aboutsummaryrefslogtreecommitdiff
path: root/src/liblzma/lzma/lzma_decoder.c
blob: dda94177ebe2627f3596cccee433107cfd907daa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
///////////////////////////////////////////////////////////////////////////////
//
/// \file       lzma_decoder.c
/// \brief      LZMA decoder
//
//  Copyright (C) 1999-2006 Igor Pavlov
//  Copyright (C) 2007 Lasse Collin
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2.1 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////

#include "lzma_common.h"
#include "lzma_decoder.h"
#include "lz_decoder.h"
#include "range_decoder.h"


/// REQUIRED_IN_BUFFER_SIZE is the number of required input bytes
/// for the worst case: longest match with longest distance.
/// LZMA_IN_BUFFER_SIZE must be larger than REQUIRED_IN_BUFFER_SIZE.
/// 23 bits = 2 (match select) + 10 (len) + 6 (distance) + 4 (align)
///         + 1 (rc_normalize)
///
/// \todo       Is this correct for sure?
///
#define REQUIRED_IN_BUFFER_SIZE \
	((23 * (BIT_MODEL_TOTAL_BITS - MOVE_BITS + 1) + 26 + 9) / 8)


// Length decoders are easiest to have as macros, because they use range
// decoder macros, which use local variables rc_range and rc_code.

#define length_decode(target, len_decoder, pos_state) \
do { \
	if_bit_0(len_decoder.choice) { \
		update_bit_0(len_decoder.choice); \
		target = MATCH_MIN_LEN; \
		bittree_decode(target, \
				len_decoder.low[pos_state], LEN_LOW_BITS); \
	} else { \
		update_bit_1(len_decoder.choice); \
		if_bit_0(len_decoder.choice2) { \
			update_bit_0(len_decoder.choice2); \
			target = MATCH_MIN_LEN + LEN_LOW_SYMBOLS; \
			bittree_decode(target, len_decoder.mid[pos_state], \
					LEN_MID_BITS); \
		} else { \
			update_bit_1(len_decoder.choice2); \
			target = MATCH_MIN_LEN + LEN_LOW_SYMBOLS \
					+ LEN_MID_SYMBOLS; \
			bittree_decode(target, len_decoder.high, \
					LEN_HIGH_BITS); \
		} \
	} \
} while (0)


#define length_decode_dummy(target, len_decoder, pos_state) \
do { \
	if_bit_0(len_decoder.choice) { \
		update_bit_0_dummy(); \
		target = MATCH_MIN_LEN; \
		bittree_decode_dummy(target, \
				len_decoder.low[pos_state], LEN_LOW_BITS); \
	} else { \
		update_bit_1_dummy(); \
		if_bit_0(len_decoder.choice2) { \
			update_bit_0_dummy(); \
			target = MATCH_MIN_LEN + LEN_LOW_SYMBOLS; \
			bittree_decode_dummy(target, \
					len_decoder.mid[pos_state], \
					LEN_MID_BITS); \
		} else { \
			update_bit_1_dummy(); \
			target = MATCH_MIN_LEN + LEN_LOW_SYMBOLS \
					+ LEN_MID_SYMBOLS; \
			bittree_decode_dummy(target, len_decoder.high, \
					LEN_HIGH_BITS); \
		} \
	} \
} while (0)


typedef struct {
	probability choice;
	probability choice2;
	probability low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
	probability mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
	probability high[LEN_HIGH_SYMBOLS];
} lzma_length_decoder;


struct lzma_coder_s {
	/// Data of the next coder, if any.
	lzma_next_coder next;

	/// Sliding output window a.k.a. dictionary a.k.a. history buffer.
	lzma_lz_decoder lz;

	// Range coder
	lzma_range_decoder rc;

	// State
	uint32_t state;
	uint32_t rep0;      ///< Distance of the latest match
	uint32_t rep1;      ///< Distance of second latest match
	uint32_t rep2;      ///< Distance of third latest match
	uint32_t rep3;      ///< Distance of fourth latest match
	uint32_t pos_bits;
	uint32_t pos_mask;
	uint32_t now_pos; // Lowest 32-bits are enough here.

