 0;
  });
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static bool compute_keys_for_sources(
  const cryptonote::account_keys& account_keys,
  const std::vector<cryptonote::tx_source_entry>& sources,
  const std::uint32_t subaddr_account,
  const std::set<std::uint32_t>& subaddr_minor_indices,
  rct::keyV& input_secret_keys
)
{
  const std::size_t num_sources = sources.size();
  hw::device& hwdev = account_keys.get_device();
  std::unordered_map<crypto::public_key, cryptonote::subaddress_index> subaddresses;
  for (const std::uint32_t minor_index: subaddr_minor_indices) {
    subaddresses[hwdev.get_subaddress_spend_public_key(
      account_keys,
      {subaddr_account, minor_index}
    )] = {subaddr_account, minor_index};
  }
  input_secret_keys.resize(num_sources);
  for (std::size_t i = 0; i < num_sources; ++i) {
    const auto& src = sources[i];
    crypto::key_image tmp_key_image;
    cryptonote::keypair tmp_keys;
    if (src.real_output >= src.outputs.size())
      return false;
    if (not cryptonote::generate_key_image_helper(
      account_keys,
      subaddresses,
      rct::rct2pk(src.outputs[src.real_output].second.dest),
      src.real_out_tx_key,
      src.real_out_additional_tx_keys,
      src.real_output_in_tx_index,
      tmp_keys,
      tmp_key_image,
      hwdev
    )) {
      return false;
    }
    input_secret_keys[i] = rct::sk2rct(tmp_keys.sec);
  }
  return true;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static void shuffle_destinations(
  std::vector<cryptonote::tx_destination_entry>& destinations
)
{
  std::shuffle(destinations.begin(), destinations.end(), crypto::random_device{});
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static bool set_tx_extra(
  const cryptonote::account_keys& account_keys,
  const std::vector<cryptonote::tx_destination_entry>& destinations,
  const cryptonote::tx_destination_entry& change,
  const crypto::secret_key& tx_secret_key,
  const crypto::public_key& tx_public_key,
  const std::vector<crypto::public_key>& tx_aux_public_keys,
  const std::vector<std::uint8_t>& extra,
  cryptonote::transaction& tx
)
{
  hw::device &hwdev = account_keys.get_device();
  tx.extra = extra;
  // if we have a stealth payment id, find it and encrypt it with the tx key now
  std::vector<cryptonote::tx_extra_field> tx_extra_fields;
  if (cryptonote::parse_tx_extra(tx.extra, tx_extra_fields))
  {
    bool add_dummy_payment_id = true;
    cryptonote::tx_extra_nonce extra_nonce;
    if (cryptonote::find_tx_extra_field_by_type(tx_extra_fields, extra_nonce))
    {
      crypto::hash payment_id = crypto::null_hash;
      crypto::hash8 payment_id8 = crypto::null_hash8;
      if (cryptonote::get_encrypted_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id8))
      {
        LOG_PRINT_L2("Encrypting payment id " << payment_id8);
        crypto::public_key view_key_pub = cryptonote::get_destination_view_key_pub(destinations, change.addr);
        if (view_key_pub == crypto::null_pkey)
        {
          // valid combinations:
          // - 1 output with encrypted payment ID, dummy change output (0 amount)
          // - 0 outputs,                          1 change output with encrypted payment ID
          // - 1 output with encrypted payment ID, 1 change output
          LOG_ERROR("Destinations have to have exactly one output to support encrypted payment ids");
          return false;
        }

        if (!hwdev.encrypt_payment_id(payment_id8, view_key_pub, tx_secret_key))
        {
          LOG_ERROR("Failed to encrypt payment id");
          return false;
        }

        std::string extra_nonce_updated;
        cryptonote::set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce_updated, payment_id8);
        cryptonote::remove_field_from_tx_extra(tx.extra, typeid(cryptonote::tx_extra_nonce));
        if (!cryptonote::add_extra_nonce_to_tx_extra(tx.extra, extra_nonce_updated))
        {
          LOG_ERROR("Failed to add encrypted payment id to tx extra");
          return false;
        }
        LOG_PRINT_L1("Encrypted payment ID: " << payment_id8);
        add_dummy_payment_id = false;
      }
      else if (cryptonote::get_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id))
      {
        add_dummy_payment_id = false;
      }
    }

