aboutsummaryrefslogtreecommitdiff
path: root/src/liblzma/lz/lz_encoder.c
blob: 488095ca5801b8a7490e5a68ad0d4b3fe5c71a2b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
///////////////////////////////////////////////////////////////////////////////
//
/// \file       lz_encoder.c
/// \brief      LZ in window
//
//  Copyright (C) 1999-2006 Igor Pavlov
//  Copyright (C) 2007 Lasse Collin
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2.1 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////

#include "lz_encoder_private.h"

// Hash Chains
#ifdef HAVE_HC3
#	include "hc3.h"
#endif
#ifdef HAVE_HC4
#	include "hc4.h"
#endif

// Binary Trees
#ifdef HAVE_BT2
#	include "bt2.h"
#endif
#ifdef HAVE_BT3
#	include "bt3.h"
#endif
#ifdef HAVE_BT4
#	include "bt4.h"
#endif


/// This is needed in two places so provide a macro.
#define get_cyclic_buffer_size(history_size) ((history_size) + 1)


/// Calculate certain match finder properties and validate the calculated
/// values. This is as its own function, because *num_items is needed to
/// calculate memory requirements in common/memory.c.
extern uint32_t
lzma_lz_encoder_hash_properties(lzma_match_finder match_finder,
		uint32_t history_size, uint32_t *restrict hash_mask,
		uint32_t *restrict hash_size_sum, uint32_t *restrict num_items)
{
	uint32_t fix_hash_size;
	uint32_t sons;

	switch (match_finder) {
#ifdef HAVE_HC3
	case LZMA_MF_HC3:
		fix_hash_size = LZMA_HC3_FIX_HASH_SIZE;
		sons = 1;
		break;
#endif
#ifdef HAVE_HC4
	case LZMA_MF_HC4:
		fix_hash_size = LZMA_HC4_FIX_HASH_SIZE;
		sons = 1;
		break;
#endif
#ifdef HAVE_BT2
	case LZMA_MF_BT2:
		fix_hash_size = LZMA_BT2_FIX_HASH_SIZE;
		sons = 2;
		break;
#endif
#ifdef HAVE_BT3
	case LZMA_MF_BT3:
		fix_hash_size = LZMA_BT3_FIX_HASH_SIZE;
		sons = 2;
		break;
#endif
#ifdef HAVE_BT4
	case LZMA_MF_BT4:
		fix_hash_size = LZMA_BT4_FIX_HASH_SIZE;
		sons = 2;
		break;
#endif
	default:
		return true;
	}

	uint32_t hs;

#ifdef HAVE_LZMA_BT2
	if (match_finder == LZMA_BT2) {
		// NOTE: hash_mask is not used by the BT2 match finder,
		// but it is initialized just in case.
		hs = LZMA_BT2_HASH_SIZE;
		*hash_mask = 0;
	} else
#endif
	{
		hs = history_size - 1;
		hs |= (hs >> 1);
		hs |= (hs >> 2);
		hs |= (hs >> 4);
		hs |= (hs >> 8);
		hs >>= 1;
		hs |= 0xFFFF;

		if (hs > (UINT32_C(1) << 24)) {
			if (match_finder == LZMA_MF_HC4
					|| match_finder == LZMA_MF_BT4)
				hs >>= 1;
			else
				hs = (1 << 24) - 1;
		}

		*hash_mask = hs;
		++hs;
	}

	*hash_size_sum = hs + fix_hash_size;

	*num_items = *hash_size_sum
			+ get_cyclic_buffer_size(history_size) * sons;

	return false;
}


extern lzma_ret
lzma_lz_encoder_reset(lzma_lz_encoder *lz, lzma_allocator *allocator,
		bool (*process)(lzma_coder *coder, uint8_t *restrict out,
			size_t *restrict out_pos, size_t out_size),
		lzma_vli uncompressed_size,
		size_t history_size, size_t additional_buffer_before,
		size_t match_max_len, size_t additional_buffer_after,
		lzma_match_finder match_finder, uint32_t match_finder_cycles,
		const uint8_t *preset_dictionary,
		size_t preset_dictionary_size)
{
	lz->sequence = SEQ_START;
	lz->uncompressed_size = uncompressed_size;
	lz->temp_size = 0;

