1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
///////////////////////////////////////////////////////////////////////////////
//
/// \file stream_decoder.c
/// \brief Decodes .xz Streams
//
// Author: Lasse Collin
//
///////////////////////////////////////////////////////////////////////////////
#include "stream_decoder.h"
#include "block_decoder.h"
#include "index.h"
typedef struct {
enum {
SEQ_STREAM_HEADER,
SEQ_BLOCK_HEADER,
SEQ_BLOCK_INIT,
SEQ_BLOCK_RUN,
SEQ_INDEX,
SEQ_STREAM_FOOTER,
SEQ_STREAM_PADDING,
} sequence;
/// Block decoder
lzma_next_coder block_decoder;
/// Block options decoded by the Block Header decoder and used by
/// the Block decoder.
lzma_block block_options;
/// Stream Flags from Stream Header
lzma_stream_flags stream_flags;
/// Index is hashed so that it can be compared to the sizes of Blocks
/// with O(1) memory usage.
lzma_index_hash *index_hash;
/// Memory usage limit
uint64_t memlimit;
/// Amount of memory actually needed (only an estimate)
uint64_t memusage;
/// If true, LZMA_NO_CHECK is returned if the Stream has
/// no integrity check.
bool tell_no_check;
/// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
/// an integrity check that isn't supported by this liblzma build.
bool tell_unsupported_check;
/// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
bool tell_any_check;
/// If true, we will tell the Block decoder to skip calculating
/// and verifying the integrity check.
bool ignore_check;
/// If true, we will decode concatenated Streams that possibly have
/// Stream Padding between or after them. LZMA_STREAM_END is returned
/// once the application isn't giving us any new input (LZMA_FINISH),
/// and we aren't in the middle of a Stream, and possible
/// Stream Padding is a multiple of four bytes.
bool concatenated;
/// When decoding concatenated Streams, this is true as long as we
/// are decoding the first Stream. This is needed to avoid misleading
/// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
/// bytes.
bool first_stream;
/// Write position in buffer[] and position in Stream Padding
size_t pos;
/// Buffer to hold Stream Header, Block Header, and Stream Footer.
/// Block Header has biggest maximum size.
uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
} lzma_stream_coder;
static lzma_ret
stream_decoder_reset(lzma_stream_coder *coder, const lzma_allocator *allocator)
{
// Initialize the Index hash used to verify the Index.
coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
if (coder->index_hash == NULL)
return LZMA_MEM_ERROR;
// Reset the rest of the variables.
coder->sequence = SEQ_STREAM_HEADER;
coder->pos = 0;
return LZMA_OK;
}
static lzma_ret
stream_decode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_stream_coder *coder = coder_ptr;
// When decoding the actual Block, it may be able to produce more
// output even if we don't give it any new input.
while (true)
switch (coder->sequence) {
case SEQ_STREAM_HEADER: {
// Copy the Stream Header to the internal buffer.
lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
LZMA_STREAM_HEADER_SIZE);
// Return if we didn't get the whole Stream Header yet.
if (coder->pos < LZMA_STREAM_HEADER_SIZE)
return LZMA_OK;
coder->pos = 0;
// Decode the Stream Header.
const lzma_ret ret = lzma_stream_header_decode(
&coder->stream_flags, coder->buffer);
if (ret != LZMA_OK)
return ret == LZMA_FORMAT_ERROR && !coder->first_stream
? LZMA_DATA_ERROR : ret;
// If we are decoding concatenated Streams, and the later
// Streams have invalid Header Magic Bytes, we give
// LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
coder->first_stream = false;
// Copy the type of the Check so that Block Header and Block
// decoders see it.
coder->block_options.check = coder->stream_flags.check;
// Even if we return LZMA_*_CHECK below, we want
// to continue from Block Header decoding.
coder->sequence = SEQ_BLOCK_HEADER;
// Detect if there's no integrity check or if it is
// unsupported if those were requested by the application.
if (coder->tell_no_check && coder->stream_flags.check
== LZMA_CHECK_NONE)
return LZMA_NO_CHECK;
if (coder->tell_unsupported_check
&& !lzma_check_is_supported(
coder->stream_flags.check))
return LZMA_UNSUPPORTED_CHECK;
if (coder->tell_any_check)
return LZMA_GET_CHECK;
}
// Fall through
case SEQ_BLOCK_HEADER: {
if (*in_pos >= in_size)
return LZMA_OK;
if (coder->pos == 0) {
// Detect if it's Index.