    // we don't add one if we've got more than the usual 1 destination plus change
    if (destinations.size() > 2)
      add_dummy_payment_id = false;

    if (add_dummy_payment_id)
    {
      // if we have neither long nor short payment id, add a dummy short one,
      // this should end up being the vast majority of txes as time goes on
      std::string extra_nonce_updated;
      crypto::hash8 payment_id8 = crypto::null_hash8;
      crypto::public_key view_key_pub = cryptonote::get_destination_view_key_pub(destinations, change.addr);
      if (view_key_pub == crypto::null_pkey)
      {
        LOG_ERROR("Failed to get key to encrypt dummy payment id with");
      }
      else
      {
        hwdev.encrypt_payment_id(payment_id8, view_key_pub, tx_secret_key);
        cryptonote::set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce_updated, payment_id8);
        if (!cryptonote::add_extra_nonce_to_tx_extra(tx.extra, extra_nonce_updated))
        {
          LOG_ERROR("Failed to add dummy encrypted payment id to tx extra");
          // continue anyway
        }
      }
    }
  }
  else
  {
    MWARNING("Failed to parse tx extra");
    tx_extra_fields.clear();
  }

  cryptonote::remove_field_from_tx_extra(tx.extra, typeid(cryptonote::tx_extra_pub_key));
  cryptonote::add_tx_pub_key_to_extra(tx.extra, tx_public_key);
  cryptonote::remove_field_from_tx_extra(tx.extra, typeid(cryptonote::tx_extra_additional_pub_keys));
  LOG_PRINT_L2("tx pubkey: " << tx_public_key);
  if (tx_aux_public_keys.size())
  {
    LOG_PRINT_L2("additional tx pubkeys: ");
    for (size_t i = 0; i < tx_aux_public_keys.size(); ++i)
      LOG_PRINT_L2(tx_aux_public_keys[i]);
    cryptonote::add_additional_tx_pub_keys_to_extra(tx.extra, tx_aux_public_keys);
  }
  if (not cryptonote::sort_tx_extra(tx.extra, tx.extra))
    return false;
  return true;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static void make_tx_secret_key_seed(const crypto::secret_key& tx_secret_key_entropy,
  const std::vector<cryptonote::tx_source_entry>& sources,
  crypto::secret_key& tx_secret_key_seed)
{
  // seed = H(H("domain separator"), entropy, {KI})
  static const std::string domain_separator{config::HASH_KEY_MULTISIG_TX_PRIVKEYS_SEED};

  rct::keyV hash_context;
  hash_context.reserve(2 + sources.size());
  auto hash_context_wiper = epee::misc_utils::create_scope_leave_handler([&]{
      memwipe(hash_context.data(), hash_context.size());
    });
  hash_context.emplace_back();
  rct::cn_fast_hash(hash_context.back(), domain_separator.data(), domain_separator.size());  //domain sep
  hash_context.emplace_back(rct::sk2rct(tx_secret_key_entropy));  //entropy

  for (const cryptonote::tx_source_entry& source : sources)
    hash_context.emplace_back(source.multisig_kLRki.ki);  //{KI}

  // set the seed
  tx_secret_key_seed = rct::rct2sk(rct::cn_fast_hash(hash_context));
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static void make_tx_secret_keys(const crypto::secret_key& tx_secret_key_seed,
  const std::size_t num_tx_keys,
  std::vector<crypto::secret_key>& tx_secret_keys)
{
  // make tx secret keys as a hash chain of the seed
  // h1 = H_n(seed || H("domain separator"))
  // h2 = H_n(seed || h1)
  // h3 = H_n(seed || h2)
  // ...
  static const std::string domain_separator{config::HASH_KEY_MULTISIG_TX_PRIVKEYS};

  rct::keyV hash_context;
  hash_context.resize(2);
  auto hash_context_wiper = epee::misc_utils::create_scope_leave_handler([&]{
      memwipe(hash_context.data(), hash_context.size());
    });
  hash_context[0] = rct::sk2rct(tx_secret_key_seed);
  rct::cn_fast_hash(hash_context[1], domain_separator.data(), domain_separator.size());

  tx_secret_keys.clear();
  tx_secret_keys.resize(num_tx_keys);

  for (crypto::secret_key& tx_secret_key : tx_secret_keys)
  {
    // advance the hash chain
    hash_context[1] = rct::hash_to_scalar(hash_context);

    // set this key
    tx_secret_key = rct::rct2sk(hash_context[1]);
  }
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static bool collect_tx_secret_keys(const std::vector<crypto::secret_key>& tx_secret_keys,
  crypto::secret_key& tx_secret_key,
  std::vector<crypto::secret_key>& tx_aux_secret_keys)
{
  if (tx_secret_keys.size() == 0)
    return false;

  tx_secret_key = tx_secret_keys[0];
  tx_aux_secret_keys.clear();
  tx_aux_secret_keys.reserve(tx_secret_keys.size() - 1);
  for (std::size_t tx_key_index{1}; tx_key_index < tx_secret_keys.size(); ++tx_key_index)
    tx_aux_secret_keys.emplace_back(tx_secret_keys[tx_key_index]);

