// Copyright (c) 2014-2016, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include "include_base_utils.h"
using namespace epee;
#include "cryptonote_format_utils.h"
#include <boost/foreach.hpp>
#include "cryptonote_config.h"
#include "miner.h"
#include "crypto/crypto.h"
#include "crypto/hash.h"
#define ENCRYPTED_PAYMENT_ID_TAIL 0x8d
static const uint64_t valid_decomposed_outputs[] = {
(uint64_t)1, (uint64_t)2, (uint64_t)3, (uint64_t)4, (uint64_t)5, (uint64_t)6, (uint64_t)7, (uint64_t)8, (uint64_t)9, // 1 piconero
(uint64_t)10, (uint64_t)20, (uint64_t)30, (uint64_t)40, (uint64_t)50, (uint64_t)60, (uint64_t)70, (uint64_t)80, (uint64_t)90,
(uint64_t)100, (uint64_t)200, (uint64_t)300, (uint64_t)400, (uint64_t)500, (uint64_t)600, (uint64_t)700, (uint64_t)800, (uint64_t)900,
(uint64_t)1000, (uint64_t)2000, (uint64_t)3000, (uint64_t)4000, (uint64_t)5000, (uint64_t)6000, (uint64_t)7000, (uint64_t)8000, (uint64_t)9000,
(uint64_t)10000, (uint64_t)20000, (uint64_t)30000, (uint64_t)40000, (uint64_t)50000, (uint64_t)60000, (uint64_t)70000, (uint64_t)80000, (uint64_t)90000,
(uint64_t)100000, (uint64_t)200000, (uint64_t)300000, (uint64_t)400000, (uint64_t)500000, (uint64_t)600000, (uint64_t)700000, (uint64_t)800000, (uint64_t)900000,
(uint64_t)1000000, (uint64_t)2000000, (uint64_t)3000000, (uint64_t)4000000, (uint64_t)5000000, (uint64_t)6000000, (uint64_t)7000000, (uint64_t)8000000, (uint64_t)9000000, // 1 micronero
(uint64_t)10000000, (uint64_t)20000000, (uint64_t)30000000, (uint64_t)40000000, (uint64_t)50000000, (uint64_t)60000000, (uint64_t)70000000, (uint64_t)80000000, (uint64_t)90000000,
(uint64_t)100000000, (uint64_t)200000000, (uint64_t)300000000, (uint64_t)400000000, (uint64_t)500000000, (uint64_t)600000000, (uint64_t)700000000, (uint64_t)800000000, (uint64_t)900000000,
(uint64_t)1000000000, (uint64_t)2000000000, (uint64_t)3000000000, (uint64_t)4000000000, (uint64_t)5000000000, (uint64_t)6000000000, (uint64_t)7000000000, (uint64_t)8000000000, (uint64_t)9000000000,
(uint64_t)10000000000, (uint64_t)20000000000, (uint64_t)30000000000, (uint64_t)40000000000, (uint64_t)50000000000, (uint64_t)60000000000, (uint64_t)70000000000, (uint64_t)80000000000, (uint64_t)90000000000,
(uint64_t)100000000000, (uint64_t)200000000000, (uint64_t)300000000000, (uint64_t)400000000000, (uint64_t)500000000000, (uint64_t)600000000000, (uint64_t)700000000000, (uint64_t)800000000000, (uint64_t)900000000000,
(uint64_t)1000000000000, (uint64_t)2000000000000, (uint64_t)3000000000000, (uint64_t)4000000000000, (uint64_t)5000000000000, (uint64_t)6000000000000, (uint64_t)7000000000000, (uint64_t)8000000000000, (uint64_t)9000000000000, // 1 monero
(uint64_t)10000000000000, (uint64_t)20000000000000, (uint64_t)30000000000000, (uint64_t)40000000000000, (uint64_t)50000000000000, (uint64_t)60000000000000, (uint64_t)70000000000000, (uint64_t)80000000000000, (uint64_t)90000000000000,
(uint64_t)100000000000000, (uint64_t)200000000000000, (uint64_t)300000000000000, (uint64_t)400000000000000, (uint64_t)500000000000000, (uint64_t)600000000000000, (uint64_t)700000000000000, (uint64_t)800000000000000, (uint64_t)900000000000000,
(uint64_t)1000000000000000, (uint64_t)2000000000000000, (uint64_t)3000000000000000, (uint64_t)4000000000000000, (uint64_t)5000000000000000, (uint64_t)6000000000000000, (uint64_t)7000000000000000, (uint64_t)8000000000000000, (uint64_t)9000000000000000,
(uint64_t)10000000000000000, (uint64_t)20000000000000000, (uint64_t)30000000000000000, (uint64_t)40000000000000000, (uint64_t)50000000000000000, (uint64_t)60000000000000000, (uint64_t)70000000000000000, (uint64_t)80000000000000000, (uint64_t)90000000000000000,
(uint64_t)100000000000000000, (uint64_t)200000000000000000, (uint64_t)300000000000000000, (uint64_t)400000000000000000, (uint64_t)500000000000000000, (uint64_t)600000000000000000, (uint64_t)700000000000000000, (uint64_t)800000000000000000, (uint64_t)900000000000000000,
(uint64_t)1000000000000000000, (uint64_t)2000000000000000000, (uint64_t)3000000000000000000, (uint64_t)4000000000000000000, (uint64_t)5000000000000000000, (uint64_t)6000000000000000000, (uint64_t)7000000000000000000, (uint64_t)8000000000000000000, (uint64_t)9000000000000000000, // 1 meganero
(uint64_t)10000000000000000000ull
};
namespace cryptonote
{
//---------------------------------------------------------------
void get_transaction_prefix_hash(const transaction_prefix& tx, crypto::hash& h)
{
std::ostringstream s;
binary_archive<true> a(s);
::serialization::serialize(a, const_cast<transaction_prefix&>(tx));