	///////////////
	// In Window //
	///////////////

	// Validate history size.
	if (history_size < LZMA_DICTIONARY_SIZE_MIN
			|| history_size > LZMA_DICTIONARY_SIZE_MAX) {
		lzma_lz_encoder_end(lz, allocator);
		return LZMA_HEADER_ERROR;
	}

	assert(history_size <= MAX_VAL_FOR_NORMALIZE - 256);
	assert(LZMA_DICTIONARY_SIZE_MAX <= MAX_VAL_FOR_NORMALIZE - 256);

	// Calculate the size of the history buffer to allocate.
	// TODO: Get a reason for magic constant of 256.
	const size_t size_reserv = (history_size + additional_buffer_before
			+ match_max_len + additional_buffer_after) / 2 + 256;

	lz->keep_size_before = history_size + additional_buffer_before;
	lz->keep_size_after = match_max_len + additional_buffer_after;

	const size_t buffer_size = lz->keep_size_before + lz->keep_size_after
			+ size_reserv;

	// Allocate history buffer if its size has changed.
	if (buffer_size != lz->size) {
		lzma_free(lz->buffer, allocator);
		lz->buffer = lzma_alloc(buffer_size, allocator);
		if (lz->buffer == NULL) {
			lzma_lz_encoder_end(lz, allocator);
			return LZMA_MEM_ERROR;
		}
	}

	// Allocation successful. Store the new size.
	lz->size = buffer_size;

	// Reset in window variables.
	lz->offset = 0;
	lz->read_pos = 0;
	lz->read_limit = 0;
	lz->write_pos = 0;
	lz->pending = 0;


	//////////////////
	// Match Finder //
	//////////////////

	// Validate match_finder, set function pointers and a few match
	// finder specific variables.
	switch (match_finder) {
#ifdef HAVE_HC3
	case LZMA_MF_HC3:
		lz->get_matches = &lzma_hc3_get_matches;
		lz->skip = &lzma_hc3_skip;
		lz->cut_value = 8 + (match_max_len >> 2);
		break;
#endif
#ifdef HAVE_HC4
	case LZMA_MF_HC4:
		lz->get_matches = &lzma_hc4_get_matches;
		lz->skip = &lzma_hc4_skip;
		lz->cut_value = 8 + (match_max_len >> 2);
		break;
#endif
#ifdef HAVE_BT2
	case LZMA_MF_BT2:
		lz->get_matches = &lzma_bt2_get_matches;
		lz->skip = &lzma_bt2_skip;
		lz->cut_value = 16 + (match_max_len >> 1);
		break;
#endif
#ifdef HAVE_BT3
	case LZMA_MF_BT3:
		lz->get_matches = &lzma_bt3_get_matches;
		lz->skip = &lzma_bt3_skip;
		lz->cut_value = 16 + (match_max_len >> 1);
		break;
#endif
#ifdef HAVE_BT4
	case LZMA_MF_BT4:
		lz->get_matches = &lzma_bt4_get_matches;
		lz->skip = &lzma_bt4_skip;
		lz->cut_value = 16 + (match_max_len >> 1);
		break;
#endif
	default:
		lzma_lz_encoder_end(lz, allocator);
		return LZMA_HEADER_ERROR;
	}

	// Check if we have been requested to use a non-default cut_value.
	if (match_finder_cycles > 0)
		lz->cut_value = match_finder_cycles;

	lz->match_max_len = match_max_len;
	lz->cyclic_buffer_size = get_cyclic_buffer_size(history_size);

	uint32_t hash_size_sum;
	uint32_t num_items;
	if (lzma_lz_encoder_hash_properties(match_finder, history_size,
			&lz->hash_mask, &hash_size_sum, &num_items)) {
		lzma_lz_encoder_end(lz, allocator);
		return LZMA_HEADER_ERROR;
	}

