// Copyright (c) 2017-2024, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#include "version.h"
#include "device_ledger.hpp"
#include "ringct/rctOps.h"
#include "cryptonote_basic/account.h"
#include "cryptonote_basic/subaddress_index.h"
#include "cryptonote_core/cryptonote_tx_utils.h"
namespace hw {
namespace ledger {
#ifdef WITH_DEVICE_LEDGER
namespace {
bool apdu_verbose =true;
}
#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "device.ledger"
/* ===================================================================== */
/* === Debug ==== */
/* ===================================================================== */
void set_apdu_verbose(bool verbose) {
apdu_verbose = verbose;
}
#define TRACKD MTRACE("hw")
#define ASSERT_SW(sw,ok,msk) CHECK_AND_ASSERT_THROW_MES(((sw)&(msk))==(ok), \
"Wrong Device Status: " << "0x" << std::hex << (sw) << " (" << Status::to_string(sw) << "), " << \
"EXPECTED 0x" << std::hex << (ok) << " (" << Status::to_string(ok) << "), " << \
"MASK 0x" << std::hex << (msk));
#define ASSERT_T0(exp) CHECK_AND_ASSERT_THROW_MES(exp, "Protocol assert failure: "#exp ) ;
#define ASSERT_X(exp,msg) CHECK_AND_ASSERT_THROW_MES(exp, msg);
#ifdef DEBUG_HWDEVICE
crypto::secret_key dbg_viewkey;
crypto::secret_key dbg_spendkey;
#endif
struct Status
{
unsigned int code;
const char *string;
constexpr operator unsigned int() const
{
return this->code;
}
static const char *to_string(unsigned int code);
};
// Must be sorted in ascending order by the code
#define LEDGER_STATUS(status) {status, #status}
constexpr Status status_codes[] = {
LEDGER_STATUS(SW_OK),
LEDGER_STATUS(SW_WRONG_LENGTH),
LEDGER_STATUS(SW_SECURITY_PIN_LOCKED),
LEDGER_STATUS(SW_SECURITY_LOAD_KEY),
LEDGER_STATUS(SW_SECURITY_COMMITMENT_CONTROL),
LEDGER_STATUS(SW_SECURITY_AMOUNT_CHAIN_CONTROL),
LEDGER_STATUS(SW_SECURITY_COMMITMENT_CHAIN_CONTROL),
LEDGER_STATUS(SW_SECURITY_OUTKEYS_CHAIN_CONTROL),
LEDGER_STATUS(SW_SECURITY_MAXOUTPUT_REACHED),
LEDGER_STATUS(SW_SECURITY_HMAC),
LEDGER_STATUS(SW_SECURITY_RANGE_VALUE),
LEDGER_STATUS(SW_SECURITY_INTERNAL),
LEDGER_STATUS(SW_SECURITY_MAX_SIGNATURE_REACHED),
LEDGER_STATUS(SW_SECURITY_PREFIX_HASH),
LEDGER_STATUS(SW_SECURITY_LOCKED),
LEDGER_STATUS(SW_COMMAND_NOT_ALLOWED),
LEDGER_STATUS(SW_SUBCOMMAND_NOT_ALLOWED),
LEDGER_STATUS(SW_DENY),
LEDGER_STATUS(SW_KEY_NOT_SET),
LEDGER_STATUS(SW_WRONG_DATA),
LEDGER_STATUS(SW_WRONG_DATA_RANGE),
LEDGER_STATUS(SW_IO_FULL),
LEDGER_STATUS(SW_CLIENT_NOT_SUPPORTED),
LEDGER_STATUS(SW_WRONG_P1P2),
LEDGER_STATUS(SW_INS_NOT_SUPPORTED),
LEDGER_STATUS(SW_PROTOCOL_NOT_SUPPORTED),
LEDGER_STATUS(SW_UNKNOWN)
};
const char *Status::to_string(unsigned int code)
{
constexpr size_t status_codes_size = sizeof(status_codes) / sizeof(status_codes[0]);
constexpr const Status *status_codes_end = &status_codes[status_codes_size];
const Status *item = std::lower_bound(&status_codes[0], status_codes_end, code);
return (item == status_codes_end || code < *item) ? "UNKNOWN" : item->string;
}
/* ===================================================================== */
/* === hmacmap ==== */
/* ===================================================================== */
SecHMAC::SecHMAC(const uint8_t s[32], const uint8_t h[32]) {
memcpy(this->sec, s, 32);
memcpy(this->hmac, h, 32);
}
void HMACmap::find_mac(const uint8_t sec[32], uint8_t hmac[32]) {
size_t sz = hmacs.size();
log_hexbuffer("find_mac: lookup for ", (char*)sec,32);
for (size_t i=0; i<sz; i++) {
log_hexbuffer("find_mac: - try ",(char*)hmacs[i].sec,32);
if (memcmp(sec, hmacs[i].sec, 32) == 0) {
memcpy(hmac, hmacs[i].hmac, 32);
log_hexbuffer("find_mac: - found ",(char*)hmacs[i].hmac,32);
return;
}
}
throw std::runtime_error("Protocol error: try to send untrusted secret");
}
void HMACmap::add_mac(const uint8_t sec[32], const uint8_t hmac[32]) {
log_hexbuffer("add_mac: sec ", (char*)sec,32);
log_hexbuffer("add_mac: hmac ", (char*)hmac,32);
hmacs.push_back(SecHMAC(sec,hmac));
}
void HMACmap::clear() {
hmacs.clear();
}
/* ===================================================================== */
/* === Keymap ==== */
/* ===================================================================== */
ABPkeys::ABPkeys(const rct::key& A, const rct::key& B, const bool is_subaddr, const bool is_change, const bool need_additional_txkeys, const size_t real_output_index, const rct::key& P, const rct::key& AK) {
Aout = A;
Bout = B;
is_subaddress = is_subaddr;
is_change_address = is_change;
additional_key = need_additional_txkeys;
index = real_output_index;
Pout = P;
AKout = AK;
}
ABPkeys::ABPkeys(const ABPkeys& keys) {
Aout = keys.Aout;
Bout = keys.Bout;
is_subaddress = keys.is_subaddress;
is_change_address = keys.is_change_address;
additional_key = keys.additional_key;
index = keys.index;
Pout = keys.Pout;
AKout = keys.AKout;
}
ABPkeys &ABPkeys::operator=(const ABPkeys& keys) {
if (&keys == this)
return *this;
Aout = keys.Aout;
Bout = keys.Bout;
is_subaddress = keys.is_subaddress;
is_change_address = keys.is_change_address;
additional_key = keys.additional_key;
index = keys.index;
Pout = keys.Pout;
AKout = keys.AKout;
return *this;
}
bool Keymap::find(const rct::key& P, ABPkeys& keys) const {
size_t sz = ABP.size();
for (size_t i=0; i<sz; i++) {
if (ABP[i].Pout == P) {
keys = ABP[i];
return true;
}
}
return false;
}
void Keymap::add(const ABPkeys& keys) {
ABP.push_back(keys);
}
void Keymap::clear() {
ABP.clear();
}
#ifdef DEBUG_HWDEVICE
void Keymap::log() {
log_message("keymap", "content");
size_t sz = ABP.size();
for (size_t i=0; i<sz; i++) {
log_message(" keymap", std::to_string(i));
log_hexbuffer(" Aout", (char*)ABP[i].Aout.bytes, 32);
log_hexbuffer(" Bout", (char*)ABP[i].Bout.bytes, 32);
log_message (" is_sub", std::to_string(ABP[i].is_subaddress));
log_message (" index", std::to_string(ABP[i].index));
log_hexbuffer(" Pout", (char*)ABP[i].Pout.bytes, 32);
}
}
#endif
/* ===================================================================== */
/* === Internal Helpers ==== */
/* ===================================================================== */
static bool is_fake_view_key(const crypto::secret_key &sec) {
return sec == crypto::null_skey;
}
bool operator==(const crypto::key_derivation &d0, const crypto::key_derivation &d1) {
static_assert(sizeof(crypto::key_derivation) == 32, "key_derivation must be 32 bytes");
return !crypto_verify_32((const unsigned char*)&d0, (const unsigned char*)&d1);
}
/* ===================================================================== */
/* === Device ==== */
/* ===================================================================== */
static int device_id = 0;
#define PROTOCOL_VERSION 4
#define INS_NONE 0x00
#define INS_RESET 0x02
#define INS_GET_KEY 0x20
#define INS_DISPLAY_ADDRESS 0x21
#define INS_PUT_KEY 0x22
#define INS_GET_CHACHA8_PREKEY 0x24
#define INS_VERIFY_KEY 0x26
#define INS_MANAGE_SEEDWORDS 0x28
#define INS_SECRET_KEY_TO_PUBLIC_KEY 0x30
#define INS_GEN_KEY_DERIVATION 0x32
#define INS_DERIVATION_TO_SCALAR 0x34
#define INS_DERIVE_PUBLIC_KEY 0x36
#define INS_DERIVE_SECRET_KEY 0x38
#define INS_GEN_KEY_IMAGE 0x3A
#define INS_DERIVE_VIEW_TAG 0x3B
#define INS_SECRET_KEY_ADD 0x3C
#define INS_SECRET_KEY_SUB 0x3E
#define INS_GENERATE_KEYPAIR 0x40
#define INS_SECRET_SCAL_MUL_KEY 0x42
#define INS_SECRET_SCAL_MUL_BASE 0x44
#define INS_DERIVE_SUBADDRESS_PUBLIC_KEY 0x46
#define INS_GET_SUBADDRESS 0x48
#define INS_GET_SUBADDRESS_SPEND_PUBLIC_KEY 0x4A
#define INS_GET_SUBADDRESS_SECRET_KEY 0x4C
#define INS_OPEN_TX 0x70
#define INS_SET_SIGNATURE_MODE 0x72
#define INS_GET_ADDITIONAL_KEY 0x74
#define INS_STEALTH 0x76
#define INS_GEN_COMMITMENT_MASK 0x77
#define INS_BLIND 0x78
#define INS_UNBLIND 0x7A
#define INS_GEN_TXOUT_KEYS 0x7B
#define INS_PREFIX_HASH 0x7D
#define INS_VALIDATE 0x7C
#define INS_MLSAG 0x7E
#define INS_CLSAG 0x7F
#define INS_CLOSE_TX 0x80
#define INS_GET_TX_PROOF 0xA0
#define INS_GET_RESPONSE 0xc0
device_ledger::device_ledger(): hw_device(0x0101, 0x05, 64, 2000) {
this->id = device_id++;
this->reset_buffer();
this->mode = NONE;
this->has_view_key = false;
this->tx_in_progress = false;
MDEBUG( "Device "<<this->id <<" Created");
}
device_ledger::~device_ledger() {
this->release();
MDEBUG( "Device "<<this->id <<" Destroyed");
}
/* ======================================================================= */
/* LOCKER */
/* ======================================================================= */
//automatic lock one more level on device ensuring the current thread is allowed to use it
#define AUTO_LOCK_CMD() \
/* lock both mutexes without deadlock*/ \
std::lock(device_locker, command_locker); \
/* make sure both already-locked mutexes are unlocked at the end of scope */ \
std::lock_guard<std::recursive_mutex> lock1(device_locker, std::adopt_lock); \
std::lock_guard<std::mutex> lock2(command_locker, std::adopt_lock)
//lock the device for a long sequence
void device_ledger::lock(void) {
MDEBUG( "Ask for LOCKING for device "<<this->name << " in thread ");
device_locker.lock();
MDEBUG( "Device "<<this->name << " LOCKed");
}