crypto::cn_fast_hash(s.str().data(), s.str().size(), h);
}
//---------------------------------------------------------------
crypto::hash get_transaction_prefix_hash(const transaction_prefix& tx)
{
crypto::hash h = null_hash;
get_transaction_prefix_hash(tx, h);
return h;
}
//---------------------------------------------------------------
bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx)
{
std::stringstream ss;
ss << tx_blob;
binary_archive<false> ba(ss);
bool r = ::serialization::serialize(ba, tx);
CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob");
return true;
}
//---------------------------------------------------------------
bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx, crypto::hash& tx_hash, crypto::hash& tx_prefix_hash)
{
std::stringstream ss;
ss << tx_blob;
binary_archive<false> ba(ss);
bool r = ::serialization::serialize(ba, tx);
CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob");
//TODO: validate tx
crypto::cn_fast_hash(tx_blob.data(), tx_blob.size(), tx_hash);
get_transaction_prefix_hash(tx, tx_prefix_hash);
return true;
}
//---------------------------------------------------------------
bool construct_miner_tx(size_t height, size_t median_size, uint64_t already_generated_coins, size_t current_block_size, uint64_t fee, const account_public_address &miner_address, transaction& tx, const blobdata& extra_nonce, size_t max_outs, uint8_t hard_fork_version) {
tx.vin.clear();
tx.vout.clear();
tx.extra.clear();
keypair txkey = keypair::generate();
add_tx_pub_key_to_extra(tx, txkey.pub);
if(!extra_nonce.empty())
if(!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce))
return false;
txin_gen in;
in.height = height;
uint64_t block_reward;
if(!get_block_reward(median_size, current_block_size, already_generated_coins, block_reward, hard_fork_version))
{
LOG_PRINT_L0("Block is too big");
return false;
}
// from hard fork 2, we cut out the low significant digits. This makes the tx smaller, and
// keeps the paid amount almost the same. The unpaid remainder gets pushed back to the
// emission schedule
if (hard_fork_version >= 2)
{
block_reward = block_reward - block_reward % ::config::BASE_REWARD_CLAMP_THRESHOLD;
}
#if defined(DEBUG_CREATE_BLOCK_TEMPLATE)
LOG_PRINT_L1("Creating block template: reward " << block_reward <<
", fee " << fee)
#endif
block_reward += fee;
std::vector<uint64_t> out_amounts;
decompose_amount_into_digits(block_reward, hard_fork_version >= 2 ? 0 : ::config::DEFAULT_DUST_THRESHOLD,
[&out_amounts](uint64_t a_chunk) { out_amounts.push_back(a_chunk); },
[&out_amounts](uint64_t a_dust) { out_amounts.push_back(a_dust); });
CHECK_AND_ASSERT_MES(1 <= max_outs, false, "max_out must be non-zero");
while (max_outs < out_amounts.size())
{
out_amounts[out_amounts.size() - 2] += out_amounts.back();
out_amounts.resize(out_amounts.size() - 1);
}
uint64_t summary_amounts = 0;
for (size_t no = 0; no < out_amounts.size(); no++)
{
crypto::key_derivation derivation = AUTO_VAL_INIT(derivation);;
crypto::public_key out_eph_public_key = AUTO_VAL_INIT(out_eph_public_key);
bool r = crypto::generate_key_derivation(miner_address.m_view_public_key, txkey.sec, derivation);
CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to generate_key_derivation(" << miner_address.m_view_public_key << ", " << txkey.sec << ")");
r = crypto::derive_public_key(derivation, no, miner_address.m_spend_public_key, out_eph_public_key);
CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to derive_public_key(" << derivation << ", " << no << ", "<< miner_address.m_spend_public_key << ")");
txout_to_key tk;
tk.key = out_eph_public_key;
tx_out out;
summary_amounts += out.amount = out_amounts[no];
out.target = tk;
tx.vout.push_back(out);
}
CHECK_AND_ASSERT_MES(summary_amounts == block_reward, false, "Failed to construct miner tx, summary_amounts = " << summary_amounts << " not equal block_reward = " << block_reward);
tx.version = CURRENT_TRANSACTION_VERSION;
//lock
tx.unlock_time = height + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW;
tx.vin.push_back(in);
//LOG_PRINT("MINER_TX generated ok, block_reward=" << print_money(block_reward) << "(" << print_money(block_reward - fee) << "+" << print_money(fee)
// << "), current_block_size=" << current_block_size << ", already_generated_coins=" << already_generated_coins << ", tx_id=" << get_transaction_hash(tx), LOG_LEVEL_2);
return true;
}
//---------------------------------------------------------------
bool generate_key_image_helper(const account_keys& ack, const crypto::public_key& tx_public_key, size_t real_output_index, keypair& in_ephemeral, crypto::key_image& ki)