	lzma_literal_coder *literal_coder;

	/// If 1, it's a match. Otherwise it's a single 8-bit literal.
	probability is_match[STATES][POS_STATES_MAX];

	/// If 1, it's a repeated match. The distance is one of rep0 .. rep3.
	probability is_rep[STATES];

	/// If 0, distance of a repeated match is rep0.
	/// Otherwise check is_rep1.
	probability is_rep0[STATES];

	/// If 0, distance of a repeated match is rep1.
	/// Otherwise check is_rep2.
	probability is_rep1[STATES];

	/// If 0, distance of a repeated match is rep2. Otherwise it is rep3.
	probability is_rep2[STATES];

	/// If 1, the repeated match has length of one byte. Otherwise
	/// the length is decoded from rep_match_len_decoder.
	probability is_rep0_long[STATES][POS_STATES_MAX];

	probability pos_slot_decoder[LEN_TO_POS_STATES][1 << POS_SLOT_BITS];
	probability pos_decoders[FULL_DISTANCES - END_POS_MODEL_INDEX];
	probability pos_align_decoder[1 << ALIGN_BITS];

	/// Length of a match
	lzma_length_decoder len_decoder;

	/// Length of a repeated match.
	lzma_length_decoder rep_match_len_decoder;
};


/// \brief      Check if the next iteration of the decoder loop can be run.
///
/// \note       There must always be REQUIRED_IN_BUFFER_SIZE bytes
///             readable space!
///
static bool lzma_attribute((pure))
decode_dummy(const lzma_coder *restrict coder,
		const uint8_t *restrict in, size_t in_pos_local,
		const size_t in_size, lzma_range_decoder rc,
		uint32_t state, uint32_t rep0, const uint32_t now_pos)
{
	uint32_t rc_bound;

	do {
		const uint32_t pos_state = now_pos & coder->pos_mask;

		if_bit_0(coder->is_match[state][pos_state]) {
			// It's a literal i.e. a single 8-bit byte.

			update_bit_0_dummy();

			const probability *subcoder = literal_get_subcoder(
					coder->literal_coder,
					now_pos, lz_get_byte(coder->lz, 0));
			uint32_t symbol = 1;

			if (!is_char_state(state)) {
				// Decode literal with match byte.

				assert(rep0 != UINT32_MAX);
				uint32_t match_byte
						= lz_get_byte(coder->lz, rep0);

				do {
					match_byte <<= 1;
					const uint32_t match_bit
							= match_byte & 0x100;
					const uint32_t subcoder_index = 0x100
							+ match_bit + symbol;

					if_bit_0(subcoder[subcoder_index]) {
						update_bit_0_dummy();
						symbol <<= 1;
						if (match_bit != 0)
							break;
					} else {
						update_bit_1_dummy();
						symbol = (symbol << 1) | 1;
						if (match_bit == 0)
							break;
					}
				} while (symbol < 0x100);
			}

			// Decode literal without match byte. This is also
			// the tail of the with-match-byte function.
			while (symbol < 0x100) {
				if_bit_0(subcoder[symbol]) {
					update_bit_0_dummy();
					symbol <<= 1;
				} else {
					update_bit_1_dummy();
					symbol = (symbol << 1) | 1;
				}
			}

			break;
		}

		update_bit_1_dummy();
		uint32_t len;

		if_bit_0(coder->is_rep[state]) {
			update_bit_0_dummy();
			length_decode_dummy(len, coder->len_decoder, pos_state);
			update_match(state);

			const uint32_t len_to_pos_state
					= get_len_to_pos_state(len);
			uint32_t pos_slot = 0;
			bittree_decode_dummy(pos_slot, coder->pos_slot_decoder[
					len_to_pos_state], POS_SLOT_BITS);
			assert(pos_slot <= 63);

			if (pos_slot >= START_POS_MODEL_INDEX) {
				uint32_t direct_bits = (pos_slot >> 1) - 1;
				assert(direct_bits >= 1 && direct_bits <= 31);
				rep0 = 2 | (pos_slot & 1);