//lock the device for a long sequence
bool device_ledger::try_lock(void) {
MDEBUG( "Ask for LOCKING(try) for device "<<this->name << " in thread ");
bool r = device_locker.try_lock();
if (r) {
MDEBUG( "Device "<<this->name << " LOCKed(try)");
} else {
MDEBUG( "Device "<<this->name << " not LOCKed(try)");
}
return r;
}
//lock the device for a long sequence
void device_ledger::unlock(void) {
try {
MDEBUG( "Ask for UNLOCKING for device "<<this->name << " in thread ");
} catch (...) {
}
device_locker.unlock();
MDEBUG( "Device "<<this->name << " UNLOCKed");
}
/* ======================================================================= */
/* IO */
/* ======================================================================= */
#define IO_SW_DENY 0x6982
#define IO_SECRET_KEY 0x02
void device_ledger::logCMD() {
if (apdu_verbose) {
char strbuffer[1024];
snprintf(strbuffer, sizeof(strbuffer), "%.02x %.02x %.02x %.02x %.02x ",
this->buffer_send[0],
this->buffer_send[1],
this->buffer_send[2],
this->buffer_send[3],
this->buffer_send[4]
);
const size_t len = strlen(strbuffer);
buffer_to_str(strbuffer+len, sizeof(strbuffer)-len, (char*)(this->buffer_send+5), this->length_send-5);
MDEBUG( "CMD : " << strbuffer);
}
}
void device_ledger::logRESP() {
if (apdu_verbose) {
char strbuffer[1024];
snprintf(strbuffer, sizeof(strbuffer), "%.04x ", this->sw);
const size_t len = strlen(strbuffer);
buffer_to_str(strbuffer+len, sizeof(strbuffer)-len, (char*)(this->buffer_recv), this->length_recv);
MDEBUG( "RESP : " << strbuffer);
}
}
int device_ledger::set_command_header(unsigned char ins, unsigned char p1, unsigned char p2) {
reset_buffer();
this->buffer_send[0] = PROTOCOL_VERSION;
this->buffer_send[1] = ins;
this->buffer_send[2] = p1;
this->buffer_send[3] = p2;
this->buffer_send[4] = 0x00;
return 5;
}
int device_ledger::set_command_header_noopt(unsigned char ins, unsigned char p1, unsigned char p2) {
int offset = set_command_header(ins, p1, p2);
//options
this->buffer_send[offset++] = 0;
this->buffer_send[4] = offset - 5;
return offset;
}
void device_ledger::send_simple(unsigned char ins, unsigned char p1) {
this->length_send = set_command_header_noopt(ins, p1);
if (ins == INS_GET_KEY && p1 == IO_SECRET_KEY) {
// export view key user input
this->exchange_wait_on_input();
} else {
this->exchange();
}
}
void device_ledger::send_secret(const unsigned char sec[32], int &offset) {
MDEBUG("send_secret: " << this->tx_in_progress);
ASSERT_X(offset + 32 <= BUFFER_SEND_SIZE, "send_secret: out of bounds write (secret)");
memmove(this->buffer_send+offset, sec, 32);
offset +=32;
if (this->tx_in_progress) {
ASSERT_X(offset + 32 <= BUFFER_SEND_SIZE, "send_secret: out of bounds write (mac)");
this->hmac_map.find_mac((uint8_t*)sec, this->buffer_send+offset);
offset += 32;
}
}
void device_ledger::receive_secret(unsigned char sec[32], int &offset) {
MDEBUG("receive_secret: " << this->tx_in_progress);
ASSERT_X(offset + 32 <= BUFFER_RECV_SIZE, "receive_secret: out of bounds read (secret)");
memmove(sec, this->buffer_recv+offset, 32);
offset += 32;
if (this->tx_in_progress) {
ASSERT_X(offset + 32 <= BUFFER_RECV_SIZE, "receive_secret: out of bounds read (mac)");
this->hmac_map.add_mac((uint8_t*)sec, this->buffer_recv+offset);
offset += 32;
}
}
bool device_ledger::reset() {
reset_buffer();
int offset = set_command_header_noopt(INS_RESET);
const size_t verlen = strlen(MONERO_VERSION);
ASSERT_X(offset + verlen <= BUFFER_SEND_SIZE, "MONERO_VERSION is too long")
memmove(this->buffer_send+offset, MONERO_VERSION, verlen);
offset += strlen(MONERO_VERSION);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
ASSERT_X(this->length_recv>=3, "Communication error, less than three bytes received. Check your application version.");
return true;
}
unsigned int device_ledger::exchange(unsigned int ok, unsigned int mask) {
logCMD();
this->length_recv = hw_device.exchange(this->buffer_send, this->length_send, this->buffer_recv, BUFFER_SEND_SIZE, false);
ASSERT_X(this->length_recv>=2, "Communication error, less than tow bytes received");
this->length_recv -= 2;
this->sw = (this->buffer_recv[length_recv]<<8) | this->buffer_recv[length_recv+1];
logRESP();
MDEBUG("Device "<< this->id << " exchange: sw: " << this->sw << " expected: " << ok);
ASSERT_X(sw != SW_CLIENT_NOT_SUPPORTED, "Monero Ledger App doesn't support current monero version. Try to update the Monero Ledger App, at least " << MINIMAL_APP_VERSION_MAJOR<< "." << MINIMAL_APP_VERSION_MINOR << "." << MINIMAL_APP_VERSION_MICRO << " is required.");
ASSERT_X(sw != SW_PROTOCOL_NOT_SUPPORTED, "Make sure no other program is communicating with the Ledger.");
ASSERT_SW(this->sw,ok,mask);
return this->sw;
}
unsigned int device_ledger::exchange_wait_on_input(unsigned int ok, unsigned int mask) {
logCMD();
unsigned int deny = 0;
this->length_recv = hw_device.exchange(this->buffer_send, this->length_send, this->buffer_recv, BUFFER_SEND_SIZE, true);
ASSERT_X(this->length_recv>=2, "Communication error, less than two bytes received");
this->length_recv -= 2;
this->sw = (this->buffer_recv[length_recv]<<8) | this->buffer_recv[length_recv+1];
if (this->sw == IO_SW_DENY) {
// cancel on device
deny = 1;
} else {
ASSERT_SW(this->sw,ok,mask);
}
logRESP();
return deny;
}
void device_ledger::reset_buffer() {
this->length_send = 0;
memset(this->buffer_send, 0, BUFFER_SEND_SIZE);
this->length_recv = 0;
memset(this->buffer_recv, 0, BUFFER_RECV_SIZE);
}
/* ======================================================================= */
/* SETUP/TEARDOWN */
/* ======================================================================= */
bool device_ledger::set_name(const std::string & name) {
this->name = name;
return true;
}
const std::string device_ledger::get_name() const {
if (!this->connected()) {
return std::string("<disconnected:").append(this->name).append(">");
}
return this->name;
}
bool device_ledger::init(void) {
this->controle_device = &hw::get_device("default");
this->release();
hw_device.init();
MDEBUG( "Device "<<this->id <<" HIDUSB inited");
return true;
}
static const std::vector<hw::io::hid_conn_params> known_devices {
{0x2c97, 0x0001, 0, 0xffa0},
{0x2c97, 0x0004, 0, 0xffa0},
{0x2c97, 0x0005, 0, 0xffa0},
{0x2c97, 0x0006, 0, 0xffa0},
};
bool device_ledger::connect(void) {
this->disconnect();
hw_device.connect(known_devices);
this->reset();
#ifdef DEBUG_HWDEVICE
cryptonote::account_public_address pubkey;
this->get_public_address(pubkey);
#endif
crypto::secret_key vkey;
crypto::secret_key skey;
this->get_secret_keys(vkey,skey);
return true;
}
bool device_ledger::connected(void) const {
return hw_device.connected();
}
bool device_ledger::disconnect() {
hw_device.disconnect();
return true;
}
bool device_ledger::release() {
this->disconnect();
hw_device.release();
return true;
}
bool device_ledger::set_mode(device_mode mode) {
AUTO_LOCK_CMD();
int offset;
switch(mode) {
case TRANSACTION_CREATE_REAL:
case TRANSACTION_CREATE_FAKE:
offset = set_command_header_noopt(INS_SET_SIGNATURE_MODE, 1);
//account
this->buffer_send[offset] = mode;
offset += 1;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
this->mode = mode;
break;
case TRANSACTION_PARSE:
case NONE:
this->mode = mode;
break;
default:
CHECK_AND_ASSERT_THROW_MES(false, " device_ledger::set_mode(unsigned int mode): invalid mode: "<<mode);
}
MDEBUG("Switch to mode: " <<mode);
return device::set_mode(mode);
}
/* ======================================================================= */
/* WALLET & ADDRESS */
/* ======================================================================= */
bool device_ledger::get_public_address(cryptonote::account_public_address &pubkey){
AUTO_LOCK_CMD();
send_simple(INS_GET_KEY, 1);
memmove(pubkey.m_view_public_key.data, this->buffer_recv, 32);
memmove(pubkey.m_spend_public_key.data, this->buffer_recv+32, 32);
return true;
}
bool device_ledger::get_secret_keys(crypto::secret_key &vkey , crypto::secret_key &skey) {
AUTO_LOCK_CMD();
//secret key are represented as fake key on the wallet side
memset(vkey.data, 0x00, 32);
memset(skey.data, 0xFF, 32);
//spcialkey, normal conf handled in decrypt
send_simple(INS_GET_KEY, 0x02);
//View key is retrievied, if allowed, to speed up blockchain parsing
memmove(this->viewkey.data, this->buffer_recv+0, 32);
if (is_fake_view_key(this->viewkey)) {
MDEBUG("Have Not view key");
this->has_view_key = false;
} else {
MDEBUG("Have view key");
this->has_view_key = true;
}
#ifdef DEBUG_HWDEVICE
send_simple(INS_GET_KEY, 0x04);
memmove(dbg_viewkey.data, this->buffer_recv+0, 32);
memmove(dbg_spendkey.data, this->buffer_recv+32, 32);
#endif
return true;
}
bool device_ledger::generate_chacha_key(const cryptonote::account_keys &keys, crypto::chacha_key &key, uint64_t kdf_rounds) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
crypto::chacha_key key_x;
cryptonote::account_keys keys_x = hw::ledger::decrypt(keys);
this->controle_device->generate_chacha_key(keys_x, key_x, kdf_rounds);
#endif
send_simple(INS_GET_CHACHA8_PREKEY);
char prekey[200];
memmove(prekey, &this->buffer_recv[0], 200);
