aboutsummaryrefslogtreecommitdiff
path: root/src/liblzma/rangecoder/range_encoder.h
blob: d794eabbccea21beb04a64cc515b936430dd782d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
///////////////////////////////////////////////////////////////////////////////
//
/// \file       range_encoder.h
/// \brief      Range Encoder
///
//  Authors:    Igor Pavlov
//              Lasse Collin
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#ifndef LZMA_RANGE_ENCODER_H
#define LZMA_RANGE_ENCODER_H

#include "range_common.h"
#include "price.h"


/// Maximum number of symbols that can be put pending into lzma_range_encoder
/// structure between calls to lzma_rc_encode(). For LZMA, 48+5 is enough
/// (match with big distance and length followed by range encoder flush).
#define RC_SYMBOLS_MAX 53


typedef struct {
	uint64_t low;
	uint64_t cache_size;
	uint32_t range;
	uint8_t cache;

	/// Number of bytes written out by rc_encode() -> rc_shift_low()
	uint64_t out_total;

	/// Number of symbols in the tables
	size_t count;

	/// rc_encode()'s position in the tables
	size_t pos;

	/// Symbols to encode
	enum {
		RC_BIT_0,
		RC_BIT_1,
		RC_DIRECT_0,
		RC_DIRECT_1,
		RC_FLUSH,
	} symbols[RC_SYMBOLS_MAX];

	/// Probabilities associated with RC_BIT_0 or RC_BIT_1
	probability *probs[RC_SYMBOLS_MAX];

} lzma_range_encoder;


static inline void
rc_reset(lzma_range_encoder *rc)
{
	rc->low = 0;
	rc->cache_size = 1;
	rc->range = UINT32_MAX;
	rc->cache = 0;
	rc->out_total = 0;
	rc->count = 0;
	rc->pos = 0;
}


static inline void
rc_forget(lzma_range_encoder *rc)
{
	// This must not be called when rc_encode() is partially done.
	assert(rc->pos == 0);
	rc->count = 0;
}


static inline void
rc_bit(lzma_range_encoder *rc, probability *prob, uint32_t bit)
{
	rc->symbols[rc->count] = bit;
	rc->probs[rc->count] = prob;
	++rc->count;
}


static inline void
rc_bittree(lzma_range_encoder *rc, probability *probs,
		uint32_t bit_count, uint32_t symbol)
{
	uint32_t model_index = 1;

	do {
		const uint32_t bit = (symbol >> --bit_count) & 1;
		rc_bit(rc, &probs[model_index], bit);
		model_index = (model_index << 1) + bit;
	} while (bit_count != 0);
}


static inline void
rc_bittree_reverse(lzma_range_encoder *rc, probability *probs,
		uint32_t bit_count, uint32_t symbol)
{
	uint32_t model_index = 1;

	do {
		const uint32_t bit = symbol & 1;
		symbol >>= 1;
		rc_bit(rc, &probs[model_index], bit);
		model_index = (model_index << 1) + bit;
	} while (--bit_count != 0);
}


static inline void
rc_direct(lzma_range_encoder *rc,
		uint32_t value, uint32_t bit_count)
{
	do {
		rc->symbols[rc->count++]
				= RC_DIRECT_0 + ((value >> --bit_count) & 1);
	} while (bit_count != 0);
}


static inline void
rc_flush(lzma_range_encoder *rc)
{
	for (size_t i = 0; i < 5; ++i)
		rc->symbols[rc->count++] = RC_FLUSH;
}


static inline bool
rc_shift_low(lzma_range_encoder *rc,
		uint8_t *out, size_t *out_pos, size_t out_size)
{
	if ((uint32_t)(rc->low) < (uint32_t)(0xFF000000)
			|| (uint32_t)(rc->low >> 32) != 0) {
		do {
			if (*out_pos == out_size)
				return true;

			out[*out_pos] = rc->cache + (uint8_t)(rc->low >> 32);
			++*out_pos;
			++rc->out_total;
			rc->cache = 0xFF;

		} while (--rc->cache_size != 0);

		rc->cache = (rc->low >> 24) & 0xFF;
	}

	++rc->cache_size;
	rc->low = (rc->low & 0x00FFFFFF) << RC_SHIFT_BITS;

	return false;
}


// NOTE: The last two arguments are uint64_t instead of size_t because in
// the dummy version these refer to the size of the whole range-encoded
// output stream, not just to the currently available output buffer space.
static inline bool
rc_shift_low_dummy(uint64_t *low, uint64_t *cache_size, uint8_t *cache,
		uint64_t *out_pos, uint64_t out_size)
{
	if ((uint32_t)(*low) < (uint32_t)(0xFF000000)
			|| (uint32_t)(*low >> 32) != 0) {
		do {
			if (*out_pos == out_size)
				return true;

