aboutsummaryrefslogtreecommitdiff
path: root/doc/man/txt/xz.txt
blob: b8bbc8a45b174d50dc967608c0f86a9c06d2b9a0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
XZ(1)                              XZ Utils                              XZ(1)



NAME
       xz,  unxz,  xzcat, lzma, unlzma, lzcat - Compress or decompress .xz and
       .lzma files

SYNOPSIS
       xz [option...]  [file...]

COMMAND ALIASES
       unxz is equivalent to xz --decompress.
       xzcat is equivalent to xz --decompress --stdout.
       lzma is equivalent to xz --format=lzma.
       unlzma is equivalent to xz --format=lzma --decompress.
       lzcat is equivalent to xz --format=lzma --decompress --stdout.

       When writing scripts that need to decompress files, it  is  recommended
       to  always use the name xz with appropriate arguments (xz -d or xz -dc)
       instead of the names unxz and xzcat.

DESCRIPTION
       xz is a general-purpose data compression tool with command line  syntax
       similar  to  gzip(1)  and  bzip2(1).  The native file format is the .xz
       format, but the legacy .lzma format used by LZMA  Utils  and  raw  com-
       pressed  streams  with  no container format headers are also supported.
       In addition, decompression of the .lz format used by lzip is supported.

       xz compresses or decompresses each file according to the selected oper-
       ation mode.  If no files are given or file is -, xz reads from standard
       input and writes the processed data to standard output.  xz will refuse
       (display  an error and skip the file) to write compressed data to stan-
       dard output if it is a terminal.  Similarly, xz  will  refuse  to  read
       compressed data from standard input if it is a terminal.

       Unless  --stdout  is specified, files other than - are written to a new
       file whose name is derived from the source file name:

       o  When compressing, the suffix of  the  target  file  format  (.xz  or
          .lzma)  is  appended  to the source filename to get the target file-
          name.

       o  When decompressing, the .xz, .lzma, or .lz suffix  is  removed  from
          the  filename  to  get  the target filename.  xz also recognizes the
          suffixes .txz and .tlz, and replaces them with the .tar suffix.

       If the target file already exists, an error is displayed and  the  file
       is skipped.

       Unless  writing  to standard output, xz will display a warning and skip
       the file if any of the following applies:

       o  File is not a regular file.  Symbolic links are  not  followed,  and
          thus they are not considered to be regular files.

       o  File has more than one hard link.

       o  File has setuid, setgid, or sticky bit set.

       o  The  operation  mode  is  set to compress and the file already has a
          suffix of the target file format (.xz or .txz  when  compressing  to
          the .xz format, and .lzma or .tlz when compressing to the .lzma for-
          mat).

       o  The operation mode is set to decompress and the file doesn't have  a
          suffix of any of the supported file formats (.xz, .txz, .lzma, .tlz,
          or .lz).

       After successfully compressing or decompressing the file, xz copies the
       owner,  group, permissions, access time, and modification time from the
       source file to the target file.  If copying the group fails,  the  per-
       missions are modified so that the target file doesn't become accessible
       to users who didn't have permission to  access  the  source  file.   xz
       doesn't support copying other metadata like access control lists or ex-
       tended attributes yet.

       Once the target file has been successfully closed, the source  file  is
       removed  unless --keep was specified.  The source file is never removed
       if the output is written to standard output or if an error occurs.

       Sending SIGINFO or SIGUSR1 to the xz process makes  it  print  progress
       information  to  standard  error.  This has only limited use since when
       standard error is a terminal, using --verbose will display an automati-
       cally updating progress indicator.

   Memory usage
       The  memory  usage of xz varies from a few hundred kilobytes to several
       gigabytes depending on the compression  settings.   The  settings  used
       when compressing a file determine the memory requirements of the decom-
       pressor.  Typically the decompressor needs 5 % to 20 % of the amount of
       memory that the compressor needed when creating the file.  For example,
       decompressing a file created with xz -9 currently  requires  65 MiB  of
       memory.   Still,  it is possible to have .xz files that require several
       gigabytes of memory to decompress.

       Especially users of older systems may  find  the  possibility  of  very
       large  memory  usage  annoying.  To prevent uncomfortable surprises, xz
       has a built-in memory usage limiter,  which  is  disabled  by  default.
       While  some operating systems provide ways to limit the memory usage of
       processes, relying on it wasn't deemed to be flexible enough (for exam-
       ple, using ulimit(1) to limit virtual memory tends to cripple mmap(2)).

       The  memory  usage  limiter can be enabled with the command line option
       --memlimit=limit.  Often it is more convenient to enable the limiter by
       default  by  setting the environment variable XZ_DEFAULTS, for example,
       XZ_DEFAULTS=--memlimit=150MiB.  It is possible to set the limits  sepa-
       rately  for  compression  and  decompression  by  using --memlimit-com-
       press=limit and --memlimit-decompress=limit.  Using these  two  options
       outside  XZ_DEFAULTS is rarely useful because a single run of xz cannot
       do both compression  and  decompression  and  --memlimit=limit  (or  -M
       limit) is shorter to type on the command line.

       If  the specified memory usage limit is exceeded when decompressing, xz
       will display an error and decompressing the file  will  fail.   If  the
       limit  is  exceeded when compressing, xz will try to scale the settings
       down so that the limit is no longer exceeded (except when using  --for-
       mat=raw  or --no-adjust).  This way the operation won't fail unless the
       limit is very small.  The scaling of the settings is done in steps that
       don't match the compression level presets, for example, if the limit is
       only slightly less than the amount required for  xz  -9,  the  settings
       will be scaled down only a little, not all the way down to xz -8.

   Concatenation and padding with .xz files
       It is possible to concatenate .xz files as is.  xz will decompress such
       files as if they were a single .xz file.

       It is possible to insert padding between the concatenated parts or  af-
       ter the last part.  The padding must consist of null bytes and the size
       of the padding must be a multiple of four bytes.  This can  be  useful,
       for  example,  if the .xz file is stored on a medium that measures file
       sizes in 512-byte blocks.

       Concatenation and padding are not  allowed  with  .lzma  files  or  raw
       streams.

OPTIONS
   Integer suffixes and special values
       In  most places where an integer argument is expected, an optional suf-
       fix is supported to easily indicate large integers.  There must  be  no
       space between the integer and the suffix.

       KiB    Multiply  the integer by 1,024 (2^10).  Ki, k, kB, K, and KB are
              accepted as synonyms for KiB.

       MiB    Multiply the integer by 1,048,576 (2^20).  Mi, m, M, and MB  are
              accepted as synonyms for MiB.

       GiB    Multiply  the integer by 1,073,741,824 (2^30).  Gi, g, G, and GB
              are accepted as synonyms for GiB.

       The special value max can be used to indicate the maximum integer value
       supported by the option.

   Operation mode
       If  multiple  operation  mode options are given, the last one takes ef-
       fect.

       -z, --compress
              Compress.  This is the default operation mode when no  operation
              mode  option is specified and no other operation mode is implied
              from the command name (for example, unxz implies --decompress).

       -d, --decompress, --uncompress
              Decompress.