{
crypto::key_derivation recv_derivation = AUTO_VAL_INIT(recv_derivation);
bool r = crypto::generate_key_derivation(tx_public_key, ack.m_view_secret_key, recv_derivation);
CHECK_AND_ASSERT_MES(r, false, "key image helper: failed to generate_key_derivation(" << tx_public_key << ", " << ack.m_view_secret_key << ")");
r = crypto::derive_public_key(recv_derivation, real_output_index, ack.m_account_address.m_spend_public_key, in_ephemeral.pub);
CHECK_AND_ASSERT_MES(r, false, "key image helper: failed to derive_public_key(" << recv_derivation << ", " << real_output_index << ", " << ack.m_account_address.m_spend_public_key << ")");
crypto::derive_secret_key(recv_derivation, real_output_index, ack.m_spend_secret_key, in_ephemeral.sec);
crypto::generate_key_image(in_ephemeral.pub, in_ephemeral.sec, ki);
return true;
}
//---------------------------------------------------------------
uint64_t power_integral(uint64_t a, uint64_t b)
{
if(b == 0)
return 1;
uint64_t total = a;
for(uint64_t i = 1; i != b; i++)
total *= a;
return total;
}
//---------------------------------------------------------------
bool parse_amount(uint64_t& amount, const std::string& str_amount_)
{
std::string str_amount = str_amount_;
boost::algorithm::trim(str_amount);
size_t point_index = str_amount.find_first_of('.');
size_t fraction_size;
if (std::string::npos != point_index)
{
fraction_size = str_amount.size() - point_index - 1;
while (CRYPTONOTE_DISPLAY_DECIMAL_POINT < fraction_size && '0' == str_amount.back())
{
str_amount.erase(str_amount.size() - 1, 1);
--fraction_size;
}
if (CRYPTONOTE_DISPLAY_DECIMAL_POINT < fraction_size)
return false;
str_amount.erase(point_index, 1);
}
else
{
fraction_size = 0;
}
if (str_amount.empty())
return false;
if (fraction_size < CRYPTONOTE_DISPLAY_DECIMAL_POINT)
{
str_amount.append(CRYPTONOTE_DISPLAY_DECIMAL_POINT - fraction_size, '0');
}
return string_tools::get_xtype_from_string(amount, str_amount);
}
//---------------------------------------------------------------
bool get_tx_fee(const transaction& tx, uint64_t & fee)
{
uint64_t amount_in = 0;
uint64_t amount_out = 0;
BOOST_FOREACH(auto& in, tx.vin)
{
CHECK_AND_ASSERT_MES(in.type() == typeid(txin_to_key), 0, "unexpected type id in transaction");
amount_in += boost::get<txin_to_key>(in).amount;
}
BOOST_FOREACH(auto& o, tx.vout)
amount_out += o.amount;
CHECK_AND_ASSERT_MES(amount_in >= amount_out, false, "transaction spend (" <<amount_in << ") more than it has (" << amount_out << ")");
fee = amount_in - amount_out;
return true;
}
//---------------------------------------------------------------
uint64_t get_tx_fee(const transaction& tx)
{
uint64_t r = 0;
if(!get_tx_fee(tx, r))
return 0;
return r;
}
//---------------------------------------------------------------
bool parse_tx_extra(const std::vector<uint8_t>& tx_extra, std::vector<tx_extra_field>& tx_extra_fields)
{
tx_extra_fields.clear();
if(tx_extra.empty())
return true;
std::string extra_str(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size());
std::istringstream iss(extra_str);
binary_archive<false> ar(iss);
bool eof = false;
while (!eof)
{
tx_extra_field field;
bool r = ::do_serialize(ar, field);
CHECK_AND_NO_ASSERT_MES(r, false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size())));
tx_extra_fields.push_back(field);
std::ios_base::iostate state = iss.rdstate();
eof = (EOF == iss.peek());
iss.clear(state);
}
CHECK_AND_NO_ASSERT_MES(::serialization::check_stream_state(ar), false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size())));
return true;
}
//---------------------------------------------------------------
crypto::public_key get_tx_pub_key_from_extra(const std::vector<uint8_t>& tx_extra)
{
std::vector<tx_extra_field> tx_extra_fields;
parse_tx_extra(tx_extra, tx_extra_fields);
tx_extra_pub_key pub_key_field;
if(!find_tx_extra_field_by_type(tx_extra_fields, pub_key_field))
return null_pkey;
return pub_key_field.pub_key;
}
//---------------------------------------------------------------
crypto::public_key get_tx_pub_key_from_extra(const transaction& tx)
{
return get_tx_pub_key_from_extra(tx.extra);
}
//---------------------------------------------------------------
bool add_tx_pub_key_to_extra(transaction& tx, const crypto::public_key& tx_pub_key)
{
tx.extra.resize(tx.extra.size() + 1 + sizeof(crypto::public_key));
tx.extra[tx.extra.size() - 1 - sizeof(crypto::public_key)] = TX_EXTRA_TAG_PUBKEY;
*reinterpret_cast<crypto::public_key*>(&tx.extra[tx.extra.size() - sizeof(crypto::public_key)]) = tx_pub_key;
return true;
}