if (in[*in_pos] == INDEX_INDICATOR) {
coder->sequence = SEQ_INDEX;
break;
}
// Calculate the size of the Block Header. Note that
// Block Header decoder wants to see this byte too
// so don't advance *in_pos.
coder->block_options.header_size
= lzma_block_header_size_decode(
in[*in_pos]);
}
// Copy the Block Header to the internal buffer.
lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
coder->block_options.header_size);
// Return if we didn't get the whole Block Header yet.
if (coder->pos < coder->block_options.header_size)
return LZMA_OK;
coder->pos = 0;
coder->sequence = SEQ_BLOCK_INIT;
}
// Fall through
case SEQ_BLOCK_INIT: {
// Checking memusage and doing the initialization needs
// its own sequence point because we need to be able to
// retry if we return LZMA_MEMLIMIT_ERROR.
// Version 1 is needed to support the .ignore_check option.
coder->block_options.version = 1;
// Set up a buffer to hold the filter chain. Block Header
// decoder will initialize all members of this array so
// we don't need to do it here.
lzma_filter filters[LZMA_FILTERS_MAX + 1];
coder->block_options.filters = filters;
// Decode the Block Header.
return_if_error(lzma_block_header_decode(&coder->block_options,
allocator, coder->buffer));
// If LZMA_IGNORE_CHECK was used, this flag needs to be set.
// It has to be set after lzma_block_header_decode() because
// it always resets this to false.
coder->block_options.ignore_check = coder->ignore_check;
// Check the memory usage limit.
const uint64_t memusage = lzma_raw_decoder_memusage(filters);
lzma_ret ret;
if (memusage == UINT64_MAX) {
// One or more unknown Filter IDs.
ret = LZMA_OPTIONS_ERROR;
} else {
// Now we can set coder->memusage since we know that
// the filter chain is valid. We don't want
// lzma_memusage() to return UINT64_MAX in case of
// invalid filter chain.
coder->memusage = memusage;
if (memusage > coder->memlimit) {
// The chain would need too much memory.
ret = LZMA_MEMLIMIT_ERROR;
} else {
// Memory usage is OK.
// Initialize the Block decoder.
ret = lzma_block_decoder_init(
&coder->block_decoder,
allocator,
&coder->block_options);
}
}
// Free the allocated filter options since they are needed
// only to initialize the Block decoder.
lzma_filters_free(filters, allocator);
coder->block_options.filters = NULL;
// Check if memory usage calculation and Block decoder
// initialization succeeded.
if (ret != LZMA_OK)
return ret;
coder->sequence = SEQ_BLOCK_RUN;
}
// Fall through
case SEQ_BLOCK_RUN: {
const lzma_ret ret = coder->block_decoder.code(
coder->block_decoder.coder, allocator,
in, in_pos, in_size, out, out_pos, out_size,
action);
if (ret != LZMA_STREAM_END)
return ret;
// Block decoded successfully. Add the new size pair to
// the Index hash.
return_if_error(lzma_index_hash_append(coder->index_hash,
lzma_block_unpadded_size(
&coder->block_options),
coder->block_options.uncompressed_size));
coder->sequence = SEQ_BLOCK_HEADER;
break;
}
case SEQ_INDEX: {
// If we don't have any input, don't call
// lzma_index_hash_decode() since it would return
// LZMA_BUF_ERROR, which we must not do here.
if (*in_pos >= in_size)
return LZMA_OK;
// Decode the Index and compare it to the hash calculated
// from the sizes of the Blocks (if any).
const lzma_ret ret = lzma_index_hash_decode(coder->index_hash,
in, in_pos, in_size);
if (ret != LZMA_STREAM_END)
return ret;
coder->sequence = SEQ_STREAM_FOOTER;
}
// Fall through
case SEQ_STREAM_FOOTER: {
// Copy the Stream Footer to the internal buffer.
lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
LZMA_STREAM_HEADER_SIZE);
// Return if we didn't get the whole Stream Footer yet.
if (coder->pos < LZMA_STREAM_HEADER_SIZE)
return LZMA_OK;
coder->pos = 0;
// Decode the Stream Footer. The decoder gives
// LZMA_FORMAT_ERROR if the magic bytes don't match,
// so convert that return code to LZMA_DATA_ERROR.