       -t, --test
              Test the integrity of compressed files.  This option is  equiva-
              lent  to --decompress --stdout except that the decompressed data
              is discarded instead of being written to  standard  output.   No
              files are created or removed.

       -l, --list
              Print  information about compressed files.  No uncompressed out-
              put is produced, and no files are created or removed.   In  list
              mode,  the program cannot read the compressed data from standard
              input or from other unseekable sources.

              The default listing shows basic  information  about  files,  one
              file  per  line.  To get more detailed information, use also the
              --verbose option.  For  even  more  information,  use  --verbose
              twice,  but  note that this may be slow, because getting all the
              extra information requires many seeks.   The  width  of  verbose
              output exceeds 80 characters, so piping the output to, for exam-
              ple, less -S may  be  convenient  if  the  terminal  isn't  wide
              enough.

              The  exact output may vary between xz versions and different lo-
              cales.  For machine-readable output, --robot  --list  should  be
              used.

   Operation modifiers
       -k, --keep
              Don't delete the input files.

              Since xz 5.2.6, this option also makes xz compress or decompress
              even if the input is a symbolic link to a regular file, has more
              than  one  hard  link,  or has the setuid, setgid, or sticky bit
              set.  The setuid, setgid, and sticky bits are not copied to  the
              target  file.   In  earlier  versions  this  was  only done with
              --force.

       -f, --force
              This option has several effects:

              o  If the target file already exists, delete it before compress-
                 ing or decompressing.

              o  Compress  or  decompress even if the input is a symbolic link
                 to a regular file, has more than one hard link,  or  has  the
                 setuid,  setgid,  or sticky bit set.  The setuid, setgid, and
                 sticky bits are not copied to the target file.

              o  When used with --decompress --stdout and xz cannot  recognize
                 the  type  of  the source file, copy the source file as is to
                 standard output.  This allows xzcat --force to be  used  like
                 cat(1) for files that have not been compressed with xz.  Note
                 that in future, xz might support new compressed file formats,
                 which  may  make xz decompress more types of files instead of
                 copying them as is to standard output.   --format=format  can
                 be  used to restrict xz to decompress only a single file for-
                 mat.

       -c, --stdout, --to-stdout
              Write the compressed or decompressed data to standard output in-
              stead of a file.  This implies --keep.

       --single-stream
              Decompress only the first .xz stream, and silently ignore possi-
              ble remaining input data following the  stream.   Normally  such
              trailing garbage makes xz display an error.

              xz  never  decompresses more than one stream from .lzma files or
              raw streams, but this option still makes xz ignore the  possible
              trailing data after the .lzma file or raw stream.

              This  option has no effect if the operation mode is not --decom-
              press or --test.

       --no-sparse
              Disable creation of sparse files.  By default, if  decompressing
              into a regular file, xz tries to make the file sparse if the de-
              compressed data contains long sequences  of  binary  zeros.   It
              also  works  when writing to standard output as long as standard
              output is connected to a regular  file  and  certain  additional
              conditions  are  met to make it safe.  Creating sparse files may
              save disk space and speed up the decompression by  reducing  the
              amount of disk I/O.

       -S .suf, --suffix=.suf
              When compressing, use .suf as the suffix for the target file in-
              stead of .xz or .lzma.  If not writing to  standard  output  and
              the  source  file already has the suffix .suf, a warning is dis-
              played and the file is skipped.

              When decompressing, recognize files with the suffix .suf in  ad-
              dition  to files with the .xz, .txz, .lzma, .tlz, or .lz suffix.
              If the source file has the suffix .suf, the suffix is removed to
              get the target filename.

              When  compressing  or  decompressing raw streams (--format=raw),
              the suffix must always be specified unless writing  to  standard
              output, because there is no default suffix for raw streams.

       --files[=file]
              Read  the  filenames  to  process from file; if file is omitted,
              filenames are read from standard input.  Filenames must be  ter-
              minated  with  the  newline character.  A dash (-) is taken as a
              regular filename; it doesn't mean standard input.  If  filenames
              are given also as command line arguments, they are processed be-
              fore the filenames read from file.

       --files0[=file]
              This is identical to --files[=file] except  that  each  filename
              must be terminated with the null character.

   Basic file format and compression options
       -F format, --format=format
              Specify the file format to compress or decompress:

              auto   This  is  the default.  When compressing, auto is equiva-
                     lent to xz.  When decompressing, the format of the  input
                     file  is  automatically  detected.  Note that raw streams
                     (created with --format=raw) cannot be auto-detected.

              xz     Compress to the .xz file format, or accept only .xz files
                     when decompressing.

              lzma, alone
                     Compress  to the legacy .lzma file format, or accept only
                     .lzma files when  decompressing.   The  alternative  name
                     alone  is  provided for backwards compatibility with LZMA
                     Utils.

              lzip   Accept only .lz files when decompressing.  Compression is
                     not supported.

                     The .lz format version 0 and the unextended version 1 are
                     supported.  Version 0 files were produced by lzip 1.3 and
                     older.   Such  files  aren't common but may be found from
                     file archives as a few source packages were  released  in
                     this  format.   People  might  have old personal files in
                     this format too.  Decompression support  for  the  format
                     version 0 was removed in lzip 1.18.

                     lzip  1.4 and later create files in the format version 1.
                     The sync flush marker extension to the format  version  1
                     was added in lzip 1.6.  This extension is rarely used and
                     isn't supported by xz (diagnosed as corrupt input).

              raw    Compress or uncompress a raw stream (no  headers).   This
                     is meant for advanced users only.  To decode raw streams,
                     you need use --format=raw and explicitly specify the fil-
                     ter  chain,  which normally would have been stored in the
                     container headers.

       -C check, --check=check
              Specify the type of the integrity check.  The  check  is  calcu-
              lated  from  the  uncompressed  data and stored in the .xz file.
              This option has an effect only when  compressing  into  the  .xz
              format;  the .lzma format doesn't support integrity checks.  The
              integrity check (if any) is verified when the .xz file is decom-
              pressed.

              Supported check types:

              none   Don't  calculate an integrity check at all.  This is usu-
                     ally a bad idea.  This can be useful  when  integrity  of
                     the data is verified by other means anyway.

              crc32  Calculate  CRC32  using  the  polynomial  from IEEE-802.3
                     (Ethernet).

              crc64  Calculate CRC64 using the polynomial from ECMA-182.  This
                     is the default, since it is slightly better than CRC32 at
                     detecting damaged files and the speed difference is  neg-
                     ligible.

              sha256 Calculate  SHA-256.   This  is somewhat slower than CRC32
                     and CRC64.

              Integrity of the .xz headers is always verified with CRC32.   It
              is not possible to change or disable it.

       --ignore-check
              Don't verify the integrity check of the compressed data when de-
              compressing.  The CRC32 values in the .xz headers will still  be
              verified normally.

              Do not use this option unless you know what you are doing.  Pos-
              sible reasons to use this option:

              o  Trying to recover data from a corrupt .xz file.

              o  Speeding up decompression.  This matters mostly with  SHA-256
                 or with files that have compressed extremely well.  It's rec-
                 ommended to not use this option for this purpose  unless  the
                 file integrity is verified externally in some other way.