//---------------------------------------------------------------
bool add_extra_nonce_to_tx_extra(std::vector<uint8_t>& tx_extra, const blobdata& extra_nonce)
{
CHECK_AND_ASSERT_MES(extra_nonce.size() <= TX_EXTRA_NONCE_MAX_COUNT, false, "extra nonce could be 255 bytes max");
size_t start_pos = tx_extra.size();
tx_extra.resize(tx_extra.size() + 2 + extra_nonce.size());
//write tag
tx_extra[start_pos] = TX_EXTRA_NONCE;
//write len
++start_pos;
tx_extra[start_pos] = static_cast<uint8_t>(extra_nonce.size());
//write data
++start_pos;
memcpy(&tx_extra[start_pos], extra_nonce.data(), extra_nonce.size());
return true;
}
//---------------------------------------------------------------
bool remove_extra_nonce_tx_extra(std::vector<uint8_t>& tx_extra)
{
std::string extra_str(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size());
std::istringstream iss(extra_str);
binary_archive<false> ar(iss);
std::ostringstream oss;
binary_archive<true> newar(oss);
bool eof = false;
while (!eof)
{
tx_extra_field field;
bool r = ::do_serialize(ar, field);
CHECK_AND_NO_ASSERT_MES(r, false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size())));
if (field.type() != typeid(tx_extra_nonce))
::do_serialize(newar, field);
std::ios_base::iostate state = iss.rdstate();
eof = (EOF == iss.peek());
iss.clear(state);
}
CHECK_AND_NO_ASSERT_MES(::serialization::check_stream_state(ar), false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast<const char*>(tx_extra.data()), tx_extra.size())));
tx_extra.clear();
std::string s = oss.str();
tx_extra.reserve(s.size());
std::copy(s.begin(), s.end(), std::back_inserter(tx_extra));
return true;
}
//---------------------------------------------------------------
void set_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash& payment_id)
{
extra_nonce.clear();
extra_nonce.push_back(TX_EXTRA_NONCE_PAYMENT_ID);
const uint8_t* payment_id_ptr = reinterpret_cast<const uint8_t*>(&payment_id);
std::copy(payment_id_ptr, payment_id_ptr + sizeof(payment_id), std::back_inserter(extra_nonce));
}
//---------------------------------------------------------------
void set_encrypted_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash8& payment_id)
{
extra_nonce.clear();
extra_nonce.push_back(TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID);
const uint8_t* payment_id_ptr = reinterpret_cast<const uint8_t*>(&payment_id);
std::copy(payment_id_ptr, payment_id_ptr + sizeof(payment_id), std::back_inserter(extra_nonce));
}
//---------------------------------------------------------------
bool get_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash& payment_id)
{
if(sizeof(crypto::hash) + 1 != extra_nonce.size())
return false;
if(TX_EXTRA_NONCE_PAYMENT_ID != extra_nonce[0])
return false;
payment_id = *reinterpret_cast<const crypto::hash*>(extra_nonce.data() + 1);
return true;
}
//---------------------------------------------------------------
bool get_encrypted_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash8& payment_id)
{
if(sizeof(crypto::hash8) + 1 != extra_nonce.size())
return false;
if (TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID != extra_nonce[0])
return false;
payment_id = *reinterpret_cast<const crypto::hash8*>(extra_nonce.data() + 1);
return true;
}
//---------------------------------------------------------------
crypto::public_key get_destination_view_key_pub(const std::vector<tx_destination_entry> &destinations, const account_keys &sender_keys)
{
if (destinations.empty())
return null_pkey;
for (size_t n = 1; n < destinations.size(); ++n)
{
if (!memcmp(&destinations[n].addr, &sender_keys.m_account_address, sizeof(destinations[0].addr)))
continue;
if (memcmp(&destinations[n].addr, &destinations[0].addr, sizeof(destinations[0].addr)))
return null_pkey;
}
return destinations[0].addr.m_view_public_key;
}
//---------------------------------------------------------------
bool encrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key)
{
crypto::key_derivation derivation;
crypto::hash hash;
char data[33]; /* A hash, and an extra byte */
if (!generate_key_derivation(public_key, secret_key, derivation))
return false;
memcpy(data, &derivation, 32);
data[32] = ENCRYPTED_PAYMENT_ID_TAIL;
cn_fast_hash(data, 33, hash);
for (size_t b = 0; b < 8; ++b)
payment_id.data[b] ^= hash.data[b];
return true;
}
bool decrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key)
{
// Encryption and decryption are the same operation (xor with a key)
return encrypt_payment_id(payment_id, public_key, secret_key);
}
//---------------------------------------------------------------