lzma_stream_flags footer_flags;
const lzma_ret ret = lzma_stream_footer_decode(
&footer_flags, coder->buffer);
if (ret != LZMA_OK)
return ret == LZMA_FORMAT_ERROR
? LZMA_DATA_ERROR : ret;
// Check that Index Size stored in the Stream Footer matches
// the real size of the Index field.
if (lzma_index_hash_size(coder->index_hash)
!= footer_flags.backward_size)
return LZMA_DATA_ERROR;
// Compare that the Stream Flags fields are identical in
// both Stream Header and Stream Footer.
return_if_error(lzma_stream_flags_compare(
&coder->stream_flags, &footer_flags));
if (!coder->concatenated)
return LZMA_STREAM_END;
coder->sequence = SEQ_STREAM_PADDING;
}
// Fall through
case SEQ_STREAM_PADDING:
assert(coder->concatenated);
// Skip over possible Stream Padding.
while (true) {
if (*in_pos >= in_size) {
// Unless LZMA_FINISH was used, we cannot
// know if there's more input coming later.
if (action != LZMA_FINISH)
return LZMA_OK;
// Stream Padding must be a multiple of
// four bytes.
return coder->pos == 0
? LZMA_STREAM_END
: LZMA_DATA_ERROR;
}
// If the byte is not zero, it probably indicates
// beginning of a new Stream (or the file is corrupt).
if (in[*in_pos] != 0x00)
break;
++*in_pos;
coder->pos = (coder->pos + 1) & 3;
}
// Stream Padding must be a multiple of four bytes (empty
// Stream Padding is OK).
if (coder->pos != 0) {
++*in_pos;
return LZMA_DATA_ERROR;
}
// Prepare to decode the next Stream.
return_if_error(stream_decoder_reset(coder, allocator));
break;
default:
assert(0);
return LZMA_PROG_ERROR;
}
// Never reached
}
static void
stream_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_stream_coder *coder = coder_ptr;
lzma_next_end(&coder->block_decoder, allocator);
lzma_index_hash_end(coder->index_hash, allocator);
lzma_free(coder, allocator);
return;
}
static lzma_check
stream_decoder_get_check(const void *coder_ptr)
{
const lzma_stream_coder *coder = coder_ptr;
return coder->stream_flags.check;
}
static lzma_ret
stream_decoder_memconfig(void *coder_ptr, uint64_t *memusage,
uint64_t *old_memlimit, uint64_t new_memlimit)
{
lzma_stream_coder *coder = coder_ptr;
*memusage = coder->memusage;
*old_memlimit = coder->memlimit;
if (new_memlimit != 0) {
if (new_memlimit < coder->memusage)
return LZMA_MEMLIMIT_ERROR;
coder->memlimit = new_memlimit;
}
return LZMA_OK;
}
extern lzma_ret
lzma_stream_decoder_init(
lzma_next_coder *next, const lzma_allocator *allocator,
uint64_t memlimit, uint32_t flags)
{
lzma_next_coder_init(&lzma_stream_decoder_init, next, allocator);
if (flags & ~LZMA_SUPPORTED_FLAGS)
return LZMA_OPTIONS_ERROR;
lzma_stream_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_stream_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &stream_decode;
next->end = &stream_decoder_end;
next->get_check = &stream_decoder_get_check;
next->memconfig = &stream_decoder_memconfig;
coder->block_decoder = LZMA_NEXT_CODER_INIT;
coder->index_hash = NULL;
}
coder->memlimit = my_max(1, memlimit);
coder->memusage = LZMA_MEMUSAGE_BASE;
coder->tell_no_check = (flags & LZMA_TELL_NO_CHECK) != 0;
coder->tell_unsupported_check
= (flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
coder->tell_any_check = (flags & LZMA_TELL_ANY_CHECK) != 0;
coder->ignore_check = (flags & LZMA_IGNORE_CHECK) != 0;
coder->concatenated = (flags & LZMA_CONCATENATED) != 0;
coder->first_stream = true;
return stream_decoder_reset(coder, allocator);
}
extern LZMA_API(lzma_ret)
lzma_stream_decoder(lzma_stream *strm, uint64_t memlimit, uint32_t flags)
{
lzma_next_strm_init(lzma_stream_decoder_init, strm, memlimit, flags);
strm->internal->supported_actions[LZMA_RUN] = true;
strm->internal->supported_actions[LZMA_FINISH] = true;
return LZMA_OK;
}
|