			++*out_pos;
			*cache = 0xFF;

		} while (--*cache_size != 0);

		*cache = (*low >> 24) & 0xFF;
	}

	++*cache_size;
	*low = (*low & 0x00FFFFFF) << RC_SHIFT_BITS;

	return false;
}


static inline bool
rc_encode(lzma_range_encoder *rc,
		uint8_t *out, size_t *out_pos, size_t out_size)
{
	assert(rc->count <= RC_SYMBOLS_MAX);

	while (rc->pos < rc->count) {
		// Normalize
		if (rc->range < RC_TOP_VALUE) {
			if (rc_shift_low(rc, out, out_pos, out_size))
				return true;

			rc->range <<= RC_SHIFT_BITS;
		}

		// Encode a bit
		switch (rc->symbols[rc->pos]) {
		case RC_BIT_0: {
			probability prob = *rc->probs[rc->pos];
			rc->range = (rc->range >> RC_BIT_MODEL_TOTAL_BITS)
					* prob;
			prob += (RC_BIT_MODEL_TOTAL - prob) >> RC_MOVE_BITS;
			*rc->probs[rc->pos] = prob;
			break;
		}

		case RC_BIT_1: {
			probability prob = *rc->probs[rc->pos];
			const uint32_t bound = prob * (rc->range
					>> RC_BIT_MODEL_TOTAL_BITS);
			rc->low += bound;
			rc->range -= bound;
			prob -= prob >> RC_MOVE_BITS;
			*rc->probs[rc->pos] = prob;
			break;
		}

		case RC_DIRECT_0:
			rc->range >>= 1;
			break;

		case RC_DIRECT_1:
			rc->range >>= 1;
			rc->low += rc->range;
			break;

		case RC_FLUSH:
			// Prevent further normalizations.
			rc->range = UINT32_MAX;

			// Flush the last five bytes (see rc_flush()).
			do {
				if (rc_shift_low(rc, out, out_pos, out_size))
					return true;
			} while (++rc->pos < rc->count);

			// Reset the range encoder so we are ready to continue
			// encoding if we weren't finishing the stream.
			rc_reset(rc);
			return false;

		default:
			assert(0);
			break;
		}

		++rc->pos;
	}

	rc->count = 0;
	rc->pos = 0;

	return false;
}


static inline bool
rc_encode_dummy(const lzma_range_encoder *rc, uint64_t out_limit)
{
	assert(rc->count <= RC_SYMBOLS_MAX);

	uint64_t low = rc->low;
	uint64_t cache_size = rc->cache_size;
	uint32_t range = rc->range;
	uint8_t cache = rc->cache;
	uint64_t out_pos = rc->out_total;

	size_t pos = rc->pos;

	while (true) {
		// Normalize
		if (range < RC_TOP_VALUE) {
			if (rc_shift_low_dummy(&low, &cache_size, &cache,
					&out_pos, out_limit))
				return true;

			range <<= RC_SHIFT_BITS;
		}

		// This check is here because the normalization above must
		// be done before flushing the last bytes.
		if (pos == rc->count)
			break;

		// Encode a bit
		switch (rc->symbols[pos]) {
		case RC_BIT_0: {
			probability prob = *rc->probs[pos];
			range = (range >> RC_BIT_MODEL_TOTAL_BITS)
					* prob;
			break;
		}

		case RC_BIT_1: {
			probability prob = *rc->probs[pos];
			const uint32_t bound = prob * (range
					>> RC_BIT_MODEL_TOTAL_BITS);
			low += bound;
			range -= bound;
			break;
		}

		case RC_DIRECT_0:
			range >>= 1;
			break;

		case RC_DIRECT_1:
			range >>= 1;
			low += range;
			break;

		case RC_FLUSH:
		default:
			assert(0);
			break;
		}

		++pos;
	}

	// Flush the last bytes. This isn't in rc->symbols[] so we do
	// it after the above loop to take into account the size of
	// the flushing that will be done at the end of the stream.
	for (pos = 0; pos < 5; ++pos) {
		if (rc_shift_low_dummy(&low, &cache_size,
				&cache, &out_pos, out_limit))
			return true;
	}

	return false;
}


static inline uint64_t
rc_pending(const lzma_range_encoder *rc)
{
	return rc->cache_size + 5 - 1;
}

#endif