crypto::generate_chacha_key_prehashed(&prekey[0], sizeof(prekey), key, kdf_rounds);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("generate_chacha_key_prehashed", "key", (char*)key_x.data(), (char*)key.data());
#endif
return true;
}
void device_ledger::display_address(const cryptonote::subaddress_index& index, const boost::optional<crypto::hash8> &payment_id) {
AUTO_LOCK_CMD();
int offset = set_command_header_noopt(INS_DISPLAY_ADDRESS, payment_id?1:0);
//index
memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index));
offset +=8 ;
//payment ID
if (payment_id) {
memmove(this->buffer_send+offset, (*payment_id).data, 8);
} else {
memset(this->buffer_send+offset, 0, 8);
}
offset +=8;
this->buffer_send[4] = offset-5;
this->length_send = offset;
CHECK_AND_ASSERT_THROW_MES(this->exchange_wait_on_input() == 0, "Timeout/Error on display address.");
}
/* ======================================================================= */
/* SUB ADDRESS */
/* ======================================================================= */
bool device_ledger::derive_subaddress_public_key(const crypto::public_key &pub, const crypto::key_derivation &derivation, const std::size_t output_index, crypto::public_key &derived_pub){
#ifdef DEBUG_HWDEVICE
const crypto::public_key pub_x = pub;
crypto::key_derivation derivation_x;
if ((this->mode == TRANSACTION_PARSE) && has_view_key) {
derivation_x = derivation;
} else {
derivation_x = hw::ledger::decrypt(derivation);
}
const std::size_t output_index_x = output_index;
crypto::public_key derived_pub_x;
log_hexbuffer("derive_subaddress_public_key: [[IN]] pub ", pub_x.data, 32);
log_hexbuffer("derive_subaddress_public_key: [[IN]] derivation", derivation_x.data, 32);
log_message ("derive_subaddress_public_key: [[IN]] index ", std::to_string((int)output_index_x));
if (!this->controle_device->derive_subaddress_public_key(pub_x, derivation_x,output_index_x,derived_pub_x))
return false;
log_hexbuffer("derive_subaddress_public_key: [[OUT]] derived_pub", derived_pub_x.data, 32);
#endif
if ((this->mode == TRANSACTION_PARSE) && has_view_key) {
//If we are in TRANSACTION_PARSE, the given derivation has been retrieved uncrypted (wihtout the help
//of the device), so continue that way.
MDEBUG( "derive_subaddress_public_key : PARSE mode with known viewkey");
if (!crypto::derive_subaddress_public_key(pub, derivation, output_index,derived_pub))
return false;
} else {
AUTO_LOCK_CMD();
int offset = set_command_header_noopt(INS_DERIVE_SUBADDRESS_PUBLIC_KEY);
//pub
memmove(this->buffer_send+offset, pub.data, 32);
offset += 32;
//derivation
this->send_secret((unsigned char*)derivation.data, offset);
//index
this->buffer_send[offset+0] = output_index>>24;
this->buffer_send[offset+1] = output_index>>16;
this->buffer_send[offset+2] = output_index>>8;
this->buffer_send[offset+3] = output_index>>0;
offset += 4;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//pub key
memmove(derived_pub.data, &this->buffer_recv[0], 32);
}
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("derive_subaddress_public_key", "derived_pub", derived_pub_x.data, derived_pub.data);
#endif
return true;
}
crypto::public_key device_ledger::get_subaddress_spend_public_key(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) {
if (has_view_key) {
cryptonote::account_keys keys_{keys};
keys_.m_view_secret_key = this->viewkey;
return this->controle_device->get_subaddress_spend_public_key(keys_, index);
}
AUTO_LOCK_CMD();
crypto::public_key D;
#ifdef DEBUG_HWDEVICE
const cryptonote::account_keys keys_x = hw::ledger::decrypt(keys);
const cryptonote::subaddress_index index_x = index;
crypto::public_key D_x;
log_hexbuffer("get_subaddress_spend_public_key: [[IN]] keys.m_view_secret_key ", keys_x.m_view_secret_key.data,32);
log_hexbuffer("get_subaddress_spend_public_key: [[IN]] keys.m_spend_secret_key", keys_x.m_spend_secret_key.data,32);
log_message ("get_subaddress_spend_public_key: [[IN]] index ", std::to_string(index_x.major)+"."+std::to_string(index_x.minor));
D_x = this->controle_device->get_subaddress_spend_public_key(keys_x, index_x);
log_hexbuffer("get_subaddress_spend_public_key: [[OUT]] derivation ", D_x.data, 32);
#endif
if (index.is_zero()) {
D = keys.m_account_address.m_spend_public_key;
} else {
int offset = set_command_header_noopt(INS_GET_SUBADDRESS_SPEND_PUBLIC_KEY);
//index
static_assert(sizeof(cryptonote::subaddress_index) == 8, "cryptonote::subaddress_index shall be 8 bytes length");
memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index));
offset +=8 ;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
memmove(D.data, &this->buffer_recv[0], 32);
}
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("get_subaddress_spend_public_key", "D", D_x.data, D.data);
#endif
return D;
}
std::vector<crypto::public_key> device_ledger::get_subaddress_spend_public_keys(const cryptonote::account_keys &keys, uint32_t account, uint32_t begin, uint32_t end) {
std::vector<crypto::public_key> pkeys;
cryptonote::subaddress_index index = {account, begin};
crypto::public_key D;
for (uint32_t idx = begin; idx < end; ++idx) {
index.minor = idx;
D = this->get_subaddress_spend_public_key(keys, index);
pkeys.push_back(D);
}
return pkeys;
}
cryptonote::account_public_address device_ledger::get_subaddress(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) {
if (has_view_key) {
cryptonote::account_keys keys_{keys};
keys_.m_view_secret_key = this->viewkey;
return this->controle_device->get_subaddress(keys_, index);
}
AUTO_LOCK_CMD();
cryptonote::account_public_address address;
#ifdef DEBUG_HWDEVICE
const cryptonote::account_keys keys_x = hw::ledger::decrypt(keys);
const cryptonote::subaddress_index index_x = index;
cryptonote::account_public_address address_x;
log_hexbuffer("get_subaddress: [[IN]] keys.m_view_secret_key ", keys_x.m_view_secret_key.data, 32);
log_hexbuffer("get_subaddress: [[IN]] keys.m_view_public_key", keys_x.m_account_address.m_view_public_key.data, 32);
log_hexbuffer("get_subaddress: [[IN]] keys.m_view_secret_key ", keys_x.m_view_secret_key.data, 32);
log_hexbuffer("get_subaddress: [[IN]] keys.m_spend_public_key", keys_x.m_account_address.m_spend_public_key.data, 32);
log_message ("get_subaddress: [[IN]] index ", std::to_string(index_x.major)+"."+std::to_string(index_x.minor));
address_x = this->controle_device->get_subaddress(keys_x, index_x);
log_hexbuffer("get_subaddress: [[OUT]] keys.m_view_public_key ", address_x.m_view_public_key.data, 32);
log_hexbuffer("get_subaddress: [[OUT]] keys.m_spend_public_key", address_x.m_spend_public_key.data, 32);
#endif
if (index.is_zero()) {
address = keys.m_account_address;
} else {
int offset = set_command_header_noopt(INS_GET_SUBADDRESS);
//index
static_assert(sizeof(cryptonote::subaddress_index) == 8, "cryptonote::subaddress_index shall be 8 bytes length");
memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index));
offset +=8 ;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
memmove(address.m_view_public_key.data, &this->buffer_recv[0], 32);
memmove(address.m_spend_public_key.data, &this->buffer_recv[32], 32);
}
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("get_subaddress", "address.m_view_public_key.data", address_x.m_view_public_key.data, address.m_view_public_key.data);
hw::ledger::check32("get_subaddress", "address.m_spend_public_key.data", address_x.m_spend_public_key.data, address.m_spend_public_key.data);
#endif
return address;
}
crypto::secret_key device_ledger::get_subaddress_secret_key(const crypto::secret_key &sec, const cryptonote::subaddress_index &index) {
AUTO_LOCK_CMD();
crypto::secret_key sub_sec;
#ifdef DEBUG_HWDEVICE
const crypto::secret_key sec_x = hw::ledger::decrypt(sec);
const cryptonote::subaddress_index index_x = index;
crypto::secret_key sub_sec_x;
log_message ("get_subaddress_secret_key: [[IN]] index ", std::to_string(index.major)+"."+std::to_string(index.minor));
log_hexbuffer("get_subaddress_secret_key: [[IN]] sec ", sec_x.data, 32);
sub_sec_x = this->controle_device->get_subaddress_secret_key(sec_x, index_x);
log_hexbuffer("get_subaddress_secret_key: [[OUT]] sub_sec", sub_sec_x.data, 32);
#endif
int offset = set_command_header_noopt(INS_GET_SUBADDRESS_SECRET_KEY);
//sec
this->send_secret((unsigned char*)sec.data, offset);
//index
static_assert(sizeof(cryptonote::subaddress_index) == 8, "cryptonote::subaddress_index shall be 8 bytes length");
memmove(this->buffer_send+offset, &index, sizeof(cryptonote::subaddress_index));
offset +=8 ;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
offset = 0;
this->receive_secret((unsigned char*)sub_sec.data, offset);
#ifdef DEBUG_HWDEVICE
crypto::secret_key sub_sec_clear = hw::ledger::decrypt(sub_sec);
hw::ledger::check32("get_subaddress_secret_key", "sub_sec", sub_sec_x.data, sub_sec_clear.data);
#endif
return sub_sec;
}
/* ======================================================================= */
/* DERIVATION & KEY */
/* ======================================================================= */