  return true;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static bool compute_keys_for_destinations(
  const cryptonote::account_keys& account_keys,
  const std::uint32_t subaddr_account,
  const std::vector<cryptonote::tx_destination_entry>& destinations,
  const cryptonote::tx_destination_entry& change,
  const std::vector<std::uint8_t>& extra,
  const bool use_view_tags,
  const bool reconstruction,
  const crypto::secret_key& tx_secret_key_seed,
  crypto::secret_key& tx_secret_key,
  std::vector<crypto::secret_key>& tx_aux_secret_keys,
  rct::keyV& output_public_keys,
  rct::keyV& output_amount_secret_keys,
  std::vector<crypto::view_tag>& view_tags,
  cryptonote::transaction& unsigned_tx
)
{
  hw::device &hwdev = account_keys.get_device();

  // check non-zero change amount case
  if (change.amount > 0)
  {
    // the change output must be directed to the local account
    if (change.addr != hwdev.get_subaddress(account_keys, {subaddr_account}))
      return false;

    // expect the change destination to be in the destination set
    if (std::find_if(destinations.begin(), destinations.end(),
        [&change](const auto &destination) -> bool
        {
          return destination.addr == change.addr;
        }) == destinations.end())
      return false;
  }

  // collect non-change recipients into normal/subaddress buckets
  std::unordered_set<cryptonote::account_public_address> unique_subbaddr_recipients;
  std::unordered_set<cryptonote::account_public_address> unique_std_recipients;
  for(const auto& dst_entr: destinations) {
    if (dst_entr.addr == change.addr)
      continue;
    if (dst_entr.is_subaddress)
      unique_subbaddr_recipients.insert(dst_entr.addr);
    else
      unique_std_recipients.insert(dst_entr.addr);
  }

  // figure out how many tx secret keys are needed
  // - tx aux keys: add if there are > 1 non-change recipients, with at least one to a subaddress
  const std::size_t num_destinations = destinations.size();
  const bool need_tx_aux_keys = unique_subbaddr_recipients.size() + bool(unique_std_recipients.size()) > 1;

  const std::size_t num_tx_keys = 1 + (need_tx_aux_keys ? num_destinations : 0);

  // make tx secret keys
  std::vector<crypto::secret_key> all_tx_secret_keys;
  make_tx_secret_keys(tx_secret_key_seed, num_tx_keys, all_tx_secret_keys);

  // split up tx secret keys
  crypto::secret_key tx_secret_key_temp;
  std::vector<crypto::secret_key> tx_aux_secret_keys_temp;
  if (not collect_tx_secret_keys(all_tx_secret_keys, tx_secret_key_temp, tx_aux_secret_keys_temp))
    return false;

  if (reconstruction)
  {
    // when reconstructing, the tx secret keys should be reproducible from input seed
    if (!(tx_secret_key == tx_secret_key_temp))
      return false;
    if (!(tx_aux_secret_keys == tx_aux_secret_keys_temp))
      return false;
  }
  else
  {
    tx_secret_key = tx_secret_key_temp;
    tx_aux_secret_keys = std::move(tx_aux_secret_keys_temp);
  }

  // tx pub key: R
  crypto::public_key tx_public_key;
  if (unique_std_recipients.empty() && unique_subbaddr_recipients.size() == 1) {
    // if there is exactly 1 non-change recipient, and it's to a subaddress, then the tx pubkey = r*Ksi_nonchange_recipient
    tx_public_key = rct::rct2pk(
      hwdev.scalarmultKey(
        rct::pk2rct(unique_subbaddr_recipients.begin()->m_spend_public_key),
        rct::sk2rct(tx_secret_key)
    ));
  }
  else {
    // otherwise, the tx pub key = r*G
    // - if there are > 1 non-change recipients, with at least one to a subaddress, then the tx pubkey is not used
    //   (additional tx keys will be used instead)
    // - if all non-change recipients are to normal addresses, then the tx pubkey will be used by all recipients
    //   (including change recipient, even if change is to a subaddress)
    tx_public_key = rct::rct2pk(hwdev.scalarmultBase(rct::sk2rct(tx_secret_key)));
  }

  // additional tx pubkeys: R_t
  output_public_keys.resize(num_destinations);
  view_tags.resize(num_destinations);
  std::vector<crypto::public_key> tx_aux_public_keys;
  crypto::public_key temp_output_public_key;

  for (std::size_t i = 0; i < num_destinations; ++i) {
    if (not hwdev.generate_output_ephemeral_keys(
      unsigned_tx.version,
      account_keys,
      tx_public_key,
      tx_secret_key,
      destinations[i],
      change.addr,
      i,
      need_tx_aux_keys,
      tx_aux_secret_keys,
      tx_aux_public_keys,
      output_amount_secret_keys,
      temp_output_public_key,
      use_view_tags,
      view_tags[i]  //unused variable if use_view_tags is not set
    )) {
      return false;
    }
    output_public_keys[i] = rct::pk2rct(temp_output_public_key);
  }

  if (num_destinations != output_amount_secret_keys.size())
    return false;