       -0 ... -9
              Select  a compression preset level.  The default is -6.  If mul-
              tiple preset levels are specified, the last  one  takes  effect.
              If  a  custom filter chain was already specified, setting a com-
              pression preset level clears the custom filter chain.

              The differences between the presets are  more  significant  than
              with  gzip(1)  and  bzip2(1).  The selected compression settings
              determine the memory requirements of the decompressor, thus  us-
              ing  a too high preset level might make it painful to decompress
              the file on an old system with little RAM.   Specifically,  it's
              not  a  good idea to blindly use -9 for everything like it often
              is with gzip(1) and bzip2(1).

              -0 ... -3
                     These are somewhat fast presets.  -0 is sometimes  faster
                     than  gzip  -9 while compressing much better.  The higher
                     ones often have speed comparable to bzip2(1) with  compa-
                     rable  or  better compression ratio, although the results
                     depend a lot on the type of data being compressed.

              -4 ... -6
                     Good to very good compression while keeping  decompressor
                     memory  usage reasonable even for old systems.  -6 is the
                     default, which is usually a good choice for  distributing
                     files that need to be decompressible even on systems with
                     only 16 MiB RAM.  (-5e or -6e may  be  worth  considering
                     too.  See --extreme.)

              -7 ... -9
                     These  are  like -6 but with higher compressor and decom-
                     pressor memory requirements.  These are useful only  when
                     compressing  files bigger than 8 MiB, 16 MiB, and 32 MiB,
                     respectively.

              On the same hardware, the decompression speed is approximately a
              constant  number  of  bytes  of  compressed data per second.  In
              other words, the better the compression, the faster  the  decom-
              pression  will  usually  be.  This also means that the amount of
              uncompressed output produced per second can vary a lot.

              The following table summarises the features of the presets:

                     Preset   DictSize   CompCPU   CompMem   DecMem
                       -0     256 KiB       0        3 MiB    1 MiB
                       -1       1 MiB       1        9 MiB    2 MiB
                       -2       2 MiB       2       17 MiB    3 MiB
                       -3       4 MiB       3       32 MiB    5 MiB
                       -4       4 MiB       4       48 MiB    5 MiB
                       -5       8 MiB       5       94 MiB    9 MiB
                       -6       8 MiB       6       94 MiB    9 MiB
                       -7      16 MiB       6      186 MiB   17 MiB
                       -8      32 MiB       6      370 MiB   33 MiB
                       -9      64 MiB       6      674 MiB   65 MiB

              Column descriptions:

              o  DictSize is the LZMA2 dictionary size.  It is waste of memory
                 to  use a dictionary bigger than the size of the uncompressed
                 file.  This is why it is good to avoid using the  presets  -7
                 ...  -9 when there's no real need for them.  At -6 and lower,
                 the amount of memory wasted is usually low enough to not mat-
                 ter.

              o  CompCPU  is a simplified representation of the LZMA2 settings
                 that affect compression speed.  The dictionary  size  affects
                 speed too, so while CompCPU is the same for levels -6 ... -9,
                 higher levels still tend to be a little slower.  To get  even
                 slower and thus possibly better compression, see --extreme.

              o  CompMem  contains  the  compressor memory requirements in the
                 single-threaded mode.  It may vary slightly between  xz  ver-
                 sions.

              o  DecMem  contains  the decompressor memory requirements.  That
                 is, the compression settings determine  the  memory  require-
                 ments of the decompressor.  The exact decompressor memory us-
                 age is slightly more than the LZMA2 dictionary size, but  the
                 values  in  the  table  have been rounded up to the next full
                 MiB.

              Memory requirements of the multi-threaded mode are significantly
              higher  than that of the single-threaded mode.  With the default
              value of --block-size, each thread needs 3*3*DictSize plus Comp-
              Mem  or  DecMem.  For example, four threads with preset -6 needs
              660-670 MiB of memory.

       -e, --extreme
              Use a slower variant of the selected  compression  preset  level
              (-0 ... -9) to hopefully get a little bit better compression ra-
              tio, but with bad luck this can also make it worse.   Decompres-
              sor  memory  usage  is not affected, but compressor memory usage
              increases a little at preset levels -0 ... -3.

              Since there are two presets  with  dictionary  sizes  4 MiB  and
              8 MiB,  the  presets  -3e  and  -5e use slightly faster settings
              (lower CompCPU) than -4e and -6e, respectively.  That way no two
              presets are identical.

                     Preset   DictSize   CompCPU   CompMem   DecMem
                      -0e     256 KiB       8        4 MiB    1 MiB
                      -1e       1 MiB       8       13 MiB    2 MiB
                      -2e       2 MiB       8       25 MiB    3 MiB
                      -3e       4 MiB       7       48 MiB    5 MiB
                      -4e       4 MiB       8       48 MiB    5 MiB
                      -5e       8 MiB       7       94 MiB    9 MiB
                      -6e       8 MiB       8       94 MiB    9 MiB
                      -7e      16 MiB       8      186 MiB   17 MiB
                      -8e      32 MiB       8      370 MiB   33 MiB

                      -9e      64 MiB       8      674 MiB   65 MiB

              For  example,  there  are a total of four presets that use 8 MiB
              dictionary, whose order from the fastest to the slowest  is  -5,
              -6, -5e, and -6e.

       --fast
       --best These  are  somewhat  misleading  aliases for -0 and -9, respec-
              tively.  These are provided  only  for  backwards  compatibility
              with LZMA Utils.  Avoid using these options.

       --block-size=size
              When  compressing  to  the .xz format, split the input data into
              blocks of size bytes.  The blocks are  compressed  independently
              from each other, which helps with multi-threading and makes lim-
              ited random-access decompression possible.  This option is typi-
              cally  used to override the default block size in multi-threaded
              mode, but this option can be used in single-threaded mode too.

              In multi-threaded mode about three times size bytes will be  al-
              located  in each thread for buffering input and output.  The de-
              fault size is three times the LZMA2 dictionary size  or  1  MiB,
              whichever is more.  Typically a good value is 2-4 times the size
              of the LZMA2 dictionary or at least 1 MiB.  Using size less than
              the LZMA2 dictionary size is waste of RAM because then the LZMA2
              dictionary buffer will never get fully used.  In  multi-threaded
              mode,  the  sizes of the blocks are stored in the block headers.
              This size information is required for multi-threaded  decompres-
              sion.

              In  single-threaded  mode no block splitting is done by default.
              Setting this option doesn't affect memory usage.  No size infor-
              mation is stored in block headers, thus files created in single-
              threaded mode won't be identical  to  files  created  in  multi-
              threaded  mode.  The lack of size information also means that xz
              won't be able decompress the files in multi-threaded mode.

       --block-list=items
              When compressing to the .xz format, start a new  block  with  an
              optional custom filter chain after the given intervals of uncom-
              pressed data.

              The items are a comma-separated list.  Each item consists of  an
              optional filter chain number between 0 and 9 followed by a colon
              (:) and a required size of uncompressed data.  Omitting an  item
              (two  or more consecutive commas) is a shorthand to use the size
              and filters of the previous item.