bool construct_tx_and_get_tx_key(const account_keys& sender_account_keys, const std::vector<tx_source_entry>& sources, const std::vector<tx_destination_entry>& destinations, std::vector<uint8_t> extra, transaction& tx, uint64_t unlock_time, crypto::secret_key &tx_key)
{
tx.vin.clear();
tx.vout.clear();
tx.signatures.clear();
tx.version = CURRENT_TRANSACTION_VERSION;
tx.unlock_time = unlock_time;
tx.extra = extra;
keypair txkey = keypair::generate();
add_tx_pub_key_to_extra(tx, txkey.pub);
tx_key = txkey.sec;
// if we have a stealth payment id, find it and encrypt it with the tx key now
std::vector<tx_extra_field> tx_extra_fields;
if (parse_tx_extra(tx.extra, tx_extra_fields))
{
tx_extra_nonce extra_nonce;
if (find_tx_extra_field_by_type(tx_extra_fields, extra_nonce))
{
crypto::hash8 payment_id = null_hash8;
if (get_encrypted_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id))
{
LOG_PRINT_L2("Encrypting payment id " << payment_id);
crypto::public_key view_key_pub = get_destination_view_key_pub(destinations, sender_account_keys);
if (view_key_pub == null_pkey)
{
LOG_ERROR("Destinations have to have exactly one output to support encrypted payment ids");
return false;
}
if (!encrypt_payment_id(payment_id, view_key_pub, txkey.sec))
{
LOG_ERROR("Failed to encrypt payment id");
return false;
}
std::string extra_nonce;
set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce, payment_id);
remove_extra_nonce_tx_extra(tx.extra);
if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce))
{
LOG_ERROR("Failed to add encrypted payment id to tx extra");
return false;
}
LOG_PRINT_L1("Encrypted payment ID: " << payment_id);
}
}
}
else
{
LOG_ERROR("Failed to parse tx extra");
return false;
}
struct input_generation_context_data
{
keypair in_ephemeral;
};
std::vector<input_generation_context_data> in_contexts;
uint64_t summary_inputs_money = 0;
//fill inputs
BOOST_FOREACH(const tx_source_entry& src_entr, sources)
{
if(src_entr.real_output >= src_entr.outputs.size())
{
LOG_ERROR("real_output index (" << src_entr.real_output << ")bigger than output_keys.size()=" << src_entr.outputs.size());
return false;
}
summary_inputs_money += src_entr.amount;
//key_derivation recv_derivation;
in_contexts.push_back(input_generation_context_data());
keypair& in_ephemeral = in_contexts.back().in_ephemeral;
crypto::key_image img;
if(!generate_key_image_helper(sender_account_keys, src_entr.real_out_tx_key, src_entr.real_output_in_tx_index, in_ephemeral, img))
return false;
//check that derivated key is equal with real output key
if( !(in_ephemeral.pub == src_entr.outputs[src_entr.real_output].second) )
{
LOG_ERROR("derived public key missmatch with output public key! "<< ENDL << "derived_key:"
<< string_tools::pod_to_hex(in_ephemeral.pub) << ENDL << "real output_public_key:"
<< string_tools::pod_to_hex(src_entr.outputs[src_entr.real_output].second) );
return false;
}
//put key image into tx input
txin_to_key input_to_key;
input_to_key.amount = src_entr.amount;
input_to_key.k_image = img;
//fill outputs array and use relative offsets
BOOST_FOREACH(const tx_source_entry::output_entry& out_entry, src_entr.outputs)
input_to_key.key_offsets.push_back(out_entry.first);
input_to_key.key_offsets = absolute_output_offsets_to_relative(input_to_key.key_offsets);
tx.vin.push_back(input_to_key);
}
// "Shuffle" outs
std::vector<tx_destination_entry> shuffled_dsts(destinations);
std::sort(shuffled_dsts.begin(), shuffled_dsts.end(), [](const tx_destination_entry& de1, const tx_destination_entry& de2) { return de1.amount < de2.amount; } );
uint64_t summary_outs_money = 0;
//fill outputs
size_t output_index = 0;
BOOST_FOREACH(const tx_destination_entry& dst_entr, shuffled_dsts)
{
CHECK_AND_ASSERT_MES(dst_entr.amount > 0, false, "Destination with wrong amount: " << dst_entr.amount);
crypto::key_derivation derivation;
crypto::public_key out_eph_public_key;
bool r = crypto::generate_key_derivation(dst_entr.addr.m_view_public_key, txkey.sec, derivation);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.m_view_public_key << ", " << txkey.sec << ")");
r = crypto::derive_public_key(derivation, output_index, dst_entr.addr.m_spend_public_key, out_eph_public_key);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", "<< dst_entr.addr.m_spend_public_key << ")");
tx_out out;
out.amount = dst_entr.amount;
txout_to_key tk;
tk.key = out_eph_public_key;
out.target = tk;
tx.vout.push_back(out);
output_index++;
summary_outs_money += dst_entr.amount;
}
//check money
if(summary_outs_money > summary_inputs_money )
{