				if (pos_slot < END_POS_MODEL_INDEX) {
					assert(direct_bits <= 5);
					rep0 <<= direct_bits;
					assert(rep0 <= 96);
					// -1 is fine, because
					// bittree_reverse_decode()
					// starts from table index [1]
					// (not [0]).
					assert((int32_t)(rep0 - pos_slot - 1)
							>= -1);
					assert((int32_t)(rep0 - pos_slot - 1)
							<= 82);
					// We add the result to rep0, so rep0
					// must not be part of second argument
					// of the macro.
					const int32_t offset
						= rep0 - pos_slot - 1;
					bittree_reverse_decode_dummy(
						coder->pos_decoders + offset,
						direct_bits);
				} else {
					assert(pos_slot >= 14);
					assert(direct_bits >= 6);
					direct_bits -= ALIGN_BITS;
					assert(direct_bits >= 2);
					rc_decode_direct_dummy(direct_bits);

					bittree_reverse_decode_dummy(
						coder->pos_align_decoder,
						ALIGN_BITS);
				}
			}

		} else {
			update_bit_1_dummy();

			if_bit_0(coder->is_rep0[state]) {
				update_bit_0_dummy();

				if_bit_0(coder->is_rep0_long[state][
						pos_state]) {
					update_bit_0_dummy();
					break;
				} else {
					update_bit_1_dummy();
				}

			} else {
				update_bit_1_dummy();

				if_bit_0(coder->is_rep1[state]) {
					update_bit_0_dummy();
				} else {
					update_bit_1_dummy();

					if_bit_0(coder->is_rep2[state]) {
						update_bit_0_dummy();
					} else {
						update_bit_1_dummy();
					}
				}
			}

			length_decode_dummy(len, coder->rep_match_len_decoder,
					pos_state);
		}
	} while (0);

	rc_normalize();

	// Validate the buffer position.
	if (in_pos_local > in_size)
		return false;

	return true;
}


static bool
decode_real(lzma_coder *restrict coder, const uint8_t *restrict in,
		size_t *restrict in_pos, size_t in_size, bool has_safe_buffer)
{
	////////////////////
	// Initialization //
	////////////////////

	if (!rc_read_init(&coder->rc, in, in_pos, in_size))
		return false;

	///////////////
	// Variables //
	///////////////

	// Making local copies of often-used variables improves both
	// speed and readability.

	// Range decoder
	rc_to_local(coder->rc);

	// State
	uint32_t state = coder->state;
	uint32_t rep0 = coder->rep0;
	uint32_t rep1 = coder->rep1;
	uint32_t rep2 = coder->rep2;
	uint32_t rep3 = coder->rep3;

	// Misc
	uint32_t now_pos = coder->now_pos;

	// Variables derived from decoder settings
	const uint32_t pos_mask = coder->pos_mask;

	size_t in_pos_local = *in_pos; // Local copy
	size_t in_limit;
	if (in_size <= REQUIRED_IN_BUFFER_SIZE)
		in_limit = 0;
	else
		in_limit = in_size - REQUIRED_IN_BUFFER_SIZE;


	while (coder->lz.pos < coder->lz.limit && (in_pos_local < in_limit
			|| (has_safe_buffer && decode_dummy(
				coder, in, in_pos_local, in_size,
				rc, state, rep0, now_pos)))) {

		/////////////////////
		// Actual decoding //
		/////////////////////

		const uint32_t pos_state = now_pos & pos_mask;

		if_bit_0(coder->is_match[state][pos_state]) {
			update_bit_0(coder->is_match[state][pos_state]);

			// It's a literal i.e. a single 8-bit byte.

			probability *subcoder = literal_get_subcoder(
					coder->literal_coder,
					now_pos, lz_get_byte(coder->lz, 0));
			uint32_t symbol = 1;

			if (!is_char_state(state)) {
				// Decode literal with match byte.