              If the input file is bigger than the sum of the sizes in  items,
              the  last item is repeated until the end of the file.  A special
              value of 0 may be used as the last size  to  indicate  that  the
              rest of the file should be encoded as a single block.

              An  alternative  filter chain for each block can be specified in
              combination with the --filters1=filters  ...  --filters9=filters
              options.   These options define filter chains with an identifier
              between 1-9.  Filter chain 0 can be used to refer to the default
              filter  chain,  which  is  the  same  as not specifying a filter
              chain.  The filter chain identifier can be used before  the  un-
              compressed  size,  followed by a colon (:).  For example, if one
              specifies  --block-list=1:2MiB,3:2MiB,2:4MiB,,2MiB,0:4MiB   then
              blocks will be created using:

              o  The filter chain specified by --filters1 and 2 MiB input

              o  The filter chain specified by --filters3 and 2 MiB input

              o  The filter chain specified by --filters2 and 4 MiB input

              o  The filter chain specified by --filters2 and 4 MiB input

              o  The default filter chain and 2 MiB input

              o  The  default filter chain and 4 MiB input for every block un-
                 til end of input.

              If one specifies a size that exceeds the  encoder's  block  size
              (either  the  default value in threaded mode or the value speci-
              fied with --block-size=size), the encoder will create additional
              blocks while keeping the boundaries specified in items.  For ex-
              ample,      if      one       specifies       --block-size=10MiB
              --block-list=5MiB,10MiB,8MiB,12MiB,24MiB  and  the input file is
              80 MiB, one will get 11 blocks: 5, 10, 8, 10, 2, 10, 10, 4,  10,
              10, and 1 MiB.

              In multi-threaded mode the sizes of the blocks are stored in the
              block headers.  This isn't done in single-threaded mode, so  the
              encoded  output won't be identical to that of the multi-threaded
              mode.

       --flush-timeout=timeout
              When compressing, if more than timeout milliseconds (a  positive
              integer)  has  passed  since the previous flush and reading more
              input would block, all the pending input data  is  flushed  from
              the  encoder  and made available in the output stream.  This can
              be useful if xz is used to compress data that is streamed over a
              network.   Small  timeout  values make the data available at the
              receiving end with a small delay, but large timeout values  give
              better compression ratio.

              This  feature  is disabled by default.  If this option is speci-
              fied more than once, the last one  takes  effect.   The  special
              timeout  value  of 0 can be used to explicitly disable this fea-
              ture.

              This feature is not available on non-POSIX systems.

              This feature is still experimental.  Currently xz is  unsuitable
              for  decompressing  the  stream  in real time due to how xz does
              buffering.

       --memlimit-compress=limit
              Set a memory usage limit for compression.   If  this  option  is
              specified multiple times, the last one takes effect.

              If the compression settings exceed the limit, xz will attempt to
              adjust the settings downwards so that the limit is no longer ex-
              ceeded  and display a notice that automatic adjustment was done.
              The adjustments are done in this order: reducing the  number  of
              threads, switching to single-threaded mode if even one thread in
              multi-threaded mode exceeds the limit, and finally reducing  the
              LZMA2 dictionary size.

              When  compressing  with  --format=raw or if --no-adjust has been
              specified, only the number of threads may be  reduced  since  it
              can be done without affecting the compressed output.

              If  the  limit cannot be met even with the adjustments described
              above, an error is displayed and xz will exit with  exit  status
              1.

              The limit can be specified in multiple ways:

              o  The  limit can be an absolute value in bytes.  Using an inte-
                 ger suffix like MiB can be useful.  Example:  --memlimit-com-
                 press=80MiB

              o  The  limit can be specified as a percentage of total physical
                 memory (RAM).  This can be useful especially when setting the
                 XZ_DEFAULTS  environment  variable  in a shell initialization
                 script that is shared between different computers.  That  way
                 the  limit  is automatically bigger on systems with more mem-
                 ory.  Example: --memlimit-compress=70%

              o  The limit can be reset back to its default value  by  setting
                 it  to  0.  This is currently equivalent to setting the limit
                 to max (no memory usage limit).

              For 32-bit xz there is a special case: if  the  limit  would  be
              over 4020 MiB, the limit is set to 4020 MiB.  On MIPS32 2000 MiB
              is used instead.  (The values 0 and max aren't affected by this.
              A similar feature doesn't exist for decompression.)  This can be
              helpful when a 32-bit executable has  access  to  4 GiB  address
              space  (2  GiB on MIPS32) while hopefully doing no harm in other
              situations.

              See also the section Memory usage.

       --memlimit-decompress=limit
              Set a memory usage limit for decompression.  This  also  affects
              the  --list  mode.  If the operation is not possible without ex-
              ceeding the limit, xz will display an  error  and  decompressing
              the  file will fail.  See --memlimit-compress=limit for possible
              ways to specify the limit.

       --memlimit-mt-decompress=limit
              Set a memory usage limit for multi-threaded decompression.  This
              can  only  affect the number of threads; this will never make xz
              refuse to decompress a file.  If limit is too low to  allow  any
              multi-threading,  the  limit  is ignored and xz will continue in
              single-threaded mode.  Note that if  also  --memlimit-decompress
              is used, it will always apply to both single-threaded and multi-
              threaded modes, and so the effective limit  for  multi-threading
              will  never  be higher than the limit set with --memlimit-decom-
              press.

              In contrast to the other  memory  usage  limit  options,  --mem-
              limit-mt-decompress=limit  has  a system-specific default limit.
              xz --info-memory can be used to see the current value.

              This option and its default  value  exist  because  without  any
              limit  the  threaded decompressor could end up allocating an in-
              sane amount of memory with some input  files.   If  the  default
              limit is too low on your system, feel free to increase the limit
              but never set it to a value larger than the amount of usable RAM
              as  with  appropriate  input  files  xz will attempt to use that
              amount of memory even with a low number of threads.  Running out
              of  memory  or  swapping  will not improve decompression perfor-
              mance.

              See --memlimit-compress=limit for possible ways to  specify  the
              limit.   Setting limit to 0 resets the limit to the default sys-
              tem-specific value.

       -M limit, --memlimit=limit, --memory=limit
              This  is  equivalent  to  specifying   --memlimit-compress=limit
              --memlimit-decompress=limit --memlimit-mt-decompress=limit.

       --no-adjust
              Display  an  error  and exit if the memory usage limit cannot be
              met without adjusting settings that affect the  compressed  out-
              put.   That is, this prevents xz from switching the encoder from
              multi-threaded mode to single-threaded mode  and  from  reducing
              the  LZMA2  dictionary  size.  Even when this option is used the
              number of threads may be reduced to meet the memory usage  limit
              as that won't affect the compressed output.

              Automatic adjusting is always disabled when creating raw streams
              (--format=raw).

       -T threads, --threads=threads
              Specify the number of worker threads to use.  Setting threads to
              a special value 0 makes xz use up to as many threads as the pro-
              cessor(s) on the system support.  The actual number  of  threads
              can  be  fewer  than threads if the input file is not big enough
              for threading with the given settings or if using  more  threads
              would exceed the memory usage limit.