  CHECK_AND_ASSERT_MES(
    tx_aux_public_keys.size() == tx_aux_secret_keys.size(),
    false,
    "Internal error creating additional public keys"
  );

  if (not set_tx_extra(account_keys, destinations, change, tx_secret_key, tx_public_key, tx_aux_public_keys, extra, unsigned_tx))
    return false;

  return true;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static void set_tx_inputs(
  const std::vector<cryptonote::tx_source_entry>& sources,
  cryptonote::transaction& unsigned_tx
)
{
  const std::size_t num_sources = sources.size();
  unsigned_tx.vin.resize(num_sources);
  for (std::size_t i = 0; i < num_sources; ++i) {
    std::vector<std::uint64_t> offsets;
    offsets.reserve(sources[i].outputs.size());
    for (const auto& e: sources[i].outputs)
      offsets.emplace_back(e.first);
    unsigned_tx.vin[i] = cryptonote::txin_to_key{
      .amount = 0,
      .key_offsets = cryptonote::absolute_output_offsets_to_relative(offsets),
      .k_image = rct::rct2ki(sources[i].multisig_kLRki.ki),
    };
  }
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static bool onetime_addresses_are_unique(const rct::keyV& output_public_keys)
{
  for (auto addr_it = output_public_keys.begin(); addr_it != output_public_keys.end(); ++addr_it)
  {
    if (std::find(output_public_keys.begin(), addr_it, *addr_it) != addr_it)
      return false;
  }

  return true;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static bool set_tx_outputs(const rct::keyV& output_public_keys, cryptonote::transaction& unsigned_tx)
{
  // sanity check: all onetime addresses should be unique
  if (not onetime_addresses_are_unique(output_public_keys))
    return false;

  // set the tx outputs
  const std::size_t num_destinations = output_public_keys.size();
  unsigned_tx.vout.resize(num_destinations);
  for (std::size_t i = 0; i < num_destinations; ++i)
    cryptonote::set_tx_out(0, rct::rct2pk(output_public_keys[i]), false, crypto::view_tag{}, unsigned_tx.vout[i]);

  return true;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static bool set_tx_outputs_with_view_tags(
  const rct::keyV& output_public_keys,
  const std::vector<crypto::view_tag>& view_tags,
  cryptonote::transaction& unsigned_tx
)
{
  // sanity check: all onetime addresses should be unique
  if (not onetime_addresses_are_unique(output_public_keys))
    return false;

  // set the tx outputs (with view tags)
  const std::size_t num_destinations = output_public_keys.size();
  CHECK_AND_ASSERT_MES(view_tags.size() == num_destinations, false,
    "multisig signing protocol: internal error, view tag size mismatch.");
  unsigned_tx.vout.resize(num_destinations);
  for (std::size_t i = 0; i < num_destinations; ++i)
    cryptonote::set_tx_out(0, rct::rct2pk(output_public_keys[i]), true, view_tags[i], unsigned_tx.vout[i]);

  return true;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static void make_new_range_proofs(const int bp_version,
  const std::vector<std::uint64_t>& output_amounts,
  const rct::keyV& output_amount_masks,
  rct::rctSigPrunable& sigs)
{
  sigs.bulletproofs.clear();
  sigs.bulletproofs_plus.clear();

  if (bp_version == 3)
    sigs.bulletproofs.push_back(rct::bulletproof_PROVE(output_amounts, output_amount_masks));
  else if (bp_version == 4)
    sigs.bulletproofs_plus.push_back(rct::bulletproof_plus_PROVE(output_amounts, output_amount_masks));
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static bool try_reconstruct_range_proofs(const int bp_version,
  const rct::rctSigPrunable& original_sigs,
  const std::size_t num_destinations,
  const rct::ctkeyV& output_public_keys,
  rct::rctSigPrunable& reconstructed_sigs)
{
  auto try_reconstruct_range_proofs =
    [&](const auto &original_range_proofs, auto &new_range_proofs) -> bool
    {
      if (original_range_proofs.size() != 1)
        return false;

      new_range_proofs = original_range_proofs;
      new_range_proofs[0].V.resize(num_destinations);
      for (std::size_t i = 0; i < num_destinations; ++i)
        new_range_proofs[0].V[i] = rct::scalarmultKey(output_public_keys[i].mask, rct::INV_EIGHT);

