1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
///////////////////////////////////////////////////////////////////////////////
//
/// \file index_decoder.c
/// \brief Decodes the Index field
//
// Author: Lasse Collin
//
///////////////////////////////////////////////////////////////////////////////
#include "index_decoder.h"
#include "check.h"
typedef struct {
enum {
SEQ_INDICATOR,
SEQ_COUNT,
SEQ_MEMUSAGE,
SEQ_UNPADDED,
SEQ_UNCOMPRESSED,
SEQ_PADDING_INIT,
SEQ_PADDING,
SEQ_CRC32,
} sequence;
/// Memory usage limit
uint64_t memlimit;
/// Target Index
lzma_index *index;
/// Pointer give by the application, which is set after
/// successful decoding.
lzma_index **index_ptr;
/// Number of Records left to decode.
lzma_vli count;
/// The most recent Unpadded Size field
lzma_vli unpadded_size;
/// The most recent Uncompressed Size field
lzma_vli uncompressed_size;
/// Position in integers
size_t pos;
/// CRC32 of the List of Records field
uint32_t crc32;
} lzma_index_coder;
static lzma_ret
index_decode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size,
uint8_t *restrict out lzma_attribute((__unused__)),
size_t *restrict out_pos lzma_attribute((__unused__)),
size_t out_size lzma_attribute((__unused__)),
lzma_action action lzma_attribute((__unused__)))
{
lzma_index_coder *coder = coder_ptr;
// Similar optimization as in index_encoder.c
const size_t in_start = *in_pos;
lzma_ret ret = LZMA_OK;
while (*in_pos < in_size)
switch (coder->sequence) {
case SEQ_INDICATOR:
// Return LZMA_DATA_ERROR instead of e.g. LZMA_PROG_ERROR or
// LZMA_FORMAT_ERROR, because a typical usage case for Index
// decoder is when parsing the Stream backwards. If seeking
// backward from the Stream Footer gives us something that
// doesn't begin with Index Indicator, the file is considered
// corrupt, not "programming error" or "unrecognized file
// format". One could argue that the application should
// verify the Index Indicator before trying to decode the
// Index, but well, I suppose it is simpler this way.
if (in[(*in_pos)++] != INDEX_INDICATOR)
return LZMA_DATA_ERROR;
coder->sequence = SEQ_COUNT;
break;
case SEQ_COUNT:
ret = lzma_vli_decode(&coder->count, &coder->pos,
in, in_pos, in_size);
if (ret != LZMA_STREAM_END)
goto out;
coder->pos = 0;
coder->sequence = SEQ_MEMUSAGE;
// Fall through
case SEQ_MEMUSAGE:
if (lzma_index_memusage(1, coder->count) > coder->memlimit) {
ret = LZMA_MEMLIMIT_ERROR;
goto out;
}
// Tell the Index handling code how many Records this
// Index has to allow it to allocate memory more efficiently.
lzma_index_prealloc(coder->index, coder->count);
ret = LZMA_OK;
coder->sequence = coder->count == 0
? SEQ_PADDING_INIT : SEQ_UNPADDED;
break;
case SEQ_UNPADDED:
case SEQ_UNCOMPRESSED: {
lzma_vli *size = coder->sequence == SEQ_UNPADDED
? &coder->unpadded_size
: &coder->uncompressed_size;
ret = lzma_vli_decode(size, &coder->pos,
in, in_pos, in_size);
if (ret != LZMA_STREAM_END)
goto out;
ret = LZMA_OK;
coder->pos = 0;
if (coder->sequence == SEQ_UNPADDED) {
// Validate that encoded Unpadded Size isn't too small
// or too big.
if (coder->unpadded_size < UNPADDED_SIZE_MIN
|| coder->unpadded_size
> UNPADDED_SIZE_MAX)
return LZMA_DATA_ERROR;
coder->sequence = SEQ_UNCOMPRESSED;
} else {
// Add the decoded Record to the Index.
return_if_error(lzma_index_append(
coder->index, allocator,
coder->unpadded_size,
coder->uncompressed_size));
// Check if this was the last Record.
coder->sequence = --coder->count == 0
? SEQ_PADDING_INIT
: SEQ_UNPADDED;
}
break;
}
case SEQ_PADDING_INIT:
coder->pos = lzma_index_padding_size(coder->index);
coder->sequence = SEQ_PADDING;
// Fall through
case SEQ_PADDING:
if (coder->pos > 0) {
--coder->pos;
if (in[(*in_pos)++] != 0x00)
return LZMA_DATA_ERROR;
break;
}
// Finish the CRC32 calculation.
coder->crc32 = lzma_crc32(in + in_start,
*in_pos - in_start, coder->crc32);
coder->sequence = SEQ_CRC32;
// Fall through
case SEQ_CRC32:
do {
if (*in_pos == in_size)
return LZMA_OK;
if (((coder->crc32 >> (coder->pos * 8)) & 0xFF)
!= in[(*in_pos)++]) {
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
return LZMA_DATA_ERROR;
#endif
}
} while (++coder->pos < 4);
// Decoding was successful, now we can let the application
// see the decoded Index.