              The  single-threaded and multi-threaded compressors produce dif-
              ferent output.  Single-threaded compressor will give the  small-
              est  file  size but only the output from the multi-threaded com-
              pressor can be decompressed  using  multiple  threads.   Setting
              threads to 1 will use the single-threaded mode.  Setting threads
              to any other value, including 0,  will  use  the  multi-threaded
              compressor even if the system supports only one hardware thread.
              (xz 5.2.x used single-threaded mode in this situation.)

              To use multi-threaded mode with only one thread, set threads  to
              +1.   The  +  prefix  has no effect with values other than 1.  A
              memory usage limit can still make xz switch  to  single-threaded
              mode  unless  --no-adjust is used.  Support for the + prefix was
              added in xz 5.4.0.

              If an automatic number of threads has been requested and no mem-
              ory  usage  limit has been specified, then a system-specific de-
              fault soft limit will be used to possibly limit  the  number  of
              threads.   It is a soft limit in sense that it is ignored if the
              number of threads becomes one, thus a soft limit will never stop
              xz  from  compressing or decompressing.  This default soft limit
              will not make xz switch  from  multi-threaded  mode  to  single-
              threaded   mode.    The  active  limits  can  be  seen  with  xz
              --info-memory.

              Currently the only threading method is to split the  input  into
              blocks and compress them independently from each other.  The de-
              fault block size depends on the compression  level  and  can  be
              overridden with the --block-size=size option.

              Threaded decompression only works on files that contain multiple
              blocks with size information in block headers.  All large enough
              files compressed in multi-threaded mode meet this condition, but
              files  compressed  in  single-threaded  mode   don't   even   if
              --block-size=size has been used.

              The  default  value for threads is 0.  In xz 5.4.x and older the
              default is 1.

   Custom compressor filter chains
       A custom filter chain allows specifying the compression settings in de-
       tail  instead  of  relying  on  the settings associated to the presets.
       When a custom filter chain is specified, preset options (-0 ... -9  and
       --extreme)  earlier on the command line are forgotten.  If a preset op-
       tion is specified after one or more custom filter  chain  options,  the
       new  preset  takes effect and the custom filter chain options specified
       earlier are forgotten.

       A filter chain is comparable to piping on the command line.  When  com-
       pressing, the uncompressed input goes to the first filter, whose output
       goes to the next filter (if any).  The output of the last  filter  gets
       written  to  the compressed file.  The maximum number of filters in the
       chain is four, but typically a filter chain has only one  or  two  fil-
       ters.

       Many filters have limitations on where they can be in the filter chain:
       some filters can work only as the last filter in the chain,  some  only
       as  a non-last filter, and some work in any position in the chain.  De-
       pending on the filter, this limitation is either inherent to the filter
       design or exists to prevent security issues.

       A  custom filter chain can be specified in two different ways.  The op-
       tions --filters=filters and --filters1=filters  ...  --filters9=filters
       allow specifying an entire filter chain in one option using the liblzma
       filter string syntax.  Alternatively, a filter chain can  be  specified
       by  using  one  or more individual filter options in the order they are
       wanted in the filter chain.  That is, the order of the individual  fil-
       ter  options is significant!  When decoding raw streams (--format=raw),
       the filter chain must be specified in the same order as it  was  speci-
       fied  when compressing.  Any individual filter or preset options speci-
       fied before the full chain option (--filters=filters) will  be  forgot-
       ten.  Individual filters specified after the full chain option will re-
       set the filter chain.

       Both the full and individual filter options  take  filter-specific  op-
       tions  as a comma-separated list.  Extra commas in options are ignored.
       Every option has a default value, so specify those you want to change.

       To see the whole filter chain and options, use xz  -vv  (that  is,  use
       --verbose twice).  This works also for viewing the filter chain options
       used by presets.

       --filters=filters
              Specify the full filter chain or a preset in  a  single  option.
              Each filter can be separated by spaces or two dashes (--).  fil-
              ters may need to be quoted on the shell command line  so  it  is
              parsed  as  a  single option.  To denote options, use : or =.  A
              preset can be prefixed with a - and followed with zero  or  more
              flags.   The  only supported flag is e to apply the same options
              as --extreme.

       --filters1=filters ... --filters9=filters
              Specify up to nine additional filter chains  that  can  be  used
              with --block-list.

              For  example,  when compressing an archive with executable files
              followed by text files, the executable part could use  a  filter
              chain with a BCJ filter and the text part only the LZMA2 filter.

       --filters-help
              Display  a  help  message  describing how to specify presets and
              custom filter chains in the --filters and --filters1=filters ...
              --filters9=filters options, and exit successfully.

       --lzma1[=options]
       --lzma2[=options]
              Add  LZMA1  or  LZMA2 filter to the filter chain.  These filters
              can be used only as the last filter in the chain.

              LZMA1 is a legacy filter, which is supported almost  solely  due
              to  the  legacy  .lzma  file  format, which supports only LZMA1.
              LZMA2 is an updated version of LZMA1 to fix some  practical  is-
              sues  of  LZMA1.   The .xz format uses LZMA2 and doesn't support
              LZMA1 at all.  Compression speed and ratios of LZMA1  and  LZMA2
              are practically the same.

              LZMA1 and LZMA2 share the same set of options:

              preset=preset
                     Reset  all LZMA1 or LZMA2 options to preset.  Preset con-
                     sist of an integer, which may be followed by  single-let-
                     ter  preset  modifiers.   The integer can be from 0 to 9,
                     matching the command line options -0 ...  -9.   The  only
                     supported  modifier  is  currently e, which matches --ex-
                     treme.  If no preset is specified, the default values  of
                     LZMA1 or LZMA2 options are taken from the preset 6.

              dict=size
                     Dictionary (history buffer) size indicates how many bytes
                     of the recently processed uncompressed data  is  kept  in
                     memory.   The  algorithm tries to find repeating byte se-
                     quences (matches) in the uncompressed data,  and  replace
                     them with references to the data currently in the dictio-
                     nary.  The bigger  the  dictionary,  the  higher  is  the
                     chance to find a match.  Thus, increasing dictionary size
                     usually improves compression ratio, but a dictionary big-
                     ger than the uncompressed file is waste of memory.

                     Typical  dictionary  size  is from 64 KiB to 64 MiB.  The
                     minimum is 4 KiB.  The maximum for  compression  is  cur-
                     rently 1.5 GiB (1536 MiB).  The decompressor already sup-
                     ports dictionaries up to one byte less than 4 GiB,  which
                     is the maximum for the LZMA1 and LZMA2 stream formats.

                     Dictionary  size and match finder (mf) together determine
                     the memory usage of the LZMA1 or LZMA2 encoder.  The same
                     (or bigger) dictionary size is required for decompressing
                     that was used when compressing, thus the memory usage  of
                     the  decoder  is  determined  by the dictionary size used
                     when compressing.  The .xz headers store  the  dictionary
                     size  either  as 2^n or 2^n + 2^(n-1), so these sizes are
                     somewhat preferred for compression.  Other sizes will get
                     rounded up when stored in the .xz headers.

              lc=lc  Specify  the number of literal context bits.  The minimum
                     is 0 and the maximum is 4; the default is  3.   In  addi-
                     tion, the sum of lc and lp must not exceed 4.