	if (num_items != lz->num_items) {
#if UINT32_MAX >= SIZE_MAX / 4
		// Check for integer overflow. (Huge dictionaries are not
		// possible on 32-bit CPU.)
		if (num_items > SIZE_MAX / sizeof(uint32_t)) {
			lzma_lz_encoder_end(lz, allocator);
			return LZMA_MEM_ERROR;
		}
#endif

		const size_t size_in_bytes
				= (size_t)(num_items) * sizeof(uint32_t);

		lzma_free(lz->hash, allocator);
		lz->hash = lzma_alloc(size_in_bytes, allocator);
		if (lz->hash == NULL) {
			lzma_lz_encoder_end(lz, allocator);
			return LZMA_MEM_ERROR;
		}

		lz->num_items = num_items;
	}

	lz->son = lz->hash + hash_size_sum;

	// Reset the hash table to empty hash values.
	{
		uint32_t *restrict items = lz->hash;

		for (uint32_t i = 0; i < hash_size_sum; ++i)
			items[i] = EMPTY_HASH_VALUE;
	}

	lz->cyclic_buffer_pos = 0;

	// Because zero is used as empty hash value, make the first byte
	// appear at buffer[1 - offset].
	++lz->offset;

	// If we are using a preset dictionary, read it now.
	// TODO: This isn't implemented yet so return LZMA_HEADER_ERROR.
	if (preset_dictionary != NULL && preset_dictionary_size > 0) {
		lzma_lz_encoder_end(lz, allocator);
		return LZMA_HEADER_ERROR;
	}

	// Set the process function pointer.
	lz->process = process;

	return LZMA_OK;
}


extern void
lzma_lz_encoder_end(lzma_lz_encoder *lz, lzma_allocator *allocator)
{
	lzma_free(lz->hash, allocator);
	lz->hash = NULL;
	lz->num_items = 0;

	lzma_free(lz->buffer, allocator);
	lz->buffer = NULL;
	lz->size = 0;

	return;
}


/// \brief      Moves the data in the input window to free space for new data
///
/// lz->buffer is a sliding input window, which keeps lz->keep_size_before
/// bytes of input history available all the time. Now and then we need to
/// "slide" the buffer to make space for the new data to the end of the
/// buffer. At the same time, data older than keep_size_before is dropped.
///
static void
move_window(lzma_lz_encoder *lz)
{
	// buffer[move_offset] will become buffer[0].
	assert(lz->read_pos > lz->keep_size_after);
	size_t move_offset = lz->read_pos - lz->keep_size_before;

	// We need one additional byte, since move_pos() moves on 1 byte.
	// TODO: Clean up? At least document more.
	if (move_offset > 0)
		--move_offset;

	assert(lz->write_pos > move_offset);
	const size_t move_size = lz->write_pos - move_offset;

	assert(move_offset + move_size <= lz->size);

	memmove(lz->buffer, lz->buffer + move_offset, move_size);

	lz->offset += move_offset;
	lz->read_pos -= move_offset;
	lz->read_limit -= move_offset;
	lz->write_pos -= move_offset;

	return;
}


/// \brief      Tries to fill the input window (lz->buffer)
///
/// If we are the last encoder in the chain, our input data is in in[].
/// Otherwise we call the next filter in the chain to process in[] and
/// write its output to lz->buffer.
///
/// This function must not be called once it has returned LZMA_STREAM_END.
///
static lzma_ret
fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
		size_t *in_pos, size_t in_size, lzma_action action)
{
	assert(coder->lz.read_pos <= coder->lz.write_pos);

	// Move the sliding window if needed.
	if (coder->lz.read_pos >= coder->lz.size - coder->lz.keep_size_after)
		move_window(&coder->lz);

	size_t in_used;
	lzma_ret ret;
	if (coder->next.code == NULL) {
		// Not using a filter, simply memcpy() as much as possible.
		in_used = bufcpy(in, in_pos, in_size, coder->lz.buffer,
				&coder->lz.write_pos, coder->lz.size);

		if (action != LZMA_RUN && *in_pos == in_size)
			ret = LZMA_STREAM_END;
		else
			ret = LZMA_OK;