bool device_ledger::verify_keys(const crypto::secret_key &secret_key, const crypto::public_key &public_key) {
AUTO_LOCK_CMD();
int offset;
offset = set_command_header_noopt(INS_VERIFY_KEY);
//sec
this->send_secret((unsigned char*)secret_key.data, offset);
//pub
memmove(this->buffer_send+offset, public_key.data, 32);
offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
uint32_t verified =
this->buffer_recv[0] << 24 |
this->buffer_recv[1] << 16 |
this->buffer_recv[2] << 8 |
this->buffer_recv[3] << 0 ;
return verified == 1;
}
bool device_ledger::scalarmultKey(rct::key & aP, const rct::key &P, const rct::key &a) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const rct::key P_x = P;
const rct::key a_x = hw::ledger::decrypt(a);
rct::key aP_x;
log_hexbuffer("scalarmultKey: [[IN]] P ", (char*)P_x.bytes, 32);
log_hexbuffer("scalarmultKey: [[IN]] a ", (char*)a_x.bytes, 32);
this->controle_device->scalarmultKey(aP_x, P_x, a_x);
log_hexbuffer("scalarmultKey: [[OUT]] aP", (char*)aP_x.bytes, 32);
#endif
int offset = set_command_header_noopt(INS_SECRET_SCAL_MUL_KEY);
//pub
memmove(this->buffer_send+offset, P.bytes, 32);
offset += 32;
//sec
this->send_secret(a.bytes, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//pub key
memmove(aP.bytes, &this->buffer_recv[0], 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("scalarmultKey", "mulkey", (char*)aP_x.bytes, (char*)aP.bytes);
#endif
return true;
}
bool device_ledger::scalarmultBase(rct::key &aG, const rct::key &a) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const rct::key a_x = hw::ledger::decrypt(a);
rct::key aG_x;
log_hexbuffer("scalarmultKey: [[IN]] a ", (char*)a_x.bytes, 32);
this->controle_device->scalarmultBase(aG_x, a_x);
log_hexbuffer("scalarmultKey: [[OUT]] aG", (char*)aG_x.bytes, 32);
#endif
int offset = set_command_header_noopt(INS_SECRET_SCAL_MUL_BASE);
//sec
this->send_secret(a.bytes, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//pub key
memmove(aG.bytes, &this->buffer_recv[0], 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("scalarmultBase", "mulkey", (char*)aG_x.bytes, (char*)aG.bytes);
#endif
return true;
}
bool device_ledger::sc_secret_add( crypto::secret_key &r, const crypto::secret_key &a, const crypto::secret_key &b) {
AUTO_LOCK_CMD();
int offset;
#ifdef DEBUG_HWDEVICE
const crypto::secret_key a_x = hw::ledger::decrypt(a);
const crypto::secret_key b_x = hw::ledger::decrypt(b);
crypto::secret_key r_x;
rct::key aG_x;
log_hexbuffer("sc_secret_add: [[IN]] a ", (char*)a_x.data, 32);
log_hexbuffer("sc_secret_add: [[IN]] b ", (char*)b_x.data, 32);
this->controle_device->sc_secret_add(r_x, a_x, b_x);
log_hexbuffer("sc_secret_add: [[OUT]] aG", (char*)r_x.data, 32);
#endif
offset = set_command_header_noopt(INS_SECRET_KEY_ADD);
//sec key
this->send_secret((unsigned char*)a.data, offset);
//sec key
this->send_secret((unsigned char*)b.data, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//sec key
offset = 0;
this->receive_secret((unsigned char*)r.data, offset);
#ifdef DEBUG_HWDEVICE
crypto::secret_key r_clear = hw::ledger::decrypt(r);
hw::ledger::check32("sc_secret_add", "r", r_x.data, r_clear.data);
#endif
return true;
}
crypto::secret_key device_ledger::generate_keys(crypto::public_key &pub, crypto::secret_key &sec, const crypto::secret_key& recovery_key, bool recover) {
AUTO_LOCK_CMD();
int offset;
if (recover) {
throw std::runtime_error("device generate key does not support recover");
}
#ifdef DEBUG_HWDEVICE
crypto::public_key pub_x;
crypto::secret_key sec_x;
crypto::secret_key recovery_key_x;
if (recover) {
recovery_key_x = hw::ledger::decrypt(recovery_key);
log_hexbuffer("generate_keys: [[IN]] pub", (char*)recovery_key_x.data, 32);
}
#endif
send_simple(INS_GENERATE_KEYPAIR);
offset = 0;
//pub key
memmove(pub.data, &this->buffer_recv[0], 32);
offset += 32;
this->receive_secret((unsigned char*)sec.data, offset);
#ifdef DEBUG_HWDEVICE
crypto::secret_key sec_clear = hw::ledger::decrypt(sec);
sec_x = sec_clear;
log_hexbuffer("generate_keys: [[OUT]] pub", (char*)pub.data, 32);
log_hexbuffer("generate_keys: [[OUT]] sec", (char*)sec_clear.data, 32);
crypto::secret_key_to_public_key(sec_x,pub_x);
hw::ledger::check32("generate_keys", "pub", pub_x.data, pub.data);
#endif
return sec;
}
bool device_ledger::generate_key_derivation(const crypto::public_key &pub, const crypto::secret_key &sec, crypto::key_derivation &derivation) {
bool r = false;
#ifdef DEBUG_HWDEVICE
const crypto::public_key pub_x = pub;
const crypto::secret_key sec_x = (sec == rct::rct2sk(rct::I)) ? sec: hw::ledger::decrypt(sec);
crypto::key_derivation derivation_x;
log_hexbuffer("generate_key_derivation: [[IN]] pub ", pub_x.data, 32);
log_hexbuffer("generate_key_derivation: [[IN]] sec ", sec_x.data, 32);
if (!this->controle_device->generate_key_derivation(pub_x, sec_x, derivation_x))
return false;
log_hexbuffer("generate_key_derivation: [[OUT]] derivation", derivation_x.data, 32);
#endif
if ((this->mode == TRANSACTION_PARSE) && has_view_key) {
//A derivation is resquested in PASRE mode and we have the view key,
//so do that wihtout the device and return the derivation unencrypted.
MDEBUG( "generate_key_derivation : PARSE mode with known viewkey");
//Note derivation in PARSE mode can only happen with viewkey, so assert it!
assert(is_fake_view_key(sec));
r = crypto::generate_key_derivation(pub, this->viewkey, derivation);
} else {
AUTO_LOCK_CMD();
int offset = set_command_header_noopt(INS_GEN_KEY_DERIVATION);
//pub
memmove(this->buffer_send+offset, pub.data, 32);
offset += 32;
//sec
this->send_secret((unsigned char*)sec.data, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
offset = 0;
//derivattion data
this->receive_secret((unsigned char*)derivation.data, offset);
r = true;
}
#ifdef DEBUG_HWDEVICE
crypto::key_derivation derivation_clear ;
if ((this->mode == TRANSACTION_PARSE) && has_view_key) {
derivation_clear = derivation;
} else {
derivation_clear = hw::ledger::decrypt(derivation);
}
hw::ledger::check32("generate_key_derivation", "derivation", derivation_x.data, derivation_clear.data);
#endif
return r;
}
bool device_ledger::conceal_derivation(crypto::key_derivation &derivation, const crypto::public_key &tx_pub_key, const std::vector<crypto::public_key> &additional_tx_pub_keys, const crypto::key_derivation &main_derivation, const std::vector<crypto::key_derivation> &additional_derivations) {
const crypto::public_key *pkey=NULL;
if (derivation == main_derivation) {
pkey = &tx_pub_key;
MDEBUG("conceal derivation with main tx pub key");
} else {
for(size_t n=0; n < additional_derivations.size();++n) {
if(derivation == additional_derivations[n]) {
pkey = &additional_tx_pub_keys[n];
MDEBUG("conceal derivation with additional tx pub key");
break;
}
}
}
ASSERT_X(pkey, "Mismatched derivation on scan info");
return this->generate_key_derivation(*pkey, crypto::null_skey, derivation);
}
bool device_ledger::derivation_to_scalar(const crypto::key_derivation &derivation, const size_t output_index, crypto::ec_scalar &res) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const crypto::key_derivation derivation_x = hw::ledger::decrypt(derivation);
const size_t output_index_x = output_index;
crypto::ec_scalar res_x;
log_hexbuffer("derivation_to_scalar: [[IN]] derivation ", derivation_x.data, 32);
log_message ("derivation_to_scalar: [[IN]] output_index ", std::to_string(output_index_x));
this->controle_device->derivation_to_scalar(derivation_x, output_index_x, res_x);
log_hexbuffer("derivation_to_scalar: [[OUT]] res ", res_x.data, 32);
#endif
int offset = set_command_header_noopt(INS_DERIVATION_TO_SCALAR);
//derivation
this->send_secret((unsigned char*)derivation.data, offset);
//index
this->buffer_send[offset+0] = output_index>>24;
this->buffer_send[offset+1] = output_index>>16;
this->buffer_send[offset+2] = output_index>>8;
this->buffer_send[offset+3] = output_index>>0;
offset += 4;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//derivation data
offset = 0;
this->receive_secret((unsigned char*)res.data, offset);
#ifdef DEBUG_HWDEVICE
crypto::ec_scalar res_clear = hw::ledger::decrypt(res);
hw::ledger::check32("derivation_to_scalar", "res", res_x.data, res_clear.data);
#endif
return true;
}
bool device_ledger::derive_secret_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::secret_key &sec, crypto::secret_key &derived_sec) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const crypto::key_derivation derivation_x = hw::ledger::decrypt(derivation);
const std::size_t output_index_x = output_index;
const crypto::secret_key sec_x = hw::ledger::decrypt(sec);
crypto::secret_key derived_sec_x;
log_hexbuffer("derive_secret_key: [[IN]] derivation ", derivation_x.data, 32);
log_message ("derive_secret_key: [[IN]] index ", std::to_string(output_index_x));
log_hexbuffer("derive_secret_key: [[IN]] sec ", sec_x.data, 32);
this->controle_device->derive_secret_key(derivation_x, output_index_x, sec_x, derived_sec_x);
log_hexbuffer("derive_secret_key: [[OUT]] derived_sec", derived_sec_x.data, 32);