                     All  bytes  that cannot be encoded as matches are encoded
                     as literals.  That is, literals are  simply  8-bit  bytes
                     that are encoded one at a time.

                     The  literal  coding makes an assumption that the highest
                     lc bits of the previous uncompressed byte correlate  with
                     the  next byte.  For example, in typical English text, an
                     upper-case letter is often followed by a lower-case  let-
                     ter,  and  a lower-case letter is usually followed by an-
                     other lower-case letter.  In the US-ASCII character  set,
                     the highest three bits are 010 for upper-case letters and
                     011 for lower-case letters.  When lc is at least  3,  the
                     literal coding can take advantage of this property in the
                     uncompressed data.

                     The default value (3) is usually good.  If you want maxi-
                     mum compression, test lc=4.  Sometimes it helps a little,
                     and sometimes it makes compression worse.  If it makes it
                     worse, test lc=2 too.

              lp=lp  Specify the number of literal position bits.  The minimum
                     is 0 and the maximum is 4; the default is 0.

                     Lp affects what kind of  alignment  in  the  uncompressed
                     data is assumed when encoding literals.  See pb below for
                     more information about alignment.

              pb=pb  Specify the number of position bits.  The  minimum  is  0
                     and the maximum is 4; the default is 2.

                     Pb  affects  what  kind  of alignment in the uncompressed
                     data is assumed in general.  The default means  four-byte
                     alignment (2^pb=2^2=4), which is often a good choice when
                     there's no better guess.

                     When the alignment is known, setting pb  accordingly  may
                     reduce  the  file  size a little.  For example, with text
                     files having one-byte  alignment  (US-ASCII,  ISO-8859-*,
                     UTF-8),  setting  pb=0  can improve compression slightly.
                     For UTF-16 text, pb=1 is a good choice.  If the alignment
                     is  an  odd  number  like 3 bytes, pb=0 might be the best
                     choice.

                     Even though the assumed alignment can be adjusted with pb
                     and  lp,  LZMA1  and  LZMA2  still slightly favor 16-byte
                     alignment.  It might be worth taking  into  account  when
                     designing  file  formats that are likely to be often com-
                     pressed with LZMA1 or LZMA2.

              mf=mf  Match finder has a major effect on encoder speed,  memory
                     usage,  and  compression ratio.  Usually Hash Chain match
                     finders are faster than Binary Tree match  finders.   The
                     default  depends  on the preset: 0 uses hc3, 1-3 use hc4,
                     and the rest use bt4.

                     The following match finders are  supported.   The  memory
                     usage  formulas below are rough approximations, which are
                     closest to the reality when dict is a power of two.

                     hc3    Hash Chain with 2- and 3-byte hashing
                            Minimum value for nice: 3
                            Memory usage:
                            dict * 7.5 (if dict <= 16 MiB);
                            dict * 5.5 + 64 MiB (if dict > 16 MiB)

                     hc4    Hash Chain with 2-, 3-, and 4-byte hashing
                            Minimum value for nice: 4
                            Memory usage:
                            dict * 7.5 (if dict <= 32 MiB);
                            dict * 6.5 (if dict > 32 MiB)

                     bt2    Binary Tree with 2-byte hashing
                            Minimum value for nice: 2
                            Memory usage: dict * 9.5

                     bt3    Binary Tree with 2- and 3-byte hashing
                            Minimum value for nice: 3
                            Memory usage:
                            dict * 11.5 (if dict <= 16 MiB);
                            dict * 9.5 + 64 MiB (if dict > 16 MiB)

                     bt4    Binary Tree with 2-, 3-, and 4-byte hashing
                            Minimum value for nice: 4
                            Memory usage:
                            dict * 11.5 (if dict <= 32 MiB);
                            dict * 10.5 (if dict > 32 MiB)

              mode=mode
                     Compression mode specifies the method to analyze the data
                     produced  by  the match finder.  Supported modes are fast
                     and normal.  The default is fast for presets 0-3 and nor-
                     mal for presets 4-9.

                     Usually  fast  is  used with Hash Chain match finders and
                     normal with Binary Tree match finders.  This is also what
                     the presets do.

              nice=nice
                     Specify  what  is  considered  to  be a nice length for a
                     match.  Once a match of at least nice bytes is found, the
                     algorithm stops looking for possibly better matches.

                     Nice can be 2-273 bytes.  Higher values tend to give bet-
                     ter compression ratio at the expense of speed.   The  de-
                     fault depends on the preset.

              depth=depth
                     Specify  the  maximum  search  depth in the match finder.
                     The default is the special value of 0,  which  makes  the
                     compressor determine a reasonable depth from mf and nice.

                     Reasonable depth for Hash Chains is 4-100 and 16-1000 for
                     Binary Trees.  Using very high values for depth can  make
                     the  encoder  extremely slow with some files.  Avoid set-
                     ting the depth over 1000 unless you are prepared  to  in-
                     terrupt  the  compression  in  case  it is taking far too
                     long.

              When decoding raw streams (--format=raw), LZMA2 needs  only  the
              dictionary size.  LZMA1 needs also lc, lp, and pb.

       --x86[=options]
       --arm[=options]
       --armthumb[=options]
       --arm64[=options]
       --powerpc[=options]
       --ia64[=options]
       --sparc[=options]
       --riscv[=options]
              Add  a branch/call/jump (BCJ) filter to the filter chain.  These
              filters can be used only as a  non-last  filter  in  the  filter
              chain.

              A  BCJ filter converts relative addresses in the machine code to
              their absolute counterparts.  This doesn't change  the  size  of
              the  data  but  it increases redundancy, which can help LZMA2 to
              produce 0-15 % smaller .xz file.  The BCJ filters are always re-
              versible,  so  using a BCJ filter for wrong type of data doesn't
              cause any data loss, although it may make the compression  ratio
              slightly  worse.   The  BCJ filters are very fast and use an in-
              significant amount of memory.

              These BCJ filters have known problems related to the compression
              ratio:

              o  Some  types of files containing executable code (for example,
                 object files, static libraries,  and  Linux  kernel  modules)
                 have  the  addresses  in  the instructions filled with filler
                 values.  These BCJ filters will still do the address  conver-
                 sion, which will make the compression worse with these files.

              o  If a BCJ filter is applied on an archive, it is possible that
                 it makes the compression ratio worse than  not  using  a  BCJ
                 filter.   For example, if there are similar or even identical
                 executables then filtering will likely make  the  files  less
                 similar  and thus compression is worse.  The contents of non-
                 executable files in the same  archive  can  matter  too.   In
                 practice  one has to try with and without a BCJ filter to see
                 which is better in each situation.

              Different instruction sets have different  alignment:  the  exe-
              cutable  file must be aligned to a multiple of this value in the
              input data to make the filter work.