      return true;
    };

  if (bp_version == 3)
  {
    if (not try_reconstruct_range_proofs(original_sigs.bulletproofs, reconstructed_sigs.bulletproofs))
      return false;
    return rct::bulletproof_VERIFY(reconstructed_sigs.bulletproofs);
  }
  else if (bp_version == 4)
  {
    if (not try_reconstruct_range_proofs(original_sigs.bulletproofs_plus, reconstructed_sigs.bulletproofs_plus))
      return false;
    return rct::bulletproof_plus_VERIFY(reconstructed_sigs.bulletproofs_plus);
  }

  return false;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static bool set_tx_rct_signatures(
  const std::uint64_t fee,
  const std::vector<cryptonote::tx_source_entry>& sources,
  const std::vector<cryptonote::tx_destination_entry>& destinations,
  const rct::keyV& input_secret_keys,
  const rct::keyV& output_public_keys,
  const rct::keyV& output_amount_secret_keys,
  const rct::RCTConfig& rct_config,
  const bool reconstruction,
  cryptonote::transaction& unsigned_tx,
  std::vector<CLSAG_context_t>& CLSAG_contexts,
  rct::keyV& cached_w
)
{
  if (rct_config.bp_version != 3 &&
      rct_config.bp_version != 4)
    return false;
  if (rct_config.range_proof_type != rct::RangeProofPaddedBulletproof)
    return false;

  const std::size_t num_destinations = destinations.size();
  const std::size_t num_sources = sources.size();

  // rct_signatures component of tx
  rct::rctSig rv{};

  // set misc. fields
  if (rct_config.bp_version == 3)
    rv.type = rct::RCTTypeCLSAG;
  else if (rct_config.bp_version == 4)
    rv.type = rct::RCTTypeBulletproofPlus;
  else
    return false;
  rv.txnFee = fee;
  rv.message = rct::hash2rct(cryptonote::get_transaction_prefix_hash(unsigned_tx));

  // define outputs
  std::vector<std::uint64_t> output_amounts(num_destinations);
  rct::keyV output_amount_masks(num_destinations);
  rv.ecdhInfo.resize(num_destinations);
  rv.outPk.resize(num_destinations);
  for (std::size_t i = 0; i < num_destinations; ++i) {
    rv.outPk[i].dest = output_public_keys[i];
    output_amounts[i] = destinations[i].amount;
    output_amount_masks[i] = genCommitmentMask(output_amount_secret_keys[i]);
    rv.ecdhInfo[i].amount = rct::d2h(output_amounts[i]);
    rct::addKeys2(
      rv.outPk[i].mask,
      output_amount_masks[i],
      rv.ecdhInfo[i].amount,
      rct::H
    );
    rct::ecdhEncode(rv.ecdhInfo[i], output_amount_secret_keys[i], true);
  }

  // output range proofs
  if (not reconstruction) {
    make_new_range_proofs(rct_config.bp_version, output_amounts, output_amount_masks, rv.p);
  }
  else {
    if (not try_reconstruct_range_proofs(rct_config.bp_version,
        unsigned_tx.rct_signatures.p,
        num_destinations,
        rv.outPk,
        rv.p))
      return false;
  }

  // prepare rings for input CLSAGs
  rv.mixRing.resize(num_sources);
  for (std::size_t i = 0; i < num_sources; ++i) {
    const std::size_t ring_size = sources[i].outputs.size();
    rv.mixRing[i].resize(ring_size);
    for (std::size_t j = 0; j < ring_size; ++j) {
      rv.mixRing[i][j].dest = sources[i].outputs[j].second.dest;
      rv.mixRing[i][j].mask = sources[i].outputs[j].second.mask;
    }
  }

  // make pseudo-output commitments
  rct::keyV a;  //pseudo-output commitment blinding factors
  auto a_wiper = epee::misc_utils::create_scope_leave_handler([&]{
    memwipe(static_cast<rct::key *>(a.data()), a.size() * sizeof(rct::key));
  });
  if (not reconstruction) {
    a.resize(num_sources);
    rv.p.pseudoOuts.resize(num_sources);
    a[num_sources - 1] = rct::zero();
    for (std::size_t i = 0; i < num_destinations; ++i) {
      sc_add(
        a[num_sources - 1].bytes,
        a[num_sources - 1].bytes,
        output_amount_masks[i].bytes
      );
    }
    for (std::size_t i = 0; i < num_sources - 1; ++i) {
      rct::skGen(a[i]);
      sc_sub(
        a[num_sources - 1].bytes,
        a[num_sources - 1].bytes,
        a[i].bytes
      );
      rct::genC(rv.p.pseudoOuts[i], a[i], sources[i].amount);
    }
    rct::genC(
      rv.p.pseudoOuts[num_sources - 1],
      a[num_sources - 1],
      sources[num_sources - 1].amount
    );
  }
  // check balance if reconstructing the tx
  else {
    rv.p.pseudoOuts = unsigned_tx.rct_signatures.p.pseudoOuts;
    if (num_sources != rv.p.pseudoOuts.size())
      return false;
    rct::key balance_accumulator = rct::scalarmultH(rct::d2h(fee));
    for (const auto& e: rv.outPk)
      rct::addKeys(balance_accumulator, balance_accumulator, e.mask);
    for (const auto& pseudoOut: rv.p.pseudoOuts)
      rct::subKeys(balance_accumulator, balance_accumulator, pseudoOut);
    if (not (balance_accumulator == rct::identity()))
      return false;
  }