#endif
int offset = set_command_header_noopt(INS_DERIVE_SECRET_KEY);
//derivation
this->send_secret((unsigned char*)derivation.data, offset);
//index
this->buffer_send[offset+0] = output_index>>24;
this->buffer_send[offset+1] = output_index>>16;
this->buffer_send[offset+2] = output_index>>8;
this->buffer_send[offset+3] = output_index>>0;
offset += 4;
//sec
this->send_secret((unsigned char*)sec.data, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
offset = 0;
//sec key
this->receive_secret((unsigned char*)derived_sec.data, offset);
#ifdef DEBUG_HWDEVICE
crypto::secret_key derived_sec_clear = hw::ledger::decrypt(derived_sec);
hw::ledger::check32("derive_secret_key", "derived_sec", derived_sec_x.data, derived_sec_clear.data);
#endif
return true;
}
bool device_ledger::derive_public_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::public_key &pub, crypto::public_key &derived_pub){
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const crypto::key_derivation derivation_x = hw::ledger::decrypt(derivation);
const std::size_t output_index_x = output_index;
const crypto::public_key pub_x = pub;
crypto::public_key derived_pub_x;
log_hexbuffer("derive_public_key: [[IN]] derivation ", derivation_x.data, 32);
log_message ("derive_public_key: [[IN]] output_index", std::to_string(output_index_x));
log_hexbuffer("derive_public_key: [[IN]] pub ", pub_x.data, 32);
if (!this->controle_device->derive_public_key(derivation_x, output_index_x, pub_x, derived_pub_x))
return false;
log_hexbuffer("derive_public_key: [[OUT]] derived_pub ", derived_pub_x.data, 32);
#endif
int offset = set_command_header_noopt(INS_DERIVE_PUBLIC_KEY);
//derivation
this->send_secret((unsigned char*)derivation.data, offset);
//index
this->buffer_send[offset+0] = output_index>>24;
this->buffer_send[offset+1] = output_index>>16;
this->buffer_send[offset+2] = output_index>>8;
this->buffer_send[offset+3] = output_index>>0;
offset += 4;
//pub
memmove(this->buffer_send+offset, pub.data, 32);
offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//pub key
memmove(derived_pub.data, &this->buffer_recv[0], 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("derive_public_key", "derived_pub", derived_pub_x.data, derived_pub.data);
#endif
return true;
}
bool device_ledger::secret_key_to_public_key(const crypto::secret_key &sec, crypto::public_key &pub) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const crypto::secret_key sec_x = hw::ledger::decrypt(sec);
crypto::public_key pub_x;
log_hexbuffer("secret_key_to_public_key: [[IN]] sec ", sec_x.data, 32);
bool rc = this->controle_device->secret_key_to_public_key(sec_x, pub_x);
log_hexbuffer("secret_key_to_public_key: [[OUT]] pub", pub_x.data, 32);
if (!rc){
log_message("FAIL secret_key_to_public_key", "secret_key rejected");
}
#endif
int offset = set_command_header_noopt(INS_SECRET_KEY_TO_PUBLIC_KEY);
//sec key
this->send_secret((unsigned char*)sec.data, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//pub key
memmove(pub.data, &this->buffer_recv[0], 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("secret_key_to_public_key", "pub", pub_x.data, pub.data);
#endif
return true;
}
bool device_ledger::generate_key_image(const crypto::public_key &pub, const crypto::secret_key &sec, crypto::key_image &image){
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const crypto::public_key pub_x = pub;
const crypto::secret_key sec_x = hw::ledger::decrypt(sec);
crypto::key_image image_x;
log_hexbuffer("generate_key_image: [[IN]] pub ", pub_x.data, 32);
log_hexbuffer("generate_key_image: [[IN]] sec ", sec_x.data, 32);
this->controle_device->generate_key_image(pub_x, sec_x, image_x);
log_hexbuffer("generate_key_image: [[OUT]] image ", image_x.data, 32);
#endif
int offset = set_command_header_noopt(INS_GEN_KEY_IMAGE);
//pub
memmove(this->buffer_send+offset, pub.data, 32);
offset += 32;
//sec
this->send_secret((unsigned char*)sec.data, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//pub key
memmove(image.data, &this->buffer_recv[0], 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("generate_key_image", "image", image_x.data, image.data);
#endif
return true;
}
bool device_ledger::derive_view_tag(const crypto::key_derivation &derivation, const std::size_t output_index, crypto::view_tag &view_tag){
#ifdef DEBUG_HWDEVICE
crypto::key_derivation derivation_x;
if ((this->mode == TRANSACTION_PARSE) && has_view_key) {
derivation_x = derivation;
} else {
derivation_x = hw::ledger::decrypt(derivation);
}
const std::size_t output_index_x = output_index;
crypto::view_tag view_tag_x;
log_hexbuffer("derive_view_tag: [[IN]] derivation ", derivation_x.data, 32);
log_message ("derive_view_tag: [[IN]] output_index", std::to_string(output_index_x));
this->controle_device->derive_view_tag(derivation_x, output_index_x, view_tag_x);
log_hexbuffer("derive_view_tag: [[OUT]] view_tag ", &view_tag_x.data, 1);
#endif
if ((this->mode == TRANSACTION_PARSE) && has_view_key) {
//If we are in TRANSACTION_PARSE, the given derivation has been retrieved uncrypted (wihtout the help
//of the device), so continue that way.
MDEBUG( "derive_view_tag : PARSE mode with known viewkey");
crypto::derive_view_tag(derivation, output_index, view_tag);
} else {
AUTO_LOCK_CMD();
int offset = set_command_header_noopt(INS_DERIVE_VIEW_TAG);
//derivation
this->send_secret((unsigned char*)derivation.data, offset);
//index
this->buffer_send[offset+0] = output_index>>24;
this->buffer_send[offset+1] = output_index>>16;
this->buffer_send[offset+2] = output_index>>8;
this->buffer_send[offset+3] = output_index>>0;
offset += 4;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//view tag
memmove(&view_tag.data, &this->buffer_recv[0], 1);
}
#ifdef DEBUG_HWDEVICE
hw::ledger::check1("derive_view_tag", "view_tag", &view_tag_x.data, &view_tag.data);
#endif
return true;
}
/* ======================================================================= */
/* TRANSACTION */
/* ======================================================================= */
void device_ledger::generate_tx_proof(const crypto::hash &prefix_hash,
const crypto::public_key &R, const crypto::public_key &A, const boost::optional<crypto::public_key> &B, const crypto::public_key &D, const crypto::secret_key &r,
crypto::signature &sig) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const crypto::hash prefix_hash_x = prefix_hash;
const crypto::public_key R_x = R;
const crypto::public_key A_x = A;
const boost::optional<crypto::public_key> B_x = B;
const crypto::public_key D_x = D;
const crypto::secret_key r_x = hw::ledger::decrypt(r);
crypto::signature sig_x;
log_hexbuffer("generate_tx_proof: [[IN]] prefix_hash ", prefix_hash_x.data, 32);
log_hexbuffer("generate_tx_proof: [[IN]] R ", R_x.data, 32);
log_hexbuffer("generate_tx_proof: [[IN]] A ", A_x.data, 32);
if (B_x) {
log_hexbuffer("generate_tx_proof: [[IN]] B ", (*B_x).data, 32);
}
log_hexbuffer("generate_tx_proof: [[IN]] D ", D_x.data, 32);
log_hexbuffer("generate_tx_proof: [[IN]] r ", r_x.data, 32);
#endif
int offset = set_command_header(INS_GET_TX_PROOF);
//options
this->buffer_send[offset] = B?0x01:0x00;
offset += 1;
//prefix_hash
memmove(&this->buffer_send[offset], prefix_hash.data, 32);
offset += 32;
// R
memmove(&this->buffer_send[offset], R.data, 32);
offset += 32;
// A
memmove(&this->buffer_send[offset], A.data, 32);
offset += 32;
// B
if (B) {
memmove(&this->buffer_send[offset], (*B).data, 32);
} else {
memset(&this->buffer_send[offset], 0, 32);
}
offset += 32;
// D
memmove(&this->buffer_send[offset], D.data, 32);
offset += 32;
// r
this->send_secret((unsigned char*)r.data, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
memmove(sig.c.data, &this->buffer_recv[0], 32);
memmove(sig.r.data, &this->buffer_recv[32], 32);
#ifdef DEBUG_HWDEVICE
log_hexbuffer("GENERATE_TX_PROOF: **c** ", sig.c.data, sizeof( sig.c.data));
log_hexbuffer("GENERATE_TX_PROOF: **r** ", sig.r.data, sizeof( sig.r.data));
this->controle_device->generate_tx_proof(prefix_hash_x, R_x, A_x, B_x, D_x, r_x, sig_x);
MDEBUG("FAIL is normal if random is not fixed in proof");
hw::ledger::check32("generate_tx_proof", "c", sig_x.c.data, sig.c.data);
hw::ledger::check32("generate_tx_proof", "r", sig_x.r.data, sig.r.data);
#endif
}
bool device_ledger::open_tx(crypto::secret_key &tx_key) {
AUTO_LOCK_CMD();
this->lock();
key_map.clear();
hmac_map.clear();
this->tx_in_progress = true;
int offset = set_command_header_noopt(INS_OPEN_TX, 0x01);
//account
this->buffer_send[offset+0] = 0x00;
this->buffer_send[offset+1] = 0x00;
this->buffer_send[offset+2] = 0x00;
this->buffer_send[offset+3] = 0x00;
offset += 4;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//skip R, receive: r, r_hmac, fake_a, a_hmac, fake_b, hmac_b
unsigned char tmp[32];
offset = 32;
this->receive_secret((unsigned char*)tx_key.data, offset);
this->receive_secret(tmp, offset);
this->receive_secret(tmp, offset);
#ifdef DEBUG_HWDEVICE
const crypto::secret_key r_x = hw::ledger::decrypt(tx_key);