				assert(rep0 != UINT32_MAX);
				uint32_t match_byte
						= lz_get_byte(coder->lz, rep0);

				do {
					match_byte <<= 1;
					const uint32_t match_bit
							= match_byte & 0x100;
					const uint32_t subcoder_index = 0x100
							+ match_bit + symbol;

					if_bit_0(subcoder[subcoder_index]) {
						update_bit_0(subcoder[
							subcoder_index]);
						symbol <<= 1;
						if (match_bit != 0)
							break;
					} else {
						update_bit_1(subcoder[
							subcoder_index]);
						symbol = (symbol << 1) | 1;
						if (match_bit == 0)
							break;
					}
				} while (symbol < 0x100);
			}

			// Decode literal without match byte. This is also
			// the tail of the with-match-byte function.
			while (symbol < 0x100) {
				if_bit_0(subcoder[symbol]) {
					update_bit_0(subcoder[symbol]);
					symbol <<= 1;
				} else {
					update_bit_1(subcoder[symbol]);
					symbol = (symbol << 1) | 1;
				}
			}

			// Put the decoded byte to the dictionary, update the
			// decoder state, and start a new decoding loop.
			coder->lz.dict[coder->lz.pos++] = (uint8_t)(symbol);
			++now_pos;
			update_char(state);
			continue;
		}

		// Instead of a new byte we are going to get a byte range
		// (distance and length) which will be repeated from our
		// output history.

		update_bit_1(coder->is_match[state][pos_state]);
		uint32_t len;

		if_bit_0(coder->is_rep[state]) {
			update_bit_0(coder->is_rep[state]);

			// Not a repeated match
			//
			// We will decode a new distance and store
			// the value to rep0.

			// The latest three match distances are kept in
			// memory in case there are repeated matches.
			rep3 = rep2;
			rep2 = rep1;
			rep1 = rep0;

			// Decode the length of the match.
			length_decode(len, coder->len_decoder, pos_state);

			update_match(state);

			const uint32_t len_to_pos_state
					= get_len_to_pos_state(len);
			uint32_t pos_slot = 0;
			bittree_decode(pos_slot, coder->pos_slot_decoder[
					len_to_pos_state], POS_SLOT_BITS);
			assert(pos_slot <= 63);

			if (pos_slot >= START_POS_MODEL_INDEX) {
				uint32_t direct_bits = (pos_slot >> 1) - 1;
				assert(direct_bits >= 1 && direct_bits <= 30);
				rep0 = 2 | (pos_slot & 1);

				if (pos_slot < END_POS_MODEL_INDEX) {
					assert(direct_bits <= 5);
					rep0 <<= direct_bits;
					assert(rep0 <= 96);
					// -1 is fine, because
					// bittree_reverse_decode()
					// starts from table index [1]
					// (not [0]).
					assert((int32_t)(rep0 - pos_slot - 1)
							>= -1);
					assert((int32_t)(rep0 - pos_slot - 1)
							<= 82);
					// We add the result to rep0, so rep0
					// must not be part of second argument
					// of the macro.
					const int32_t offset
						= rep0 - pos_slot - 1;
					bittree_reverse_decode(rep0,
						coder->pos_decoders + offset,
						direct_bits);
				} else {
					assert(pos_slot >= 14);
					assert(direct_bits >= 6);
					direct_bits -= ALIGN_BITS;
					assert(direct_bits >= 2);
					rc_decode_direct(rep0, direct_bits);
					rep0 <<= ALIGN_BITS;

					bittree_reverse_decode(rep0,
						coder->pos_align_decoder,
						ALIGN_BITS);

					if (rep0 == UINT32_MAX) {
						// End of Payload Marker found.
						coder->lz.eopm_detected = true;
						break;
					}
				}
			} else {
				rep0 = pos_slot;
			}

		} else {
			update_bit_1(coder->is_rep[state]);

			// Repeated match
			//
			// The match distance is a value that we have had
			// earlier. The latest four match distances are
			// available as rep0, rep1, rep2 and rep3. We will
			// now decode which of them is the new distance.

			if_bit_0(coder->is_rep0[state]) {
				update_bit_0(coder->is_rep0[state]);

				// The distance is rep0.

				if_bit_0(coder->is_rep0_long[state][
						pos_state]) {
					update_bit_0(coder->is_rep0_long[
							state][pos_state]);

					// Repeating exactly one byte. For
					// simplicity, it is done here inline
					// instead of at the end of the main
					// loop.

