1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
///////////////////////////////////////////////////////////////////////////////
//
/// \file lzma_encoder.c
/// \brief LZMA encoder
//
// Copyright (C) 1999-2006 Igor Pavlov
// Copyright (C) 2007 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////
#include "lzma_encoder_private.h"
#include "fastpos.h"
/////////////
// Literal //
/////////////
static inline void
literal_matched(lzma_range_encoder *rc, probability *subcoder,
uint32_t match_byte, uint32_t symbol)
{
uint32_t context = 1;
uint32_t bit_count = 8;
do {
uint32_t bit = (symbol >> --bit_count) & 1;
const uint32_t match_bit = (match_byte >> bit_count) & 1;
rc_bit(rc, &subcoder[(0x100 << match_bit) + context], bit);
context = (context << 1) | bit;
if (match_bit != bit) {
// The bit from the literal being encoded and the bit
// from the previous match differ. Finish encoding
// as a normal literal.
while (bit_count != 0) {
bit = (symbol >> --bit_count) & 1;
rc_bit(rc, &subcoder[context], bit);
context = (context << 1) | bit;
}
break;
}
} while (bit_count != 0);
}
static inline void
literal(lzma_coder *coder)
{
// Locate the literal byte to be encoded and the subcoder.
const uint8_t cur_byte = coder->lz.buffer[
coder->lz.read_pos - coder->additional_offset];
probability *subcoder = literal_get_subcoder(coder->literal_coder,
coder->now_pos, coder->previous_byte);
if (is_literal_state(coder->state)) {
// Previous LZMA-symbol was a literal. Encode a normal
// literal without a match byte.
rc_bittree(&coder->rc, subcoder, 8, cur_byte);
} else {
// Previous LZMA-symbol was a match. Use the last byte of
// the match as a "match byte". That is, compare the bits
// of the current literal and the match byte.
const uint8_t match_byte = coder->lz.buffer[
coder->lz.read_pos - coder->reps[0] - 1
- coder->additional_offset];
literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
}
update_literal(coder->state);
coder->previous_byte = cur_byte;
}
//////////////////
// Match length //
//////////////////
static inline void
length(lzma_range_encoder *rc, lzma_length_encoder *lc,
const uint32_t pos_state, uint32_t len)
{
assert(len <= MATCH_MAX_LEN);
len -= MATCH_MIN_LEN;
if (len < LEN_LOW_SYMBOLS) {
rc_bit(rc, &lc->choice, 0);
rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
} else {
rc_bit(rc, &lc->choice, 1);
len -= LEN_LOW_SYMBOLS;
if (len < LEN_MID_SYMBOLS) {
rc_bit(rc, &lc->choice2, 0);
rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
} else {
rc_bit(rc, &lc->choice2, 1);
len -= LEN_MID_SYMBOLS;
rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
}
}
}
///////////
// Match //
///////////
static inline void
match(lzma_coder *coder, const uint32_t pos_state,
const uint32_t distance, const uint32_t len)
{
update_match(coder->state);
length(&coder->rc, &coder->match_len_encoder, pos_state, len);
coder->prev_len_encoder = &coder->match_len_encoder;
const uint32_t pos_slot = get_pos_slot(distance);
const uint32_t len_to_pos_state = get_len_to_pos_state(len);
rc_bittree(&coder->rc, coder->pos_slot_encoder[len_to_pos_state],
POS_SLOT_BITS, pos_slot);
if (pos_slot >= START_POS_MODEL_INDEX) {
const uint32_t footer_bits = (pos_slot >> 1) - 1;
const uint32_t base = (2 | (pos_slot & 1)) << footer_bits;
const uint32_t pos_reduced = distance - base;
if (pos_slot < END_POS_MODEL_INDEX) {
rc_bittree_reverse(&coder->rc,
&coder->pos_encoders[base - pos_slot - 1],
footer_bits, pos_reduced);
} else {
rc_direct(&coder->rc, pos_reduced >> ALIGN_BITS,
footer_bits - ALIGN_BITS);
rc_bittree_reverse(
&coder->rc, coder->pos_align_encoder,
ALIGN_BITS, pos_reduced & ALIGN_MASK);
++coder->align_price_count;
}
}
coder->reps[3] = coder->reps[2];
coder->reps[2] = coder->reps[1];
coder->reps[1] = coder->reps[0];
coder->reps[0] = distance;
++coder->match_price_count;
}
////////////////////
// Repeated match //
////////////////////
static inline void
rep_match(lzma_coder *coder, const uint32_t pos_state,
const uint32_t rep, const uint32_t len)
{
if (rep == 0) {
rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
rc_bit(&coder->rc,
&coder->is_rep0_long[coder->state][pos_state],
len != 1);
} else {
const uint32_t distance = coder->reps[rep];
rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
if (rep == 1) {
rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
} else {
rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
rc_bit(&coder->rc, &coder->is_rep2[coder->state],
rep - 2);
if (rep == 3)
coder->reps[3] = coder->reps[2];
coder->reps[2] = coder->reps[1];
}
coder->reps[1] = coder->reps[0];
coder->reps[0] = distance;
}
if (len == 1) {
update_short_rep(coder->state);
} else {
length(&coder->rc, &coder->rep_len_encoder, pos_state, len);
coder->prev_len_encoder = &coder->rep_len_encoder;
update_long_rep(coder->state);
}
}
//////////
// Main //
//////////
static void
encode_symbol(lzma_coder *coder, uint32_t pos, uint32_t len)
{
const uint32_t pos_state = coder->now_pos & coder->pos_mask;
if (len == 1 && pos == UINT32_MAX) {
// Literal i.e. eight-bit byte
rc_bit(&coder->rc,
&coder->is_match[coder->state][pos_state], 0);
literal(coder);
} else {
// Some type of match
rc_bit(&coder->rc,
&coder->is_match[coder->state][pos_state], 1);
if (pos < REP_DISTANCES) {
// It's a repeated match i.e. the same distance
// has been used earlier.
rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
rep_match(coder, pos_state, pos, len);
} else {
// Normal match
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
match(coder, pos_state, pos - REP_DISTANCES, len);
}
coder->previous_byte = coder->lz.buffer[
coder->lz.read_pos + len - 1
- coder->additional_offset];
}
assert(coder->additional_offset >= len);
coder->additional_offset -= len;
coder->now_pos += len;
}
static void
encode_eopm(lzma_coder *coder)
{
const uint32_t pos_state = coder->now_pos & coder->pos_mask;
rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
match(coder, pos_state, UINT32_MAX, MATCH_MIN_LEN);
}
/**
* \brief LZMA encoder
*
* \return true if end of stream was reached, false otherwise.
*/
extern bool
lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size)
{
// Initialize the stream if no data has been encoded yet.
if (!coder->is_initialized) {
if (coder->lz.read_pos == coder->lz.read_limit) {
if (coder->lz.sequence == SEQ_RUN)
return false; // We cannot do anything.
// We are finishing (we cannot get here when flushing).
assert(coder->lz.write_pos == coder->lz.read_pos);
assert(coder->lz.sequence == SEQ_FINISH);
} else {
// Do the actual initialization.
uint32_t len;
uint32_t num_distance_pairs;
lzma_read_match_distances(coder,
&len, &num_distance_pairs);
encode_symbol(coder, UINT32_MAX, 1);
assert(coder->additional_offset == 0);
}
// Initialization is done (except if empty file).
coder->is_initialized = true;
}
// Encoding loop
while (true) {
// Encode pending bits, if any.
if (rc_encode(&coder->rc, out, out_pos, out_size))
return false;
// Check that there is some input to process.
if (coder->lz.read_pos >= coder->lz.read_limit) {
// If flushing or finishing, we must keep encoding
// until additional_offset becomes zero to make
// all the input available at output.
if (coder->lz.sequence == SEQ_RUN)
return false;
if (coder->additional_offset == 0)
break;
}
assert(coder->lz.read_pos <= coder->lz.write_pos);
#ifndef NDEBUG
if (coder->lz.sequence != SEQ_RUN) {
assert(coder->lz.read_limit == coder->lz.write_pos);
} else {
assert(coder->lz.read_limit + coder->lz.keep_size_after
== coder->lz.write_pos);
}
#endif
uint32_t pos;
uint32_t len;
// Get optimal match (repeat position and length).
// Value ranges for pos:
// - [0, REP_DISTANCES): repeated match
// - [REP_DISTANCES, UINT32_MAX):
// match at (pos - REP_DISTANCES)
// - UINT32_MAX: not a match but a literal
// Value ranges for len:
// - [MATCH_MIN_LEN, MATCH_MAX_LEN]
if (coder->best_compression)
lzma_get_optimum(coder, &pos, &len);
else
lzma_get_optimum_fast(coder, &pos, &len);
encode_symbol(coder, pos, len);
}
assert(!coder->longest_match_was_found);
if (coder->is_flushed) {
coder->is_flushed = false;
return true;
}
// We don't support encoding old LZMA streams without EOPM, and LZMA2
// doesn't use EOPM at LZMA level.
if (coder->write_eopm)
encode_eopm(coder);
rc_flush(&coder->rc);
if (rc_encode(&coder->rc, out, out_pos, out_size)) {
coder->is_flushed = true;
return false;
}
return true;
}
|