log_hexbuffer("open_tx: [[OUT]] R ", (char*)&this->buffer_recv[0], 32);
log_hexbuffer("open_tx: [[OUT]] r ", r_x.data, 32);
#endif
return true;
}
void device_ledger::get_transaction_prefix_hash(const cryptonote::transaction_prefix& tx, crypto::hash& h) {
AUTO_LOCK_CMD();
int pref_length = 0, pref_offset = 0, offset = 0;
#ifdef DEBUG_HWDEVICE
crypto::hash h_x;
this->controle_device->get_transaction_prefix_hash(tx,h_x);
MDEBUG("get_transaction_prefix_hash [[IN]] h_x/1 "<<h_x);
#endif
std::ostringstream s_x;
binary_archive<true> a_x(s_x);
CHECK_AND_ASSERT_THROW_MES(::serialization::serialize(a_x, const_cast<cryptonote::transaction_prefix&>(tx)),
"unable to serialize transaction prefix");
pref_length = s_x.str().size();
//auto pref = std::make_unique<unsigned char[]>(pref_length);
auto uprt_pref = std::unique_ptr<unsigned char[]>{ new unsigned char[pref_length] };
unsigned char* pref = uprt_pref.get();
memmove(pref, s_x.str().data(), pref_length);
offset = set_command_header_noopt(INS_PREFIX_HASH,1);
pref_offset = 0;
unsigned char v;
//version as varint
do {
v = pref[pref_offset];
this->buffer_send[offset] = v;
offset += 1;
pref_offset += 1;
} while (v&0x80);
//locktime as var int
do {
v = pref[pref_offset];
this->buffer_send[offset] = v;
offset += 1;
pref_offset += 1;
} while (v&0x80);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange_wait_on_input();
//hash remains
int cnt = 0;
while (pref_offset < pref_length) {
int len;
cnt++;
offset = set_command_header(INS_PREFIX_HASH,2,cnt);
len = pref_length - pref_offset;
//options
if (len > (BUFFER_SEND_SIZE-offset-3)) {
len = BUFFER_SEND_SIZE-offset-3;
this->buffer_send[offset] = 0x80;
} else {
this->buffer_send[offset] = 0x00;
}
offset += 1;
//send chunk
memmove(&this->buffer_send[offset], pref+pref_offset, len);
offset += len;
pref_offset += len;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
}
memmove(h.data, &this->buffer_recv[0], 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check8("prefix_hash", "h", h_x.data, h.data);
#endif
}
bool device_ledger::encrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const crypto::public_key public_key_x = public_key;
const crypto::secret_key secret_key_x = hw::ledger::decrypt(secret_key);
crypto::hash8 payment_id_x = payment_id;
log_hexbuffer("encrypt_payment_id: [[IN]] payment_id ", payment_id_x.data, 32);
log_hexbuffer("encrypt_payment_id: [[IN]] public_key ", public_key_x.data, 32);
log_hexbuffer("encrypt_payment_id: [[IN]] secret_key ", secret_key_x.data, 32);
this->controle_device->encrypt_payment_id(payment_id_x, public_key_x, secret_key_x);
log_hexbuffer("encrypt_payment_id: [[OUT]] payment_id ", payment_id_x.data, 32);
#endif
int offset = set_command_header_noopt(INS_STEALTH);
//pub
memmove(&this->buffer_send[offset], public_key.data, 32);
offset += 32;
//sec
this->send_secret((unsigned char*)secret_key.data, offset);
//id
memmove(&this->buffer_send[offset], payment_id.data, 8);
offset += 8;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
memmove(payment_id.data, &this->buffer_recv[0], 8);
#ifdef DEBUG_HWDEVICE
hw::ledger::check8("stealth", "payment_id", payment_id_x.data, payment_id.data);
#endif
return true;
}
bool device_ledger::generate_output_ephemeral_keys(const size_t tx_version, const cryptonote::account_keys &sender_account_keys, const crypto::public_key &txkey_pub, const crypto::secret_key &tx_key,
const cryptonote::tx_destination_entry &dst_entr, const boost::optional<cryptonote::account_public_address> &change_addr, const size_t output_index,
const bool &need_additional_txkeys, const std::vector<crypto::secret_key> &additional_tx_keys,
std::vector<crypto::public_key> &additional_tx_public_keys,
std::vector<rct::key> &amount_keys,
crypto::public_key &out_eph_public_key,
bool use_view_tags, crypto::view_tag &view_tag) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const size_t &tx_version_x = tx_version;
const cryptonote::account_keys sender_account_keys_x = hw::ledger::decrypt(sender_account_keys);
memmove((void*)sender_account_keys_x.m_view_secret_key.data, dbg_viewkey.data, 32);
const crypto::public_key txkey_pub_x = txkey_pub;
const crypto::secret_key tx_key_x = hw::ledger::decrypt(tx_key);
const cryptonote::tx_destination_entry dst_entr_x = dst_entr;
const boost::optional<cryptonote::account_public_address> change_addr_x = change_addr;
const size_t output_index_x = output_index;
const bool need_additional_txkeys_x = need_additional_txkeys;
const bool use_view_tags_x = use_view_tags;
std::vector<crypto::secret_key> additional_tx_keys_x;
for (const auto &k: additional_tx_keys) {
additional_tx_keys_x.push_back(hw::ledger::decrypt(k));
}
std::vector<crypto::public_key> additional_tx_public_keys_x;
std::vector<rct::key> amount_keys_x;
crypto::public_key out_eph_public_key_x;
crypto::view_tag view_tag_x;
log_message ("generate_output_ephemeral_keys: [[IN]] tx_version", std::to_string(tx_version_x));
//log_hexbuffer("generate_output_ephemeral_keys: [[IN]] sender_account_keys.view", sender_account_keys.m_sview_secret_key.data, 32);
//log_hexbuffer("generate_output_ephemeral_keys: [[IN]] sender_account_keys.spend", sender_account_keys.m_spend_secret_key.data, 32);
log_hexbuffer("generate_output_ephemeral_keys: [[IN]] txkey_pub", txkey_pub_x.data, 32);
log_hexbuffer("generate_output_ephemeral_keys: [[IN]] tx_key", tx_key_x.data, 32);
log_hexbuffer("generate_output_ephemeral_keys: [[IN]] dst_entr.view", dst_entr_x.addr.m_view_public_key.data, 32);
log_hexbuffer("generate_output_ephemeral_keys: [[IN]] dst_entr.spend", dst_entr_x.addr.m_spend_public_key.data, 32);
if (change_addr) {
log_hexbuffer("generate_output_ephemeral_keys: [[IN]] change_addr.view", (*change_addr_x).m_view_public_key.data, 32);
log_hexbuffer("generate_output_ephemeral_keys: [[IN]] change_addr.spend", (*change_addr_x).m_spend_public_key.data, 32);
}
log_message ("generate_output_ephemeral_keys: [[IN]] output_index", std::to_string(output_index_x));
log_message ("generate_output_ephemeral_keys: [[IN]] need_additional_txkeys", std::to_string(need_additional_txkeys_x));
if(need_additional_txkeys_x) {
log_hexbuffer("generate_output_ephemeral_keys: [[IN]] additional_tx_keys[oi]", additional_tx_keys_x[output_index].data, 32);
}
log_message ("generate_output_ephemeral_keys: [[IN]] use_view_tags", std::to_string(use_view_tags_x));
this->controle_device->generate_output_ephemeral_keys(tx_version_x, sender_account_keys_x, txkey_pub_x, tx_key_x, dst_entr_x, change_addr_x, output_index_x, need_additional_txkeys_x, additional_tx_keys_x,
additional_tx_public_keys_x, amount_keys_x, out_eph_public_key_x, use_view_tags_x, view_tag_x);
if(need_additional_txkeys_x) {
log_hexbuffer("additional_tx_public_keys_x: [[OUT]] additional_tx_public_keys_x", additional_tx_public_keys_x.back().data, 32);
}
if(use_view_tags_x) {
log_hexbuffer("generate_output_ephemeral_keys: [[OUT]] view_tag", &view_tag_x.data, 1);
}
log_hexbuffer("generate_output_ephemeral_keys: [[OUT]] amount_keys ", (char*)amount_keys_x.back().bytes, 32);
log_hexbuffer("generate_output_ephemeral_keys: [[OUT]] out_eph_public_key ", out_eph_public_key_x.data, 32);
#endif
ASSERT_X(tx_version > 1, "TX version not supported"<<tx_version);
// make additional tx pubkey if necessary
cryptonote::keypair additional_txkey;
if (need_additional_txkeys) {
additional_txkey.sec = additional_tx_keys[output_index];
}
int offset = set_command_header_noopt(INS_GEN_TXOUT_KEYS);
//tx_version
this->buffer_send[offset+0] = tx_version>>24;
this->buffer_send[offset+1] = tx_version>>16;
this->buffer_send[offset+2] = tx_version>>8;
this->buffer_send[offset+3] = tx_version>>0;
offset += 4;
//tx_key
this->send_secret((unsigned char*)tx_key.data, offset);
//txkey_pub
memmove(&this->buffer_send[offset], txkey_pub.data, 32);
offset += 32;
//Aout
memmove(&this->buffer_send[offset], dst_entr.addr.m_view_public_key.data, 32);
offset += 32;
//Bout
memmove(&this->buffer_send[offset], dst_entr.addr.m_spend_public_key.data, 32);
offset += 32;
//output index
this->buffer_send[offset+0] = output_index>>24;
this->buffer_send[offset+1] = output_index>>16;
this->buffer_send[offset+2] = output_index>>8;
this->buffer_send[offset+3] = output_index>>0;
offset += 4;
//is_change,
bool is_change = (change_addr && dst_entr.addr == *change_addr);
this->buffer_send[offset] = is_change;
offset++;
//is_subaddress
this->buffer_send[offset] = dst_entr.is_subaddress;
offset++;
//need_additional_key
this->buffer_send[offset] = need_additional_txkeys;
offset++;
//additional_tx_key
if (need_additional_txkeys) {
this->send_secret((unsigned char*)additional_txkey.sec.data, offset);
} else {
memset(&this->buffer_send[offset], 0, 32);
offset += 32;
}
//use_view_tags
this->buffer_send[offset] = use_view_tags;
offset++;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
offset = 0;
unsigned int recv_len = this->length_recv;
//if (tx_version > 1)
{
ASSERT_X(recv_len>=32, "Not enough data from device");
crypto::secret_key scalar1;
this->receive_secret((unsigned char*)scalar1.data, offset);