                     Filter      Alignment   Notes
                     x86             1       32-bit or 64-bit x86
                     ARM             4
                     ARM-Thumb       2
                     ARM64           4       4096-byte alignment is best

                     PowerPC         4       Big endian only
                     IA-64          16       Itanium
                     SPARC           4
                     RISC-V          2

              Since the BCJ-filtered data is usually  compressed  with  LZMA2,
              the  compression ratio may be improved slightly if the LZMA2 op-
              tions are set to match the alignment of the selected BCJ filter.
              Examples:

              o  IA-64  filter has 16-byte alignment so pb=4,lp=4,lc=0 is good
                 with LZMA2 (2^4=16).

              o  RISC-V code has  2-byte  or  4-byte  alignment  depending  on
                 whether the file contains 16-bit compressed instructions (the
                 C   extension).    When   16-bit   instructions   are   used,
                 pb=2,lp=1,lc=3  or  pb=1,lp=1,lc=3  is good.  When 16-bit in-
                 structions aren't present, pb=2,lp=2,lc=2 is the best.  read-
                 elf  -h  can be used to check if "RVC" appears on the "Flags"
                 line.

              o  ARM64 is always 4-byte aligned so pb=2,lp=2,lc=2 is the best.

              o  The x86 filter is an exception.  It's usually good  to  stick
                 to LZMA2's defaults (pb=2,lp=0,lc=3) when compressing x86 ex-
                 ecutables.

              All BCJ filters support the same options:

              start=offset
                     Specify the start offset that is used when converting be-
                     tween  relative  and absolute addresses.  The offset must
                     be a multiple of the alignment of the filter (see the ta-
                     ble  above).   The default is zero.  In practice, the de-
                     fault is good; specifying a custom offset is almost never
                     useful.

       --delta[=options]
              Add  the Delta filter to the filter chain.  The Delta filter can
              be only used as a non-last filter in the filter chain.

              Currently only simple byte-wise delta calculation is  supported.
              It  can  be  useful  when compressing, for example, uncompressed
              bitmap images or uncompressed PCM audio.  However, special  pur-
              pose algorithms may give significantly better results than Delta
              + LZMA2.  This is true especially with audio,  which  compresses
              faster and better, for example, with flac(1).

              Supported options:

              dist=distance
                     Specify  the  distance of the delta calculation in bytes.
                     distance must be 1-256.  The default is 1.

                     For example, with dist=2 and eight-byte input A1 B1 A2 B3
                     A3 B5 A4 B7, the output will be A1 B1 01 02 01 02 01 02.

   Other options
       -q, --quiet
              Suppress  warnings  and notices.  Specify this twice to suppress
              errors too.  This option has no effect on the exit status.  That
              is,  even  if a warning was suppressed, the exit status to indi-
              cate a warning is still used.

       -v, --verbose
              Be verbose.  If standard error is connected to  a  terminal,  xz
              will  display  a progress indicator.  Specifying --verbose twice
              will give even more verbose output.

              The progress indicator shows the following information:

              o  Completion percentage is shown if the size of the input  file
                 is known.  That is, the percentage cannot be shown in pipes.

              o  Amount  of compressed data produced (compressing) or consumed
                 (decompressing).

              o  Amount of uncompressed data consumed  (compressing)  or  pro-
                 duced (decompressing).

              o  Compression ratio, which is calculated by dividing the amount
                 of compressed data processed so far by the amount  of  uncom-
                 pressed data processed so far.

              o  Compression  or decompression speed.  This is measured as the
                 amount of uncompressed data consumed  (compression)  or  pro-
                 duced  (decompression)  per  second.  It is shown after a few
                 seconds have passed since xz started processing the file.

              o  Elapsed time in the format M:SS or H:MM:SS.

              o  Estimated remaining time is shown only when the size  of  the
                 input  file  is  known  and  a couple of seconds have already
                 passed since xz started processing the  file.   The  time  is
                 shown  in  a  less precise format which never has any colons,
                 for example, 2 min 30 s.

              When standard error is not a terminal, --verbose  will  make  xz
              print the filename, compressed size, uncompressed size, compres-
              sion ratio, and possibly also the speed and elapsed  time  on  a
              single line to standard error after compressing or decompressing
              the file.  The speed and elapsed time are included only when the
              operation  took at least a few seconds.  If the operation didn't
              finish, for example, due to user interruption, also the  comple-
              tion  percentage  is  printed  if  the size of the input file is
              known.

       -Q, --no-warn
              Don't set the exit status to 2 even if a condition worth a warn-
              ing  was  detected.   This  option  doesn't affect the verbosity
              level, thus both --quiet and --no-warn have to be  used  to  not
              display warnings and to not alter the exit status.

       --robot
              Print  messages  in a machine-parsable format.  This is intended
              to ease writing frontends that want to use  xz  instead  of  li-
              blzma,  which  may be the case with various scripts.  The output
              with this option enabled is meant to be  stable  across  xz  re-
              leases.  See the section ROBOT MODE for details.

       --info-memory
              Display,  in  human-readable  format,  how  much physical memory
              (RAM) and how many processor threads xz thinks  the  system  has
              and  the  memory usage limits for compression and decompression,
              and exit successfully.

       -h, --help
              Display a help message describing the  most  commonly  used  op-
              tions, and exit successfully.

       -H, --long-help
              Display  a  help message describing all features of xz, and exit
              successfully

       -V, --version
              Display the version number of xz and liblzma in  human  readable
              format.   To get machine-parsable output, specify --robot before
              --version.

ROBOT MODE
       The robot mode is activated with the --robot option.  It makes the out-
       put of xz easier to parse by other programs.  Currently --robot is sup-
       ported only together with --list,  --filters-help,  --info-memory,  and
       --version.   It  will be supported for compression and decompression in
       the future.

   List mode
       xz --robot --list uses tab-separated output.  The first column of every
       line  has  a string that indicates the type of the information found on
       that line:

       name   This is always the first line when starting to list a file.  The
              second column on the line is the filename.

       file   This line contains overall information about the .xz file.  This
              line is always printed after the name line.

       stream This line type is used only when --verbose was specified.  There
              are as many stream lines as there are streams in the .xz file.

       block  This line type is used only when --verbose was specified.  There
              are as many block lines as there are blocks  in  the  .xz  file.
              The  block lines are shown after all the stream lines; different
              line types are not interleaved.

       summary
              This line type is used only when --verbose was specified  twice.
              This line is printed after all block lines.  Like the file line,
              the summary line contains  overall  information  about  the  .xz
              file.

       totals This  line  is always the very last line of the list output.  It
              shows the total counts and sizes.