	} else {
		const size_t in_start = *in_pos;
		ret = coder->next.code(coder->next.coder, allocator,
				in, in_pos, in_size,
				coder->lz.buffer, &coder->lz.write_pos,
				coder->lz.size, action);
		in_used = *in_pos - in_start;
	}

	assert(coder->lz.uncompressed_size >= in_used);
	if (coder->lz.uncompressed_size != LZMA_VLI_VALUE_UNKNOWN)
		coder->lz.uncompressed_size -= in_used;

	// If end of stream has been reached or flushing completed, we allow
	// the encoder to process all the input (that is, read_pos is allowed
	// to reach write_pos). Otherwise we keep keep_size_after bytes
	// available as prebuffer.
	if (ret == LZMA_STREAM_END) {
		assert(*in_pos == in_size);
		coder->lz.read_limit = coder->lz.write_pos;
		ret = LZMA_OK;

		switch (action) {
		case LZMA_SYNC_FLUSH:
			coder->lz.sequence = SEQ_FLUSH;
			break;

		case LZMA_FINISH:
			coder->lz.sequence = SEQ_FINISH;
			break;

		default:
			assert(0);
			ret = LZMA_PROG_ERROR;
			break;
		}

	} else if (coder->lz.write_pos > coder->lz.keep_size_after) {
		// This needs to be done conditionally, because if we got
		// only little new input, there may be too little input
		// to do any encoding yet.
		coder->lz.read_limit = coder->lz.write_pos
				- coder->lz.keep_size_after;
	}

	// Switch to finishing mode if we have got all the input data.
	// lzma_lz_encode() won't return LZMA_STREAM_END until LZMA_FINISH
	// is used.
	//
	// NOTE: When LZMA is used together with other filters, it is possible
	// that coder->lz.sequence gets set to SEQ_FINISH before the next
	// encoder has returned LZMA_STREAM_END. This is somewhat ugly, but
	// works correctly, because the next encoder cannot have any more
	// output left to be produced. If it had, then our known Uncompressed
	// Size would be invalid, which would mean that we have a bad bug.
	if (ret == LZMA_OK && coder->lz.uncompressed_size == 0)
		coder->lz.sequence = SEQ_FINISH;

	// Restart the match finder after finished LZMA_SYNC_FLUSH.
	if (coder->lz.pending > 0
			&& coder->lz.read_pos < coder->lz.read_limit) {
		// Match finder may update coder->pending and expects it to
		// start from zero, so use a temporary variable.
		const size_t pending = coder->lz.pending;
		coder->lz.pending = 0;

		// Rewind read_pos so that the match finder can hash
		// the pending bytes.
		assert(coder->lz.read_pos >= pending);
		coder->lz.read_pos -= pending;
		coder->lz.skip(&coder->lz, pending);
	}

	return ret;
}


extern lzma_ret
lzma_lz_encode(lzma_coder *coder, lzma_allocator *allocator,
		const uint8_t *restrict in, size_t *restrict in_pos,
		size_t in_size,
		uint8_t *restrict out, size_t *restrict out_pos,
		size_t out_size, lzma_action action)
{
	// Flush the temporary output buffer, which may be used when the
	// encoder runs of out of space in primary output buffer (the out,
	// *out_pos, and out_size variables).
	if (coder->lz.temp_size > 0) {
		const size_t out_avail = out_size - *out_pos;
		if (out_avail < coder->lz.temp_size) {
			// Cannot copy everything. Copy as much as possible
			// and move the data in lz.temp to the beginning of
			// that buffer.
			memcpy(out + *out_pos, coder->lz.temp, out_avail);
			*out_pos += out_avail;
			memmove(coder->lz.temp, coder->lz.temp + out_avail,
					coder->lz.temp_size - out_avail);
			coder->lz.temp_size -= out_avail;
			return LZMA_OK;
		}

		// We can copy everything from coder->lz.temp to out.
		memcpy(out + *out_pos, coder->lz.temp, coder->lz.temp_size);
		*out_pos += coder->lz.temp_size;
		coder->lz.temp_size = 0;
	}

	switch (coder->lz.sequence) {
	case SEQ_START:
		assert(coder->lz.read_pos == coder->lz.write_pos);