					update_short_rep(state);

					// Security/sanity checks. See the end
					// of the main loop for explanation
					// of these.
					if ((rep0 >= coder->lz.pos
							&& !coder->lz.is_full)
							|| in_pos_local
								> in_size)
						goto error;

					// Repeat one byte and start a new
					// decoding loop.
					coder->lz.dict[coder->lz.pos]
							= lz_get_byte(
							coder->lz, rep0);
					++coder->lz.pos;
					++now_pos;
					continue;

				} else {
					update_bit_1(coder->is_rep0_long[
							state][pos_state]);

					// Repeating more than one byte at
					// distance of rep0.
				}

			} else {
				update_bit_1(coder->is_rep0[state]);

				// The distance is rep1, rep2 or rep3. Once
				// we find out which one of these three, it
				// is stored to rep0 and rep1, rep2 and rep3
				// are updated accordingly.

				uint32_t distance;

				if_bit_0(coder->is_rep1[state]) {
					update_bit_0(coder->is_rep1[state]);
					distance = rep1;
				} else {
					update_bit_1(coder->is_rep1[state]);

					if_bit_0(coder->is_rep2[state]) {
						update_bit_0(coder->is_rep2[
								state]);
						distance = rep2;
					} else {
						update_bit_1(coder->is_rep2[
								state]);
						distance = rep3;
						rep3 = rep2;
					}

					rep2 = rep1;
				}

				rep1 = rep0;
				rep0 = distance;
			}

			// Decode the length of the repeated match.
			length_decode(len, coder->rep_match_len_decoder,
					pos_state);

			update_rep(state);
		}


		/////////////////////////////////
		// Repeat from history buffer. //
		/////////////////////////////////

		// The length is always between these limits. There is no way
		// to trigger the algorithm to set len outside this range.
		assert(len >= MATCH_MIN_LEN);
		assert(len <= MATCH_MAX_LEN);

		now_pos += len;

		// Validate the buffer position to avoid buffer overflows
		// on corrupted input data.
		if (in_pos_local > in_size)
			goto error;

		// Repeat len bytes from distance of rep0.
		if (!lzma_lz_out_repeat(&coder->lz, rep0, len))
			goto error;
	}

	rc_normalize();


	/////////////////////////////////
	// Update the *data structure. //
	/////////////////////////////////

	// Range decoder
	rc_from_local(coder->rc);

	// State
	coder->state = state;
	coder->rep0 = rep0;
	coder->rep1 = rep1;
	coder->rep2 = rep2;
	coder->rep3 = rep3;

	// Misc
	coder->now_pos = now_pos;
	*in_pos = in_pos_local;

	return false;

error:
	return true;
}


static void
lzma_decoder_end(lzma_coder *coder, lzma_allocator *allocator)
{
	lzma_next_coder_end(&coder->next, allocator);
	lzma_lz_decoder_end(&coder->lz, allocator);
	lzma_literal_end(&coder->literal_coder, allocator);
	lzma_free(coder, allocator);
	return;
}


extern lzma_ret
lzma_lzma_decoder_init(lzma_next_coder *next, lzma_allocator *allocator,
		const lzma_filter_info *filters)
{
	// Validate pos_bits. Other options are validated by the
	// respective initialization functions.
	const lzma_options_lzma *options = filters[0].options;
	if (options->pos_bits > LZMA_POS_BITS_MAX)
		return LZMA_HEADER_ERROR;

	// Allocate memory for the decoder if needed.
	if (next->coder == NULL) {
		next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
		if (next->coder == NULL)
			return LZMA_MEM_ERROR;

		// Initialize variables so that we know later that we don't
		// have an existing decoder initialized.
		next->coder->next = LZMA_NEXT_CODER_INIT;
		next->coder->lz = LZMA_LZ_DECODER_INIT;
		next->coder->literal_coder = NULL;
	}

	// Store the pos_bits and calculate pos_mask.
	next->coder->pos_bits = options->pos_bits;
	next->coder->pos_mask = (1U << next->coder->pos_bits) - 1;