  // prepare input CLSAGs for signing
  const rct::key message = get_pre_mlsag_hash(rv, hw::get_device("default"));

  rv.p.CLSAGs.resize(num_sources);
  if (reconstruction) {
    if (num_sources != unsigned_tx.rct_signatures.p.CLSAGs.size())
      return false;
  }

  CLSAG_contexts.resize(num_sources);
  if (not reconstruction)
    cached_w.resize(num_sources);

  for (std::size_t i = 0; i < num_sources; ++i) {
    const std::size_t ring_size = rv.mixRing[i].size();
    const rct::key& I = sources[i].multisig_kLRki.ki;
    const std::size_t l = sources[i].real_output;
    if (l >= ring_size)
      return false;
    rct::keyV& s = rv.p.CLSAGs[i].s;
    const rct::key& C_offset = rv.p.pseudoOuts[i];
    rct::keyV P(ring_size);
    rct::keyV C_nonzero(ring_size);

    if (not reconstruction) {
      s.resize(ring_size);
      for (std::size_t j = 0; j < ring_size; ++j) {
        if (j != l)
          s[j] = rct::skGen();  //make fake responses
      }
    }
    else {
      if (ring_size != unsigned_tx.rct_signatures.p.CLSAGs[i].s.size())
        return false;
      s = unsigned_tx.rct_signatures.p.CLSAGs[i].s;
    }

    for (std::size_t j = 0; j < ring_size; ++j) {
      P[j] = rv.mixRing[i][j].dest;
      C_nonzero[j] = rv.mixRing[i][j].mask;
    }

    rct::key D;
    rct::key z;
    auto z_wiper = epee::misc_utils::create_scope_leave_handler([&]{
      memwipe(static_cast<rct::key *>(&z), sizeof(rct::key));
    });
    if (not reconstruction) {
      sc_sub(z.bytes, sources[i].mask.bytes, a[i].bytes);  //commitment to zero privkey
      ge_p3 H_p3;
      rct::hash_to_p3(H_p3, rv.mixRing[i][l].dest);
      rct::key H_l;
      ge_p3_tobytes(H_l.bytes, &H_p3);
      D = rct::scalarmultKey(H_l, z);  //auxilliary key image (for commitment to zero)
      rv.p.CLSAGs[i].D = rct::scalarmultKey(D, rct::INV_EIGHT);
      rv.p.CLSAGs[i].I = I;
    }
    else {
      rv.p.CLSAGs[i].D = unsigned_tx.rct_signatures.p.CLSAGs[i].D;
      rv.p.CLSAGs[i].I = I;
      D = rct::scalarmultKey(rv.p.CLSAGs[i].D, rct::EIGHT);
    }

    if (not CLSAG_contexts[i].init(P, C_nonzero, C_offset, message, I, D, l, s, kAlphaComponents))
      return false;

    if (not reconstruction) {
      rct::key mu_P;
      rct::key mu_C;
      if (not CLSAG_contexts[i].get_mu(mu_P, mu_C))
        return false;
      sc_mul(cached_w[i].bytes, mu_P.bytes, input_secret_keys[i].bytes);
      sc_muladd(cached_w[i].bytes, mu_C.bytes, z.bytes, cached_w[i].bytes);
    }
  }
  unsigned_tx.rct_signatures = std::move(rv);
  return true;
}
//----------------------------------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------------------------------
static bool compute_tx_fee(
  const std::vector<cryptonote::tx_source_entry>& sources,
  const std::vector<cryptonote::tx_destination_entry>& destinations,
  std::uint64_t& fee
)
{
  boost::multiprecision::uint128_t in_amount = 0;
  for (const auto& src: sources)
    in_amount += src.amount;

  boost::multiprecision::uint128_t out_amount = 0;
  for (const auto& dst: destinations)
    out_amount += dst.amount;

  if (out_amount > in_amount)
    return false;

  if (in_amount - out_amount > std::numeric_limits<std::uint64_t>::max())
    return false;