amount_keys.push_back(rct::sk2rct(scalar1));
recv_len -= 32;
}
ASSERT_X(recv_len>=32, "Not enough data from device");
memmove(out_eph_public_key.data, &this->buffer_recv[offset], 32);
recv_len -= 32;
offset += 32;
if (need_additional_txkeys)
{
ASSERT_X(recv_len>=32, "Not enough data from device");
memmove(additional_txkey.pub.data, &this->buffer_recv[offset], 32);
additional_tx_public_keys.push_back(additional_txkey.pub);
offset += 32;
recv_len -= 32;
}
if (use_view_tags)
{
ASSERT_X(recv_len>=1, "Not enough data from device");
memmove(&view_tag.data, &this->buffer_recv[offset], 1);
offset++;
recv_len -= 1;
}
// add ABPkeys
this->add_output_key_mapping(dst_entr.addr.m_view_public_key, dst_entr.addr.m_spend_public_key, dst_entr.is_subaddress, is_change,
need_additional_txkeys, output_index,
amount_keys.back(), out_eph_public_key);
#ifdef DEBUG_HWDEVICE
log_hexbuffer("generate_output_ephemeral_keys: clear amount_key", (const char*)hw::ledger::decrypt(amount_keys.back()).bytes, 32);
hw::ledger::check32("generate_output_ephemeral_keys", "amount_key", (const char*)amount_keys_x.back().bytes, (const char*)hw::ledger::decrypt(amount_keys.back()).bytes);
if (need_additional_txkeys) {
hw::ledger::check32("generate_output_ephemeral_keys", "additional_tx_key", additional_tx_public_keys_x.back().data, additional_tx_public_keys.back().data);
}
hw::ledger::check32("generate_output_ephemeral_keys", "out_eph_public_key", out_eph_public_key_x.data, out_eph_public_key.data);
if (use_view_tags) {
hw::ledger::check1("generate_output_ephemeral_keys", "view_tag", &view_tag_x.data, &view_tag.data);
}
#endif
return true;
}
bool device_ledger::add_output_key_mapping(const crypto::public_key &Aout, const crypto::public_key &Bout, const bool is_subaddress, const bool is_change,
const bool need_additional, const size_t real_output_index,
const rct::key &amount_key, const crypto::public_key &out_eph_public_key) {
key_map.add(ABPkeys(rct::pk2rct(Aout),rct::pk2rct(Bout), is_subaddress, is_change, need_additional, real_output_index, rct::pk2rct(out_eph_public_key), amount_key));
return true;
}
rct::key device_ledger::genCommitmentMask(const rct::key &AKout) {
#ifdef DEBUG_HWDEVICE
const rct::key AKout_x = hw::ledger::decrypt(AKout);
rct::key mask_x;
mask_x = this->controle_device->genCommitmentMask(AKout_x);
#endif
rct::key mask;
int offset = set_command_header_noopt(INS_GEN_COMMITMENT_MASK);
// AKout
this->send_secret(AKout.bytes, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
memmove(mask.bytes, &this->buffer_recv[0], 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("genCommitmentMask", "mask", (const char*)mask_x.bytes, (const char*)mask.bytes);
#endif
return mask;
}
bool device_ledger::ecdhEncode(rct::ecdhTuple & unmasked, const rct::key & AKout, bool short_amount) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const rct::key AKout_x = hw::ledger::decrypt(AKout);
rct::ecdhTuple unmasked_x = unmasked;
this->controle_device->ecdhEncode(unmasked_x, AKout_x, short_amount);
#endif
int offset = set_command_header(INS_BLIND);
//options
this->buffer_send[offset] = short_amount?0x02:0x00;
offset += 1;
// AKout
this->send_secret(AKout.bytes, offset);
//mask k
memmove(this->buffer_send+offset, unmasked.mask.bytes, 32);
offset += 32;
//value v
memmove(this->buffer_send+offset, unmasked.amount.bytes, 32);
offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
memmove(unmasked.amount.bytes, &this->buffer_recv[0], 32);
memmove(unmasked.mask.bytes, &this->buffer_recv[32], 32);
#ifdef DEBUG_HWDEVICE
MDEBUG("ecdhEncode: Akout: "<<AKout_x);
hw::ledger::check32("ecdhEncode", "amount", (char*)unmasked_x.amount.bytes, (char*)unmasked.amount.bytes);
hw::ledger::check32("ecdhEncode", "mask", (char*)unmasked_x.mask.bytes, (char*)unmasked.mask.bytes);
log_hexbuffer("Blind AKV input", (char*)&this->buffer_recv[64], 3*32);
#endif
return true;
}
bool device_ledger::ecdhDecode(rct::ecdhTuple & masked, const rct::key & AKout, bool short_amount) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const rct::key AKout_x = hw::ledger::decrypt(AKout);
rct::ecdhTuple masked_x = masked;
this->controle_device->ecdhDecode(masked_x, AKout_x, short_amount);
#endif
int offset = set_command_header(INS_UNBLIND);
//options
this->buffer_send[offset] = short_amount?0x02:0x00;
offset += 1;
// AKout
this->send_secret(AKout.bytes, offset);
//mask k
memmove(this->buffer_send+offset, masked.mask.bytes, 32);
offset += 32;
//value v
memmove(this->buffer_send+offset, masked.amount.bytes, 32);
offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
memmove(masked.amount.bytes, &this->buffer_recv[0], 32);
memmove(masked.mask.bytes, &this->buffer_recv[32], 32);
#ifdef DEBUG_HWDEVICE
MDEBUG("ecdhEncode: Akout: "<<AKout_x);
hw::ledger::check32("ecdhDecode", "amount", (char*)masked_x.amount.bytes, (char*)masked.amount.bytes);
hw::ledger::check32("ecdhDecode", "mask", (char*)masked_x.mask.bytes,(char*) masked.mask.bytes);
#endif
return true;
}
bool device_ledger::mlsag_prehash(const std::string &blob, size_t inputs_size, size_t outputs_size,
const rct::keyV &hashes, const rct::ctkeyV &outPk,
rct::key &prehash) {
AUTO_LOCK_CMD();
unsigned int data_offset, C_offset, kv_offset, i;
const char *data;
#ifdef DEBUG_HWDEVICE
const std::string blob_x = blob;
size_t inputs_size_x = inputs_size;
size_t outputs_size_x = outputs_size;
const rct::keyV hashes_x = hashes;
const rct::ctkeyV outPk_x = outPk;
rct::key prehash_x;
this->controle_device->mlsag_prehash(blob_x, inputs_size_x, outputs_size_x, hashes_x, outPk_x, prehash_x);
if (inputs_size) {
log_message("mlsag_prehash", (std::string("inputs_size not null: ") + std::to_string(inputs_size)).c_str());
}
this->key_map.log();
#endif
data = blob.data();
// ====== u8 type, varint txnfee ======
int offset = set_command_header(INS_VALIDATE, 0x01, 0x01);
//options
this->buffer_send[offset] = (inputs_size == 0)?0x00:0x80;
offset += 1;
//type
uint8_t type = data[0];
this->buffer_send[offset] = data[0];
offset += 1;
//txnfee
data_offset = 1;
while (data[data_offset]&0x80) {
this->buffer_send[offset] = data[data_offset];
offset += 1;
data_offset += 1;
}
this->buffer_send[offset] = data[data_offset];
offset += 1;
data_offset += 1;
this->buffer_send[4] = offset-5;
this->length_send = offset;
// check fee user input
CHECK_AND_ASSERT_THROW_MES(this->exchange_wait_on_input() == 0, "Fee denied on device.");
//pseudoOuts
if (type == rct::RCTTypeSimple) {
for ( i = 0; i < inputs_size; i++) {
offset = set_command_header(INS_VALIDATE, 0x01, i+2);
//options
this->buffer_send[offset] = (i==inputs_size-1)? 0x00:0x80;
offset += 1;
//pseudoOut
memmove(this->buffer_send+offset, data+data_offset,32);
offset += 32;
data_offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
}
}
// ====== Aout, Bout, AKout, C, v, k ======
kv_offset = data_offset;
if (type==rct::RCTTypeBulletproof2 || type==rct::RCTTypeCLSAG || type==rct::RCTTypeBulletproofPlus) {
C_offset = kv_offset+ (8)*outputs_size;
} else {
C_offset = kv_offset+ (32+32)*outputs_size;
}
for ( i = 0; i < outputs_size; i++) {
ABPkeys outKeys;
bool found;
found = this->key_map.find(outPk[i].dest, outKeys);
if (!found) {
log_hexbuffer("Pout not found", (char*)outPk[i].dest.bytes, 32);
CHECK_AND_ASSERT_THROW_MES(found, "Pout not found");
}
offset = set_command_header(INS_VALIDATE, 0x02, i+1);
//options
this->buffer_send[offset] = (i==outputs_size-1)? 0x00:0x80 ;
this->buffer_send[offset] |= (type==rct::RCTTypeBulletproof2 || type==rct::RCTTypeCLSAG || type==rct::RCTTypeBulletproofPlus)?0x02:0x00;
offset += 1;
//is_subaddress
this->buffer_send[offset] = outKeys.is_subaddress;
offset++;
//is_change_address
this->buffer_send[offset] = outKeys.is_change_address;
offset++;
//Aout
memmove(this->buffer_send+offset, outKeys.Aout.bytes, 32);
offset+=32;
//Bout
memmove(this->buffer_send+offset, outKeys.Bout.bytes, 32);
offset+=32;
//AKout
this->send_secret(outKeys.AKout.bytes, offset);
//C
memmove(this->buffer_send+offset, data+C_offset,32);
offset += 32;
C_offset += 32;
if (type==rct::RCTTypeBulletproof2 || type==rct::RCTTypeCLSAG || type==rct::RCTTypeBulletproofPlus) {
//k
memset(this->buffer_send+offset, 0, 32);
offset += 32;
//v
memset(this->buffer_send+offset, 0, 32);
memmove(this->buffer_send+offset, data+kv_offset,8);
offset += 32;
kv_offset += 8;
} else {
//k
memmove(this->buffer_send+offset, data+kv_offset,32);
offset += 32;
kv_offset += 32;
//v
memmove(this->buffer_send+offset, data+kv_offset,32);
offset += 32;
kv_offset += 32;
}
this->buffer_send[4] = offset-5;
this->length_send = offset;
// check transaction user input
CHECK_AND_ASSERT_THROW_MES(this->exchange_wait_on_input() == 0, "Transaction denied on device.");
#ifdef DEBUG_HWDEVICE
log_hexbuffer("Prehash AKV input", (char*)&this->buffer_recv[64], 3*32);
#endif
}
// ====== C[], message, proof======
C_offset = kv_offset;
for (i = 0; i < outputs_size; i++) {
offset = set_command_header(INS_VALIDATE, 0x03, i+1);
//options
this->buffer_send[offset] = 0x80 ;
