1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
///////////////////////////////////////////////////////////////////////////////
//
/// \file range_decoder.h
/// \brief Range Decoder
//
// Copyright (C) 1999-2006 Igor Pavlov
// Copyright (C) 2007 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef LZMA_RANGE_DECODER_H
#define LZMA_RANGE_DECODER_H
#include "range_common.h"
typedef struct {
uint32_t range;
uint32_t code;
uint32_t init_bytes_left;
} lzma_range_decoder;
static inline bool
rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in,
size_t *restrict in_pos, size_t in_size)
{
while (rc->init_bytes_left > 0) {
if (*in_pos == in_size)
return false;
rc->code = (rc->code << 8) | in[*in_pos];
++*in_pos;
--rc->init_bytes_left;
}
return true;
}
/// Makes local copies of range decoder variables.
#define rc_to_local(range_decoder) \
lzma_range_decoder rc = range_decoder; \
uint32_t rc_bound
/// Stores the local copes back to the range decoder structure.
#define rc_from_local(range_decoder) \
range_decoder = rc
/// Resets the range decoder structure.
#define rc_reset(range_decoder) \
do { \
(range_decoder).range = UINT32_MAX; \
(range_decoder).code = 0; \
(range_decoder).init_bytes_left = 5; \
} while (0)
// All of the macros in this file expect the following variables being defined:
// - lzma_range_decoder range_decoder;
// - uint32_t rc_bound; // Temporary variable
// - uint8_t *in;
// - size_t in_pos_local; // Local alias for *in_pos
//////////////////
// Buffer "I/O" //
//////////////////
// Read the next byte of compressed data from buffer_in, if needed.
#define rc_normalize() \
do { \
if (rc.range < TOP_VALUE) { \
rc.range <<= SHIFT_BITS; \
rc.code = (rc.code << SHIFT_BITS) | in[in_pos_local++]; \
} \
} while (0)
//////////////////
// Bit decoding //
//////////////////
// Range decoder's DecodeBit() is splitted into three macros:
// if_bit_0(prob) {
// update_bit_0(prob)
// ...
// } else {
// update_bit_1(prob)
// ...
// }
#define if_bit_0(prob) \
rc_normalize(); \
rc_bound = (rc.range >> BIT_MODEL_TOTAL_BITS) * (prob); \
if (rc.code < rc_bound)
#define update_bit_0(prob) \
do { \
rc.range = rc_bound; \
prob += (BIT_MODEL_TOTAL - (prob)) >> MOVE_BITS; \
} while (0)
#define update_bit_1(prob) \
do { \
rc.range -= rc_bound; \
rc.code -= rc_bound; \
prob -= (prob) >> MOVE_BITS; \
} while (0)
#ifdef HAVE_ARITHMETIC_RSHIFT
# define rc_decode_direct(dest, count) \
do { \
rc_normalize(); \
rc.range >>= 1; \
rc.code -= rc.range; \
rc_bound = (uint32_t)((int32_t)(rc.code) >> 31); \
dest = (dest << 1) + (rc_bound + 1); \
rc.code += rc.range & rc_bound; \
} while (--count > 0)
#else
# define rc_decode_direct(dest, count) \
do { \
rc_normalize(); \
rc.range >>= 1; \
rc_bound = (rc.code - rc.range) >> 31; \
rc.code -= rc.range & (rc_bound - 1); \
dest = ((dest) << 1) | (1 - rc_bound);\
} while (--count > 0)
#endif
// Dummy versions don't update prob or dest.
#define update_bit_0_dummy() \
rc.range = rc_bound
#define update_bit_1_dummy() \
do { \
rc.range -= rc_bound; \
rc.code -= rc_bound; \
} while (0)
#ifdef HAVE_ARITHMETIC_RSHIFT
# define rc_decode_direct_dummy(count) \
do { \
rc_normalize(); \
rc.range >>= 1; \
rc.code -= rc.range; \
rc.code += rc.range & ((uint32_t)((int32_t)(rc.code) >> 31)); \
} while (--count > 0)
#else
# define rc_decode_direct_dummy(count) \
do { \
rc_normalize(); \
rc.range >>= 1; \
rc_bound = (rc.code - rc.range) >> 31; \
rc.code -= rc.range & (rc_bound - 1); \
} while (--count > 0)
#endif
///////////////////////
// Bit tree decoding //
///////////////////////
#define bittree_decode(target, probs, bit_levels) \
do { \
uint32_t model_index = 1; \
for (uint32_t bit_index = (bit_levels); bit_index != 0; --bit_index) { \
if_bit_0((probs)[model_index]) { \
update_bit_0((probs)[model_index]); \
model_index <<= 1; \
} else { \
update_bit_1((probs)[model_index]); \
model_index = (model_index << 1) | 1; \
} \
} \
target += model_index - (1 << bit_levels); \
} while (0)
#define bittree_reverse_decode(target, probs, bit_levels) \
do { \
uint32_t model_index = 1; \
for (uint32_t bit_index = 0; bit_index < bit_levels; ++bit_index) { \
if_bit_0((probs)[model_index]) { \
update_bit_0((probs)[model_index]); \
model_index <<= 1; \
} else { \
update_bit_1((probs)[model_index]); \
model_index = (model_index << 1) | 1; \
target += 1 << bit_index; \
} \
} \
} while (0)
// Dummy versions don't update prob.
#define bittree_decode_dummy(target, probs, bit_levels) \
do { \
uint32_t model_index = 1; \
for (uint32_t bit_index = (bit_levels); bit_index != 0; --bit_index) { \
if_bit_0((probs)[model_index]) { \
update_bit_0_dummy(); \
model_index <<= 1; \
} else { \
update_bit_1_dummy(); \
model_index = (model_index << 1) | 1; \
} \
} \
target += model_index - (1 << bit_levels); \
} while (0)
#define bittree_reverse_decode_dummy(probs, bit_levels) \
do { \
uint32_t model_index = 1; \
for (uint32_t bit_index = 0; bit_index < bit_levels; ++bit_index) { \
if_bit_0((probs)[model_index]) { \
update_bit_0_dummy(); \
model_index <<= 1; \
} else { \
update_bit_1_dummy(); \
model_index = (model_index << 1) | 1; \
} \
} \
} while (0)
#endif
|