  fee = static_cast<std::uint64_t>(in_amount - out_amount);
  return true;
}
//----------------------------------------------------------------------------------------------------------------------
tx_builder_ringct_t::tx_builder_ringct_t(): initialized(false) {}
//----------------------------------------------------------------------------------------------------------------------
tx_builder_ringct_t::~tx_builder_ringct_t()
{
  memwipe(static_cast<rct::key *>(cached_w.data()), cached_w.size() * sizeof(rct::key));
}
//----------------------------------------------------------------------------------------------------------------------
bool tx_builder_ringct_t::init(
  const cryptonote::account_keys& account_keys,
  const std::vector<std::uint8_t>& extra,
  const std::uint32_t subaddr_account,
  const std::set<std::uint32_t>& subaddr_minor_indices,
  std::vector<cryptonote::tx_source_entry>& sources,
  std::vector<cryptonote::tx_destination_entry>& destinations,
  const cryptonote::tx_destination_entry& change,
  const rct::RCTConfig& rct_config,
  const bool use_rct,
  const bool reconstruction,
  crypto::secret_key& tx_secret_key,
  std::vector<crypto::secret_key>& tx_aux_secret_keys,
  crypto::secret_key& tx_secret_key_entropy,
  cryptonote::transaction& unsigned_tx
)
{
  initialized = false;
  this->reconstruction = reconstruction;
  if (not use_rct)
    return false;
  if (sources.empty())
    return false;

  if (not reconstruction)
    unsigned_tx.set_null();

  std::uint64_t fee;
  if (not compute_tx_fee(sources, destinations, fee))
    return false;

  // decide if view tags are needed
  const bool use_view_tags{view_tag_required(rct_config.bp_version)};

  // misc. fields
  unsigned_tx.version = 2;  //rct = 2
  unsigned_tx.unlock_time = 0;

  // sort inputs
  sort_sources(sources);

  // prepare tx secret key seed (must be AFTER sorting sources)
  // - deriving the seed from sources plus entropy ensures uniqueness for every new tx attempt
  // - the goal is that two multisig txs added to the chain will never have outputs with the same onetime addresses,
  //   which would burn funds (embedding the inputs' key images guarantees this)
  //   - it is acceptable if two tx attempts use the same input set and entropy (only a malicious tx proposer will do
  //     that, but all it can accomplish is leaking information about the recipients - which a malicious proposer can
  //     easily do outside the signing ritual anyway)
  if (not reconstruction)
    tx_secret_key_entropy = rct::rct2sk(rct::skGen());

  // expect not null (note: wallet serialization code may set this to null if handling an old partial tx)
  if (tx_secret_key_entropy == crypto::null_skey)
    return false;

  crypto::secret_key tx_secret_key_seed;
  make_tx_secret_key_seed(tx_secret_key_entropy, sources, tx_secret_key_seed);

  // get secret keys for signing input CLSAGs (multisig: or for the initial partial signature)
  rct::keyV input_secret_keys;
  auto input_secret_keys_wiper = epee::misc_utils::create_scope_leave_handler([&]{
    memwipe(static_cast<rct::key *>(input_secret_keys.data()), input_secret_keys.size() * sizeof(rct::key));
  });
  if (not compute_keys_for_sources(account_keys, sources, subaddr_account, subaddr_minor_indices, input_secret_keys))
    return false;

  // randomize output order
  if (not reconstruction)
    shuffle_destinations(destinations);

  // prepare outputs
  rct::keyV output_public_keys;
  rct::keyV output_amount_secret_keys;
  std::vector<crypto::view_tag> view_tags;
  auto output_amount_secret_keys_wiper = epee::misc_utils::create_scope_leave_handler([&]{
    memwipe(static_cast<rct::key *>(output_amount_secret_keys.data()), output_amount_secret_keys.size() * sizeof(rct::key));
  });
  if (not compute_keys_for_destinations(account_keys,
      subaddr_account,
      destinations,
      change,
      extra,
      use_view_tags,
      reconstruction,
      tx_secret_key_seed,
      tx_secret_key,
      tx_aux_secret_keys,
      output_public_keys,
      output_amount_secret_keys,
      view_tags,
      unsigned_tx))
    return false;

  // add inputs to tx
  set_tx_inputs(sources, unsigned_tx);

  // add output one-time addresses to tx
  bool set_tx_outputs_result{false};
  if (use_view_tags)
    set_tx_outputs_result = set_tx_outputs_with_view_tags(output_public_keys, view_tags, unsigned_tx);
  else
    set_tx_outputs_result = set_tx_outputs(output_public_keys, unsigned_tx);

  if (not set_tx_outputs_result)
    return false;