offset += 1;
//C
memmove(this->buffer_send+offset, data+C_offset,32);
offset += 32;
C_offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
}
offset = set_command_header_noopt(INS_VALIDATE, 0x03, i+1);
//message
memmove(this->buffer_send+offset, hashes[0].bytes,32);
offset += 32;
//proof
memmove(this->buffer_send+offset, hashes[2].bytes,32);
offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
memmove(prehash.bytes, this->buffer_recv, 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("mlsag_prehash", "prehash", (char*)prehash_x.bytes, (char*)prehash.bytes);
#endif
return true;
}
bool device_ledger::mlsag_prepare(const rct::key &H, const rct::key &xx,
rct::key &a, rct::key &aG, rct::key &aHP, rct::key &II) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const rct::key H_x = H;
const rct::key xx_x = hw::ledger::decrypt(xx);
rct::key a_x;
rct::key aG_x;
rct::key aHP_x;
rct::key II_x;
#endif
int offset = set_command_header_noopt(INS_MLSAG, 0x01);
//value H
memmove(this->buffer_send+offset, H.bytes, 32);
offset += 32;
//mask xin
this->send_secret(xx.bytes, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
offset = 0;
this->receive_secret(a.bytes, offset);
memmove(aG.bytes, &this->buffer_recv[offset], 32);
offset +=32;
memmove(aHP.bytes, &this->buffer_recv[offset], 32);
offset +=32;
memmove(II.bytes, &this->buffer_recv[offset], 32);
#ifdef DEBUG_HWDEVICE
a_x = hw::ledger::decrypt(a);
rct::scalarmultBase(aG_x, a_x);
rct::scalarmultKey(aHP_x, H_x, a_x);
rct::scalarmultKey(II_x, H_x, xx_x);
hw::ledger::check32("mlsag_prepare", "AG", (char*)aG_x.bytes, (char*)aG.bytes);
hw::ledger::check32("mlsag_prepare", "aHP", (char*)aHP_x.bytes, (char*)aHP.bytes);
hw::ledger::check32("mlsag_prepare", "II", (char*)II_x.bytes, (char*)II.bytes);
#endif
return true;
}
bool device_ledger::mlsag_prepare(rct::key &a, rct::key &aG) {
AUTO_LOCK_CMD();
int offset;
#ifdef DEBUG_HWDEVICE
rct::key a_x;
rct::key aG_x;
#endif
send_simple(INS_MLSAG, 0x01);
offset = 0;
this->receive_secret(a.bytes, offset);
memmove(aG.bytes, &this->buffer_recv[offset], 32);
#ifdef DEBUG_HWDEVICE
a_x = hw::ledger::decrypt(a);
rct::scalarmultBase(aG_x, a_x);
hw::ledger::check32("mlsag_prepare", "AG", (char*)aG_x.bytes, (char*)aG.bytes);
#endif
return true;
}
bool device_ledger::mlsag_hash(const rct::keyV &long_message, rct::key &c) {
AUTO_LOCK_CMD();
size_t cnt;
#ifdef DEBUG_HWDEVICE
const rct::keyV long_message_x = long_message;
rct::key c_x;
this->controle_device->mlsag_hash(long_message_x, c_x);
#endif
cnt = long_message.size();
for (size_t i = 0; i<cnt; i++) {
int offset = set_command_header(INS_MLSAG, 0x02, i+1);
//options
this->buffer_send[offset] =
(i==(cnt-1))?0x00:0x80; //last
offset += 1;
//msg part
memmove(this->buffer_send+offset, long_message[i].bytes, 32);
offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
}
memmove(c.bytes, &this->buffer_recv[0], 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("mlsag_hash", "c", (char*)c_x.bytes, (char*)c.bytes);
#endif
return true;
}
bool device_ledger::mlsag_sign(const rct::key &c, const rct::keyV &xx, const rct::keyV &alpha, const size_t rows, const size_t dsRows, rct::keyV &ss) {
AUTO_LOCK_CMD();
CHECK_AND_ASSERT_THROW_MES(dsRows<=rows, "dsRows greater than rows");
CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "xx size does not match rows");
CHECK_AND_ASSERT_THROW_MES(alpha.size() == rows, "alpha size does not match rows");
CHECK_AND_ASSERT_THROW_MES(ss.size() == rows, "ss size does not match rows");
#ifdef DEBUG_HWDEVICE
const rct::key c_x = c;
const rct::keyV xx_x = hw::ledger::decrypt(xx);
const rct::keyV alpha_x = hw::ledger::decrypt(alpha);
const int rows_x = rows;
const int dsRows_x = dsRows;
rct::keyV ss_x(ss.size());
this->controle_device->mlsag_sign(c_x, xx_x, alpha_x, rows_x, dsRows_x, ss_x);
#endif
for (size_t j = 0; j < dsRows; j++) {
int offset = set_command_header(INS_MLSAG, 0x03, j+1);
//options
this->buffer_send[offset] = 0x00;
if (j==(dsRows-1)) {
this->buffer_send[offset] |= 0x80; //last
}
offset += 1;
//xx
this->send_secret(xx[j].bytes, offset);
//alpa
this->send_secret(alpha[j].bytes, offset);
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
//ss
memmove(ss[j].bytes, &this->buffer_recv[0], 32);
}
for (size_t j = dsRows; j < rows; j++) {
sc_mulsub(ss[j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes);
}
#ifdef DEBUG_HWDEVICE
for (size_t j = 0; j < rows; j++) {
hw::ledger::check32("mlsag_sign", "ss["+std::to_string(j)+"]", (char*)ss_x[j].bytes, (char*)ss[j].bytes);
}
#endif
return true;
}
bool device_ledger::clsag_prepare(const rct::key &p, const rct::key &z, rct::key &I, rct::key &D, const rct::key &H, rct::key &a, rct::key &aG, rct::key &aH) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const rct::key p_x = hw::ledger::decrypt(p);
const rct::key z_x = z;
rct::key I_x;
rct::key D_x;
const rct::key H_x = H;
rct::key a_x;
rct::key aG_x;
rct::key aH_x;
this->controle_device->clsag_prepare(p_x, z_x, I_x, D_x, H_x, a_x, aG_x, aH_x);
#endif
/*
rct::skpkGen(a,aG); // aG = a*G
rct::scalarmultKey(aH,H,a); // aH = a*H
rct::scalarmultKey(I,H,p); // I = p*H
rct::scalarmultKey(D,H,z); // D = z*H
*/
int offset = set_command_header_noopt(INS_CLSAG, 0x01);
//p
this->send_secret(p.bytes, offset);
//z
memmove(this->buffer_send+offset, z.bytes, 32);
offset += 32;
//H
memmove(this->buffer_send+offset, H.bytes, 32);
offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
offset = 0;
//a
this->receive_secret(a.bytes, offset);
//aG
memmove(aG.bytes, this->buffer_recv+offset, 32);
offset +=32;
//aH
memmove(aH.bytes, this->buffer_recv+offset, 32);
offset +=32;
//I = pH
memmove(I.bytes, this->buffer_recv+offset, 32);
offset +=32;
//D = zH
memmove(D.bytes, this->buffer_recv+offset, 32);
offset +=32;
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("clsag_prepare", "I", (char*)I_x.bytes, (char*)I.bytes);
hw::ledger::check32("clsag_prepare", "D", (char*)D_x.bytes, (char*)D.bytes);
hw::ledger::check32("clsag_prepare", "a", (char*)a_x.bytes, (char*)a.bytes);
hw::ledger::check32("clsag_prepare", "aG", (char*)aG_x.bytes, (char*)aG.bytes);
hw::ledger::check32("clsag_prepare", "aH", (char*)aH_x.bytes, (char*)aH.bytes);
#endif
return true;
}
bool device_ledger::clsag_hash(const rct::keyV &data, rct::key &hash) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const rct::keyV data_x = data;
rct::key hash_x;
this->controle_device->mlsag_hash(data_x, hash_x);
#endif
size_t cnt;
int offset;
cnt = data.size();
for (size_t i = 0; i<cnt; i++) {
offset = set_command_header(INS_CLSAG, 0x02, i+1);
//options
this->buffer_send[offset] = (i==(cnt-1))?0x00:0x80; //last
offset += 1;
//msg part
memmove(this->buffer_send+offset, data[i].bytes, 32);
offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
}
//c/hash
memmove(hash.bytes, &this->buffer_recv[0], 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("mlsag_hash", "hash", (char*)hash_x.bytes, (char*)hash.bytes);
#endif
return true;
}
bool device_ledger::clsag_sign(const rct::key &c, const rct::key &a, const rct::key &p, const rct::key &z, const rct::key &mu_P, const rct::key &mu_C, rct::key &s) {
AUTO_LOCK_CMD();
#ifdef DEBUG_HWDEVICE
const rct::key c_x = c;
const rct::key a_x = hw::ledger::decrypt(a);
const rct::key p_x = hw::ledger::decrypt(p);
const rct::key z_x = z;
const rct::key mu_P_x = mu_P;
const rct::key mu_C_x = mu_C;
rct::key s_x;
this->controle_device->clsag_sign(c_x, a_x, p_x, z_x, mu_P_x, mu_C_x, s_x);
#endif
/*
rct::key s0_p_mu_P;
sc_mul(s0_p_mu_P.bytes,mu_P.bytes,p.bytes);
rct::key s0_add_z_mu_C;
sc_muladd(s0_add_z_mu_C.bytes,mu_C.bytes,z.bytes,s0_p_mu_P.bytes);
sc_mulsub(s.bytes,c.bytes,s0_add_z_mu_C.bytes,a.bytes);
*/
int offset = set_command_header_noopt(INS_CLSAG, 0x03);
//c
//discard, unse internal one
//a
this->send_secret(a.bytes, offset);
//p
this->send_secret(p.bytes, offset);
//z
memmove(this->buffer_send+offset, z.bytes, 32);
offset += 32;
//mu_P
memmove(this->buffer_send+offset, mu_P.bytes, 32);
offset += 32;
//mu_C
memmove(this->buffer_send+offset, mu_C.bytes, 32);
offset += 32;
this->buffer_send[4] = offset-5;
this->length_send = offset;
this->exchange();
offset = 0;
//s
memmove(s.bytes, this->buffer_recv+offset, 32);
#ifdef DEBUG_HWDEVICE
hw::ledger::check32("clsag_sign", "s", (char*)s_x.bytes, (char*)s.bytes);
#endif
return true;
}
bool device_ledger::close_tx() {
AUTO_LOCK_CMD();
send_simple(INS_CLOSE_TX);
key_map.clear();
hmac_map.clear();
this->tx_in_progress = false;
this->unlock();
return true;
}
/* ---------------------------------------------------------- */
static device_ledger *legder_device = NULL;
void register_all(std::map<std::string, std::unique_ptr<device>> ®istry) {
if (!legder_device) {
legder_device = new device_ledger();
legder_device->set_name("Ledger");
}
registry.insert(std::make_pair("Ledger", std::unique_ptr<device>(legder_device)));
}
#else //WITH_DEVICE_LEDGER
void register_all(std::map<std::string, std::unique_ptr<device>> ®istry) {
}
#endif //WITH_DEVICE_LEDGER
}
}