	// Allocate (if needed) and initialize the literal decoder.
	{
		const lzma_ret ret = lzma_literal_init(
				&next->coder->literal_coder, allocator,
				options->literal_context_bits,
				options->literal_pos_bits);
		if (ret != LZMA_OK) {
			lzma_free(next->coder, allocator);
			next->coder = NULL;
			return ret;
		}
	}

	// Allocate and initialize the LZ decoder.
	{
		const lzma_ret ret = lzma_lz_decoder_reset(
				&next->coder->lz, allocator, &decode_real,
				filters[0].uncompressed_size,
				options->dictionary_size, MATCH_MAX_LEN);
		if (ret != LZMA_OK) {
			lzma_literal_end(&next->coder->literal_coder,
					allocator);
			lzma_free(next->coder, allocator);
			next->coder = NULL;
			return ret;
		}
	}

	// State
	next->coder->state = 0;
	next->coder->rep0 = 0;
	next->coder->rep1 = 0;
	next->coder->rep2 = 0;
	next->coder->rep3 = 0;
	next->coder->pos_bits = options->pos_bits;
	next->coder->pos_mask = (1 << next->coder->pos_bits) - 1;
	next->coder->now_pos = 0;

	// Range decoder
	rc_reset(next->coder->rc);

	// Bit and bittree decoders
	for (uint32_t i = 0; i < STATES; ++i) {
		for (uint32_t j = 0; j <= next->coder->pos_mask; ++j) {
			bit_reset(next->coder->is_match[i][j]);
			bit_reset(next->coder->is_rep0_long[i][j]);
		}

		bit_reset(next->coder->is_rep[i]);
		bit_reset(next->coder->is_rep0[i]);
		bit_reset(next->coder->is_rep1[i]);
		bit_reset(next->coder->is_rep2[i]);
	}

	for (uint32_t i = 0; i < LEN_TO_POS_STATES; ++i)
		bittree_reset(next->coder->pos_slot_decoder[i], POS_SLOT_BITS);

	for (uint32_t i = 0; i < FULL_DISTANCES - END_POS_MODEL_INDEX; ++i)
		bit_reset(next->coder->pos_decoders[i]);

	bittree_reset(next->coder->pos_align_decoder, ALIGN_BITS);

	// Len decoders (also bit/bittree)
	const uint32_t num_pos_states = 1 << next->coder->pos_bits;
	bit_reset(next->coder->len_decoder.choice);
	bit_reset(next->coder->len_decoder.choice2);
	bit_reset(next->coder->rep_match_len_decoder.choice);
	bit_reset(next->coder->rep_match_len_decoder.choice2);

	for (uint32_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
		bittree_reset(next->coder->len_decoder.low[pos_state],
				LEN_LOW_BITS);
		bittree_reset(next->coder->len_decoder.mid[pos_state],
				LEN_MID_BITS);

		bittree_reset(next->coder->rep_match_len_decoder.low[
				pos_state], LEN_LOW_BITS);
		bittree_reset(next->coder->rep_match_len_decoder.mid[
				pos_state], LEN_MID_BITS);
	}

	bittree_reset(next->coder->len_decoder.high, LEN_HIGH_BITS);
	bittree_reset(next->coder->rep_match_len_decoder.high, LEN_HIGH_BITS);

	// Initialize the next decoder in the chain, if any.
	{
		const lzma_ret ret = lzma_next_filter_init(&next->coder->next,
				allocator, filters + 1);
		if (ret != LZMA_OK) {
			lzma_decoder_end(next->coder, allocator);
			return ret;
		}
	}

	// Initialization successful. Set the function pointers.
	next->code = &lzma_lz_decode;
	next->end = &lzma_decoder_end;

	return LZMA_OK;
}


extern bool
lzma_lzma_decode_properties(lzma_options_lzma *options, uint8_t byte)
{
	if (byte > (4 * 5 + 4) * 9 + 8)
		return true;

	// See the file format specification to understand this.
	options->pos_bits = byte / (9 * 5);
	byte -= options->pos_bits * 9 * 5;
	options->literal_pos_bits = byte / 9;
	options->literal_context_bits = byte - options->literal_pos_bits * 9;

	return false;
}