LOG_ERROR("Transaction inputs money ("<< summary_inputs_money << ") less than outputs money (" << summary_outs_money << ")");
return false;
}
//generate ring signatures
crypto::hash tx_prefix_hash;
get_transaction_prefix_hash(tx, tx_prefix_hash);
std::stringstream ss_ring_s;
size_t i = 0;
BOOST_FOREACH(const tx_source_entry& src_entr, sources)
{
ss_ring_s << "pub_keys:" << ENDL;
std::vector<const crypto::public_key*> keys_ptrs;
BOOST_FOREACH(const tx_source_entry::output_entry& o, src_entr.outputs)
{
keys_ptrs.push_back(&o.second);
ss_ring_s << o.second << ENDL;
}
tx.signatures.push_back(std::vector<crypto::signature>());
std::vector<crypto::signature>& sigs = tx.signatures.back();
sigs.resize(src_entr.outputs.size());
crypto::generate_ring_signature(tx_prefix_hash, boost::get<txin_to_key>(tx.vin[i]).k_image, keys_ptrs, in_contexts[i].in_ephemeral.sec, src_entr.real_output, sigs.data());
ss_ring_s << "signatures:" << ENDL;
std::for_each(sigs.begin(), sigs.end(), [&](const crypto::signature& s){ss_ring_s << s << ENDL;});
ss_ring_s << "prefix_hash:" << tx_prefix_hash << ENDL << "in_ephemeral_key: " << in_contexts[i].in_ephemeral.sec << ENDL << "real_output: " << src_entr.real_output;
i++;
}
LOG_PRINT2("construct_tx.log", "transaction_created: " << get_transaction_hash(tx) << ENDL << obj_to_json_str(tx) << ENDL << ss_ring_s.str() , LOG_LEVEL_3);
return true;
}
//---------------------------------------------------------------
bool construct_tx(const account_keys& sender_account_keys, const std::vector<tx_source_entry>& sources, const std::vector<tx_destination_entry>& destinations, std::vector<uint8_t> extra, transaction& tx, uint64_t unlock_time)
{
crypto::secret_key tx_key;
return construct_tx_and_get_tx_key(sender_account_keys, sources, destinations, extra, tx, unlock_time, tx_key);
}
//---------------------------------------------------------------
bool get_inputs_money_amount(const transaction& tx, uint64_t& money)
{
money = 0;
BOOST_FOREACH(const auto& in, tx.vin)
{
CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, false);
money += tokey_in.amount;
}
return true;
}
//---------------------------------------------------------------
uint64_t get_block_height(const block& b)
{
CHECK_AND_ASSERT_MES(b.miner_tx.vin.size() == 1, 0, "wrong miner tx in block: " << get_block_hash(b) << ", b.miner_tx.vin.size() != 1");
CHECKED_GET_SPECIFIC_VARIANT(b.miner_tx.vin[0], const txin_gen, coinbase_in, 0);
return coinbase_in.height;
}
//---------------------------------------------------------------
bool check_inputs_types_supported(const transaction& tx)
{
BOOST_FOREACH(const auto& in, tx.vin)
{
CHECK_AND_ASSERT_MES(in.type() == typeid(txin_to_key), false, "wrong variant type: "
<< in.type().name() << ", expected " << typeid(txin_to_key).name()
<< ", in transaction id=" << get_transaction_hash(tx));
}
return true;
}
//-----------------------------------------------------------------------------------------------
bool check_outs_valid(const transaction& tx)
{
BOOST_FOREACH(const tx_out& out, tx.vout)
{
CHECK_AND_ASSERT_MES(out.target.type() == typeid(txout_to_key), false, "wrong variant type: "
<< out.target.type().name() << ", expected " << typeid(txout_to_key).name()
<< ", in transaction id=" << get_transaction_hash(tx));
CHECK_AND_NO_ASSERT_MES(0 < out.amount, false, "zero amount ouput in transaction id=" << get_transaction_hash(tx));
if(!check_key(boost::get<txout_to_key>(out.target).key))
return false;
}
return true;
}
//-----------------------------------------------------------------------------------------------
bool check_money_overflow(const transaction& tx)
{
return check_inputs_overflow(tx) && check_outs_overflow(tx);
}
//---------------------------------------------------------------
bool check_inputs_overflow(const transaction& tx)
{
uint64_t money = 0;
BOOST_FOREACH(const auto& in, tx.vin)
{
CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, false);
if(money > tokey_in.amount + money)
return false;
money += tokey_in.amount;
}
return true;
}
//---------------------------------------------------------------
bool check_outs_overflow(const transaction& tx)
{
uint64_t money = 0;
BOOST_FOREACH(const auto& o, tx.vout)
{
if(money > o.amount + money)
return false;
money += o.amount;
}
return true;
}
//---------------------------------------------------------------
uint64_t get_outs_money_amount(const transaction& tx)
{
uint64_t outputs_amount = 0;
BOOST_FOREACH(const auto& o, tx.vout)
outputs_amount += o.amount;
return outputs_amount;
}
//---------------------------------------------------------------