*coder->index_ptr = coder->index;
// Make index NULL so we don't free it unintentionally.
coder->index = NULL;
return LZMA_STREAM_END;
default:
assert(0);
return LZMA_PROG_ERROR;
}
out:
// Update the CRC32.
//
// Avoid null pointer + 0 (undefined behavior) in "in + in_start".
// In such a case we had no input and thus in_used == 0.
{
const size_t in_used = *in_pos - in_start;
if (in_used > 0)
coder->crc32 = lzma_crc32(in + in_start,
in_used, coder->crc32);
}
return ret;
}
static void
index_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_index_coder *coder = coder_ptr;
lzma_index_end(coder->index, allocator);
lzma_free(coder, allocator);
return;
}
static lzma_ret
index_decoder_memconfig(void *coder_ptr, uint64_t *memusage,
uint64_t *old_memlimit, uint64_t new_memlimit)
{
lzma_index_coder *coder = coder_ptr;
*memusage = lzma_index_memusage(1, coder->count);
*old_memlimit = coder->memlimit;
if (new_memlimit != 0) {
if (new_memlimit < *memusage)
return LZMA_MEMLIMIT_ERROR;
coder->memlimit = new_memlimit;
}
return LZMA_OK;
}
static lzma_ret
index_decoder_reset(lzma_index_coder *coder, const lzma_allocator *allocator,
lzma_index **i, uint64_t memlimit)
{
// Remember the pointer given by the application. We will set it
// to point to the decoded Index only if decoding is successful.
// Before that, keep it NULL so that applications can always safely
// pass it to lzma_index_end() no matter did decoding succeed or not.
coder->index_ptr = i;
*i = NULL;
// We always allocate a new lzma_index.
coder->index = lzma_index_init(allocator);
if (coder->index == NULL)
return LZMA_MEM_ERROR;
// Initialize the rest.
coder->sequence = SEQ_INDICATOR;
coder->memlimit = my_max(1, memlimit);
coder->count = 0; // Needs to be initialized due to _memconfig().
coder->pos = 0;
coder->crc32 = 0;
return LZMA_OK;
}
extern lzma_ret
lzma_index_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
lzma_index **i, uint64_t memlimit)
{
lzma_next_coder_init(&lzma_index_decoder_init, next, allocator);
if (i == NULL)
return LZMA_PROG_ERROR;
lzma_index_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_index_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &index_decode;
next->end = &index_decoder_end;
next->memconfig = &index_decoder_memconfig;
coder->index = NULL;
} else {
lzma_index_end(coder->index, allocator);
}
return index_decoder_reset(coder, allocator, i, memlimit);
}
extern LZMA_API(lzma_ret)
lzma_index_decoder(lzma_stream *strm, lzma_index **i, uint64_t memlimit)
{
lzma_next_strm_init(lzma_index_decoder_init, strm, i, memlimit);
strm->internal->supported_actions[LZMA_RUN] = true;
strm->internal->supported_actions[LZMA_FINISH] = true;
return LZMA_OK;
}
extern LZMA_API(lzma_ret)
lzma_index_buffer_decode(lzma_index **i, uint64_t *memlimit,
const lzma_allocator *allocator,
const uint8_t *in, size_t *in_pos, size_t in_size)
{
// Sanity checks
if (i == NULL || memlimit == NULL
|| in == NULL || in_pos == NULL || *in_pos > in_size)
return LZMA_PROG_ERROR;
// Initialize the decoder.
lzma_index_coder coder;
return_if_error(index_decoder_reset(&coder, allocator, i, *memlimit));
// Store the input start position so that we can restore it in case
// of an error.
const size_t in_start = *in_pos;
// Do the actual decoding.
lzma_ret ret = index_decode(&coder, allocator, in, in_pos, in_size,
NULL, NULL, 0, LZMA_RUN);
if (ret == LZMA_STREAM_END) {
ret = LZMA_OK;
} else {
// Something went wrong, free the Index structure and restore
// the input position.
lzma_index_end(coder.index, allocator);
*in_pos = in_start;
if (ret == LZMA_OK) {
// The input is truncated or otherwise corrupt.
// Use LZMA_DATA_ERROR instead of LZMA_BUF_ERROR
// like lzma_vli_decode() does in single-call mode.
ret = LZMA_DATA_ERROR;
} else if (ret == LZMA_MEMLIMIT_ERROR) {
// Tell the caller how much memory would have
// been needed.
*memlimit = lzma_index_memusage(1, coder.count);
}
}
return ret;
}
|