  // prepare input signatures
  if (not set_tx_rct_signatures(fee, sources, destinations, input_secret_keys, output_public_keys, output_amount_secret_keys,
      rct_config, reconstruction, unsigned_tx, CLSAG_contexts, cached_w))
    return false;

  initialized = true;
  return true;
}
//----------------------------------------------------------------------------------------------------------------------
bool tx_builder_ringct_t::first_partial_sign(
  const std::size_t source,
  const rct::keyV& total_alpha_G,
  const rct::keyV& total_alpha_H,
  const rct::keyV& alpha,
  rct::key& c_0,
  rct::key& s
)
{
  if (not initialized or reconstruction)
    return false;
  const std::size_t num_sources = CLSAG_contexts.size();
  if (source >= num_sources)
    return false;
  rct::key c;
  rct::key alpha_combined;
  auto alpha_combined_wiper = epee::misc_utils::create_scope_leave_handler([&]{
    memwipe(static_cast<rct::key *>(&alpha_combined), sizeof(rct::key));
  });
  if (not CLSAG_contexts[source].combine_alpha_and_compute_challenge(
    total_alpha_G,
    total_alpha_H,
    alpha,
    alpha_combined,
    c_0,
    c
  )) {
    return false;
  }

  // initial partial response:
  //      s = alpha_combined_local - challenge*[mu_P*(local keys and sender-receiver secret and subaddress material) +
  //                                            mu_C*(commitment-to-zero secret)]
  sc_mulsub(s.bytes, c.bytes, cached_w[source].bytes, alpha_combined.bytes);
  return true;
}
//----------------------------------------------------------------------------------------------------------------------
bool tx_builder_ringct_t::next_partial_sign(
  const rct::keyM& total_alpha_G,
  const rct::keyM& total_alpha_H,
  const rct::keyM& alpha,
  const rct::key& x,
  rct::keyV& c_0,
  rct::keyV& s
)
{
  if (not initialized or not reconstruction)
    return false;
  const std::size_t num_sources = CLSAG_contexts.size();
  if (num_sources != total_alpha_G.size())
    return false;
  if (num_sources != total_alpha_H.size())
    return false;
  if (num_sources != alpha.size())
    return false;
  if (num_sources != c_0.size())
    return false;
  if (num_sources != s.size())
    return false;
  for (std::size_t i = 0; i < num_sources; ++i) {
    rct::key c;
    rct::key alpha_combined;
    auto alpha_combined_wiper = epee::misc_utils::create_scope_leave_handler([&]{
      memwipe(static_cast<rct::key *>(&alpha_combined), sizeof(rct::key));
    });
    if (not CLSAG_contexts[i].combine_alpha_and_compute_challenge(
      total_alpha_G[i],
      total_alpha_H[i],
      alpha[i],
      alpha_combined,
      c_0[i],
      c
    )) {
      return false;
    }
    rct::key mu_P;
    rct::key mu_C;
    if (not CLSAG_contexts[i].get_mu(mu_P, mu_C))
      return false;
    rct::key w;
    auto w_wiper = epee::misc_utils::create_scope_leave_handler([&]{
      memwipe(static_cast<rct::key *>(&w), sizeof(rct::key));
    });
    sc_mul(w.bytes, mu_P.bytes, x.bytes);

    // include local signer's response:
    //      s += alpha_combined_local - challenge*[mu_P*(local keys)]
    sc_add(s[i].bytes, s[i].bytes, alpha_combined.bytes);
    sc_mulsub(s[i].bytes, c.bytes, w.bytes, s[i].bytes);
  }
  return true;
}
//----------------------------------------------------------------------------------------------------------------------
bool tx_builder_ringct_t::finalize_tx(
  const std::vector<cryptonote::tx_source_entry>& sources,
  const rct::keyV& c_0,
  const rct::keyV& s,
  cryptonote::transaction& unsigned_tx
)
{
  // checks
  const std::size_t num_sources = sources.size();
  if (num_sources != unsigned_tx.rct_signatures.p.CLSAGs.size())
    return false;
  if (num_sources != c_0.size())
    return false;
  if (num_sources != s.size())
    return false;

  // finalize tx signatures
  for (std::size_t i = 0; i < num_sources; ++i) {
    const std::size_t ring_size = unsigned_tx.rct_signatures.p.CLSAGs[i].s.size();
    if (sources[i].real_output >= ring_size)
      return false;
    unsigned_tx.rct_signatures.p.CLSAGs[i].s[sources[i].real_output] = s[i];
    unsigned_tx.rct_signatures.p.CLSAGs[i].c1 = c_0[i];
  }

  return true;
}
//----------------------------------------------------------------------------------------------------------------------
} //namespace signing

} //namespace multisig