std::string short_hash_str(const crypto::hash& h)
{
std::string res = string_tools::pod_to_hex(h);
CHECK_AND_ASSERT_MES(res.size() == 64, res, "wrong hash256 with string_tools::pod_to_hex conversion");
auto erased_pos = res.erase(8, 48);
res.insert(8, "....");
return res;
}
//---------------------------------------------------------------
bool is_out_to_acc(const account_keys& acc, const txout_to_key& out_key, const crypto::public_key& tx_pub_key, size_t output_index)
{
crypto::key_derivation derivation;
generate_key_derivation(tx_pub_key, acc.m_view_secret_key, derivation);
crypto::public_key pk;
derive_public_key(derivation, output_index, acc.m_account_address.m_spend_public_key, pk);
return pk == out_key.key;
}
//---------------------------------------------------------------
bool lookup_acc_outs(const account_keys& acc, const transaction& tx, std::vector<size_t>& outs, uint64_t& money_transfered)
{
crypto::public_key tx_pub_key = get_tx_pub_key_from_extra(tx);
if(null_pkey == tx_pub_key)
return false;
return lookup_acc_outs(acc, tx, tx_pub_key, outs, money_transfered);
}
//---------------------------------------------------------------
bool lookup_acc_outs(const account_keys& acc, const transaction& tx, const crypto::public_key& tx_pub_key, std::vector<size_t>& outs, uint64_t& money_transfered)
{
money_transfered = 0;
size_t i = 0;
BOOST_FOREACH(const tx_out& o, tx.vout)
{
CHECK_AND_ASSERT_MES(o.target.type() == typeid(txout_to_key), false, "wrong type id in transaction out" );
if(is_out_to_acc(acc, boost::get<txout_to_key>(o.target), tx_pub_key, i))
{
outs.push_back(i);
money_transfered += o.amount;
}
i++;
}
return true;
}
//---------------------------------------------------------------
void get_blob_hash(const blobdata& blob, crypto::hash& res)
{
cn_fast_hash(blob.data(), blob.size(), res);
}
//---------------------------------------------------------------
std::string print_money(uint64_t amount)
{
std::string s = std::to_string(amount);
if(s.size() < CRYPTONOTE_DISPLAY_DECIMAL_POINT+1)
{
s.insert(0, CRYPTONOTE_DISPLAY_DECIMAL_POINT+1 - s.size(), '0');
}
s.insert(s.size() - CRYPTONOTE_DISPLAY_DECIMAL_POINT, ".");
return s;
}
//---------------------------------------------------------------
crypto::hash get_blob_hash(const blobdata& blob)
{
crypto::hash h = null_hash;
get_blob_hash(blob, h);
return h;
}
//---------------------------------------------------------------
crypto::hash get_transaction_hash(const transaction& t)
{
crypto::hash h = null_hash;
size_t blob_size = 0;
get_object_hash(t, h, blob_size);
return h;
}
//---------------------------------------------------------------
bool get_transaction_hash(const transaction& t, crypto::hash& res)
{
size_t blob_size = 0;
return get_object_hash(t, res, blob_size);
}
//---------------------------------------------------------------
bool get_transaction_hash(const transaction& t, crypto::hash& res, size_t& blob_size)
{
return get_object_hash(t, res, blob_size);
}
//---------------------------------------------------------------
blobdata get_block_hashing_blob(const block& b)
{
blobdata blob = t_serializable_object_to_blob(static_cast<block_header>(b));
crypto::hash tree_root_hash = get_tx_tree_hash(b);
blob.append(reinterpret_cast<const char*>(&tree_root_hash), sizeof(tree_root_hash));
blob.append(tools::get_varint_data(b.tx_hashes.size()+1));
return blob;
}
//---------------------------------------------------------------
bool get_block_hash(const block& b, crypto::hash& res)
{
// EXCEPTION FOR BLOCK 202612
const std::string correct_blob_hash_202612 = "3a8a2b3a29b50fc86ff73dd087ea43c6f0d6b8f936c849194d5c84c737903966";
const std::string existing_block_id_202612 = "bbd604d2ba11ba27935e006ed39c9bfdd99b76bf4a50654bc1e1e61217962698";
crypto::hash block_blob_hash = get_blob_hash(block_to_blob(b));
if (string_tools::pod_to_hex(block_blob_hash) == correct_blob_hash_202612)
{
string_tools::hex_to_pod(existing_block_id_202612, res);
return true;
}
bool hash_result = get_object_hash(get_block_hashing_blob(b), res);
if (hash_result)
{
// make sure that we aren't looking at a block with the 202612 block id but not the correct blobdata
if (string_tools::pod_to_hex(res) == existing_block_id_202612)
{
LOG_ERROR("Block with block id for 202612 but incorrect block blob hash found!");
res = null_hash;
return false;
}
}
return hash_result;
}
//---------------------------------------------------------------
crypto::hash get_block_hash(const block& b)
{
crypto::hash p = null_hash;
get_block_hash(b, p);
return p;
}