		// If there is no new input data and LZMA_SYNC_FLUSH is used
		// immediatelly after previous LZMA_SYNC_FLUSH finished or
		// at the very beginning of the input stream, we return
		// LZMA_STREAM_END immediatelly. Writing a flush marker
		// to the very beginning of the stream or right after previous
		// flush marker is not allowed by the LZMA stream format.
		if (*in_pos == in_size && action == LZMA_SYNC_FLUSH)
			return LZMA_STREAM_END;

		coder->lz.sequence = SEQ_RUN;
		break;

	case SEQ_FLUSH_END:
		// During an earlier call to this function, flushing was
		// otherwise finished except some data was left pending
		// in coder->lz.buffer. Now we have copied all that data
		// to the output buffer and can return LZMA_STREAM_END.
		coder->lz.sequence = SEQ_START;
		assert(action == LZMA_SYNC_FLUSH);
		return LZMA_STREAM_END;

	case SEQ_END:
		// This is like the above flushing case, but for finishing
		// the encoding.
		//
		// NOTE: action is not necesarily LZMA_FINISH; it can
		// be LZMA_RUN or LZMA_SYNC_FLUSH too in case it is used
		// at the end of the stream with known Uncompressed Size.
		return action != LZMA_RUN ? LZMA_STREAM_END : LZMA_OK;

	default:
		break;
	}

	while (*out_pos < out_size
			&& (*in_pos < in_size || action != LZMA_RUN)) {
		// Read more data to coder->lz.buffer if needed.
		if (coder->lz.sequence == SEQ_RUN
				&& coder->lz.read_pos >= coder->lz.read_limit)
			return_if_error(fill_window(coder, allocator,
					in, in_pos, in_size, action));

		// Encode
		if (coder->lz.process(coder, out, out_pos, out_size)) {
			if (coder->lz.sequence == SEQ_FLUSH) {
				assert(action == LZMA_SYNC_FLUSH);
				if (coder->lz.temp_size == 0) {
					// Flushing was finished successfully.
					coder->lz.sequence = SEQ_START;
				} else {
					// Flushing was otherwise finished,
					// except that some data was left
					// into coder->lz.buffer.
					coder->lz.sequence = SEQ_FLUSH_END;
				}
			} else {
				// NOTE: action may be LZMA_RUN here in case
				// Uncompressed Size is known and we have
				// processed all the data already.
				assert(coder->lz.sequence == SEQ_FINISH);
				coder->lz.sequence = SEQ_END;
			}

			return action != LZMA_RUN && coder->lz.temp_size == 0
					? LZMA_STREAM_END : LZMA_OK;
		}
	}

	return LZMA_OK;
}


/// \brief      Normalizes hash values
///
/// lzma_lz_normalize is called when lz->pos hits MAX_VAL_FOR_NORMALIZE,
/// which currently happens once every 2 GiB of input data (to be exact,
/// after the first 2 GiB it happens once every 2 GiB minus dictionary_size
/// bytes). lz->pos is incremented by lzma_lz_move_pos().
///
/// lz->hash contains big amount of offsets relative to lz->buffer.
/// The offsets are stored as uint32_t, which is the only reasonable
/// datatype for these offsets; uint64_t would waste far too much RAM
/// and uint16_t would limit the dictionary to 64 KiB (far too small).
///
/// When compressing files over 2 GiB, lz->buffer needs to be moved forward
/// to avoid integer overflows. We scan the lz->hash array and fix every
/// value to match the updated lz->buffer.
extern void
lzma_lz_encoder_normalize(lzma_lz_encoder *lz)
{
	const uint32_t subvalue = lz->read_pos - lz->cyclic_buffer_size;
	assert(subvalue <= INT32_MAX);

	{
		const uint32_t num_items = lz->num_items;
		uint32_t *restrict items = lz->hash;

		for (uint32_t i = 0; i < num_items; ++i) {
			// If the distance is greater than the dictionary
			// size, we can simply mark the item as empty.
			if (items[i] <= subvalue)
				items[i] = EMPTY_HASH_VALUE;
			else
				items[i] -= subvalue;
		}
	}

	// Update offset to match the new locations.
	lz->offset -= subvalue;

	return;
}