//---------------------------------------------------------------
bool generate_genesis_block(
block& bl
, std::string const & genesis_tx
, uint32_t nonce
)
{
//genesis block
bl = boost::value_initialized<block>();
account_public_address ac = boost::value_initialized<account_public_address>();
std::vector<size_t> sz;
construct_miner_tx(0, 0, 0, 0, 0, ac, bl.miner_tx); // zero fee in genesis
blobdata txb = tx_to_blob(bl.miner_tx);
std::string hex_tx_represent = string_tools::buff_to_hex_nodelimer(txb);
std::string genesis_coinbase_tx_hex = config::GENESIS_TX;
blobdata tx_bl;
string_tools::parse_hexstr_to_binbuff(genesis_coinbase_tx_hex, tx_bl);
bool r = parse_and_validate_tx_from_blob(tx_bl, bl.miner_tx);
CHECK_AND_ASSERT_MES(r, false, "failed to parse coinbase tx from hard coded blob");
bl.major_version = CURRENT_BLOCK_MAJOR_VERSION;
bl.minor_version = CURRENT_BLOCK_MINOR_VERSION;
bl.timestamp = 0;
bl.nonce = nonce;
miner::find_nonce_for_given_block(bl, 1, 0);
return true;
}
//---------------------------------------------------------------
bool get_block_longhash(const block& b, crypto::hash& res, uint64_t height)
{
// block 202612 bug workaround
const std::string longhash_202612 = "84f64766475d51837ac9efbef1926486e58563c95a19fef4aec3254f03000000";
if (height == 202612)
{
string_tools::hex_to_pod(longhash_202612, res);
return true;
}
block b_local = b; //workaround to avoid const errors with do_serialize
blobdata bd = get_block_hashing_blob(b);
crypto::cn_slow_hash(bd.data(), bd.size(), res);
return true;
}
//---------------------------------------------------------------
std::vector<uint64_t> relative_output_offsets_to_absolute(const std::vector<uint64_t>& off)
{
std::vector<uint64_t> res = off;
for(size_t i = 1; i < res.size(); i++)
res[i] += res[i-1];
return res;
}
//---------------------------------------------------------------
std::vector<uint64_t> absolute_output_offsets_to_relative(const std::vector<uint64_t>& off)
{
std::vector<uint64_t> res = off;
if(!off.size())
return res;
std::sort(res.begin(), res.end());//just to be sure, actually it is already should be sorted
for(size_t i = res.size()-1; i != 0; i--)
res[i] -= res[i-1];
return res;
}
//---------------------------------------------------------------
crypto::hash get_block_longhash(const block& b, uint64_t height)
{
crypto::hash p = null_hash;
get_block_longhash(b, p, height);
return p;
}
//---------------------------------------------------------------
bool parse_and_validate_block_from_blob(const blobdata& b_blob, block& b)
{
std::stringstream ss;
ss << b_blob;
binary_archive<false> ba(ss);
bool r = ::serialization::serialize(ba, b);
CHECK_AND_ASSERT_MES(r, false, "Failed to parse block from blob");
return true;
}
//---------------------------------------------------------------
blobdata block_to_blob(const block& b)
{
return t_serializable_object_to_blob(b);
}
//---------------------------------------------------------------
bool block_to_blob(const block& b, blobdata& b_blob)
{
return t_serializable_object_to_blob(b, b_blob);
}
//---------------------------------------------------------------
blobdata tx_to_blob(const transaction& tx)
{
return t_serializable_object_to_blob(tx);
}
//---------------------------------------------------------------
bool tx_to_blob(const transaction& tx, blobdata& b_blob)
{
return t_serializable_object_to_blob(tx, b_blob);
}
//---------------------------------------------------------------
void get_tx_tree_hash(const std::vector<crypto::hash>& tx_hashes, crypto::hash& h)
{
tree_hash(tx_hashes.data(), tx_hashes.size(), h);
}
//---------------------------------------------------------------
crypto::hash get_tx_tree_hash(const std::vector<crypto::hash>& tx_hashes)
{
crypto::hash h = null_hash;
get_tx_tree_hash(tx_hashes, h);
return h;
}
//---------------------------------------------------------------
crypto::hash get_tx_tree_hash(const block& b)
{
std::vector<crypto::hash> txs_ids;
crypto::hash h = null_hash;
size_t bl_sz = 0;
get_transaction_hash(b.miner_tx, h, bl_sz);
txs_ids.push_back(h);
BOOST_FOREACH(auto& th, b.tx_hashes)
txs_ids.push_back(th);
return get_tx_tree_hash(txs_ids);
}
//---------------------------------------------------------------
bool is_valid_decomposed_amount(uint64_t amount)
{
const uint64_t *begin = valid_decomposed_outputs;
const uint64_t *end = valid_decomposed_outputs + sizeof(valid_decomposed_outputs) / sizeof(valid_decomposed_outputs[0]);
return std::binary_search(begin, end, amount);
}
//---------------------------------------------------------------
}