       The columns of the file lines:
              2.  Number of streams in the file
              3.  Total number of blocks in the stream(s)
              4.  Compressed size of the file
              5.  Uncompressed size of the file
              6.  Compression ratio, for example, 0.123.   If  ratio  is  over
                  9.999,  three  dashes (---) are displayed instead of the ra-
                  tio.
              7.  Comma-separated list of integrity check names.  The  follow-
                  ing strings are used for the known check types: None, CRC32,
                  CRC64, and SHA-256.  For unknown check types,  Unknown-N  is
                  used,  where  N  is the Check ID as a decimal number (one or
                  two digits).
              8.  Total size of stream padding in the file

       The columns of the stream lines:
              2.  Stream number (the first stream is 1)
              3.  Number of blocks in the stream
              4.  Compressed start offset
              5.  Uncompressed start offset
              6.  Compressed size (does not include stream padding)
              7.  Uncompressed size
              8.  Compression ratio
              9.  Name of the integrity check
              10. Size of stream padding

       The columns of the block lines:
              2.  Number of the stream containing this block
              3.  Block number relative to the beginning of  the  stream  (the
                  first block is 1)
              4.  Block number relative to the beginning of the file
              5.  Compressed  start  offset  relative  to the beginning of the
                  file
              6.  Uncompressed start offset relative to the beginning  of  the
                  file
              7.  Total compressed size of the block (includes headers)
              8.  Uncompressed size
              9.  Compression ratio
              10. Name of the integrity check

       If  --verbose  was  specified twice, additional columns are included on
       the block lines.  These are not displayed with a single --verbose,  be-
       cause  getting  this  information  requires  many seeks and can thus be
       slow:
              11. Value of the integrity check in hexadecimal
              12. Block header size
              13. Block flags: c indicates that compressed  size  is  present,
                  and  u  indicates that uncompressed size is present.  If the
                  flag is not set, a dash (-) is shown  instead  to  keep  the
                  string  length  fixed.  New flags may be added to the end of
                  the string in the future.
              14. Size of the actual compressed data in the  block  (this  ex-
                  cludes the block header, block padding, and check fields)
              15. Amount  of  memory  (in  bytes)  required to decompress this
                  block with this xz version
              16. Filter chain.  Note that most of the options  used  at  com-
                  pression time cannot be known, because only the options that
                  are needed for decompression are stored in the .xz headers.

       The columns of the summary lines:
              2.  Amount of memory (in bytes) required to decompress this file
                  with this xz version
              3.  yes  or  no  indicating  if all block headers have both com-
                  pressed size and uncompressed size stored in them
              Since xz 5.1.2alpha:
              4.  Minimum xz version required to decompress the file

       The columns of the totals line:
              2.  Number of streams
              3.  Number of blocks
              4.  Compressed size
              5.  Uncompressed size
              6.  Average compression ratio
              7.  Comma-separated list of  integrity  check  names  that  were
                  present in the files
              8.  Stream padding size
              9.  Number of files.  This is here to keep the order of the ear-
                  lier columns the same as on file lines.

       If --verbose was specified twice, additional columns  are  included  on
       the totals line:
              10. Maximum  amount  of memory (in bytes) required to decompress
                  the files with this xz version
              11. yes or no indicating if all block  headers  have  both  com-
                  pressed size and uncompressed size stored in them
              Since xz 5.1.2alpha:
              12. Minimum xz version required to decompress the file

       Future  versions may add new line types and new columns can be added to
       the existing line types, but the existing columns won't be changed.

   Filters help
       xz --robot --filters-help prints the supported filters in the following
       format:

       filter:option=<value>,option=<value>...

       filter Name of the filter

       option Name of a filter specific option

       value  Numeric  value ranges appear as <min-max>.  String value choices
              are shown within < > and separated by a | character.

       Each filter is printed on its own line.

   Memory limit information
       xz --robot --info-memory prints a single line with  multiple  tab-sepa-
       rated columns:

       1.  Total amount of physical memory (RAM) in bytes.

       2.  Memory  usage limit for compression in bytes (--memlimit-compress).
           A special value of 0 indicates the default setting which  for  sin-
           gle-threaded mode is the same as no limit.

       3.  Memory  usage  limit  for decompression in bytes (--memlimit-decom-
           press).  A special value of 0 indicates the default  setting  which
           for single-threaded mode is the same as no limit.

       4.  Since  xz 5.3.4alpha: Memory usage for multi-threaded decompression
           in bytes (--memlimit-mt-decompress).  This is never zero because  a
           system-specific  default  value shown in the column 5 is used if no
           limit has been specified explicitly.  This is  also  never  greater
           than  the  value  in  the  column 3 even if a larger value has been
           specified with --memlimit-mt-decompress.

       5.  Since xz 5.3.4alpha: A system-specific default memory  usage  limit
           that  is  used to limit the number of threads when compressing with
           an automatic number of threads (--threads=0) and  no  memory  usage
           limit  has been specified (--memlimit-compress).  This is also used
           as the default value for --memlimit-mt-decompress.

       6.  Since xz 5.3.4alpha: Number of available processor threads.

       In the future, the output of xz --robot  --info-memory  may  have  more
       columns, but never more than a single line.

   Version
       xz --robot --version prints the version number of xz and liblzma in the
       following format:

       XZ_VERSION=XYYYZZZS
       LIBLZMA_VERSION=XYYYZZZS

       X      Major version.

       YYY    Minor version.  Even numbers are stable.  Odd numbers are  alpha
              or beta versions.

       ZZZ    Patch  level  for stable releases or just a counter for develop-
              ment releases.

       S      Stability.  0 is alpha, 1 is beta, and 2 is stable.  S should be
              always 2 when YYY is even.

       XYYYZZZS are the same on both lines if xz and liblzma are from the same
       XZ Utils release.

       Examples: 4.999.9beta is 49990091 and 5.0.0 is 50000002.

EXIT STATUS
       0      All is good.

       1      An error occurred.

       2      Something worth a warning occurred, but  no  actual  errors  oc-
              curred.

       Notices (not warnings or errors) printed on standard error don't affect
       the exit status.

ENVIRONMENT
       xz parses space-separated lists of options from the  environment  vari-
       ables XZ_DEFAULTS and XZ_OPT, in this order, before parsing the options
       from the command line.  Note that only options are parsed from the  en-
       vironment  variables; all non-options are silently ignored.  Parsing is
       done with getopt_long(3) which is used also for the command line  argu-
       ments.

       XZ_DEFAULTS
              User-specific or system-wide default options.  Typically this is
              set in a shell initialization script to enable xz's memory usage
              limiter  by default.  Excluding shell initialization scripts and
              similar special cases, scripts must never set  or  unset  XZ_DE-
              FAULTS.

       XZ_OPT This is for passing options to xz when it is not possible to set
              the options directly on the xz command line.  This is  the  case
              when xz is run by a script or tool, for example, GNU tar(1):

                     XZ_OPT=-2v tar caf foo.tar.xz foo

              Scripts  may use XZ_OPT, for example, to set script-specific de-
              fault compression options.  It is  still  recommended  to  allow
              users to override XZ_OPT if that is reasonable.  For example, in
              sh(1) scripts one may use something like this:

                     XZ_OPT=${XZ_OPT-"-7e"}
                     export XZ_OPT

LZMA UTILS COMPATIBILITY
       The command line syntax of xz is practically a superset  of  lzma,  un-
       lzma,  and lzcat as found from LZMA Utils 4.32.x.  In most cases, it is
       possible to replace LZMA Utils with XZ Utils without breaking  existing
       scripts.   There are some incompatibilities though, which may sometimes
       cause problems.

   Compression preset levels
       The numbering of the compression level presets is not identical  in  xz
       and  LZMA Utils.  The most important difference is how dictionary sizes
       are mapped to different presets.  Dictionary size is roughly  equal  to
       the decompressor memory usage.

              Level     xz      LZMA Utils
               -0     256 KiB      N/A
               -1       1 MiB     64 KiB
               -2       2 MiB      1 MiB
               -3       4 MiB    512 KiB
               -4       4 MiB      1 MiB
               -5       8 MiB      2 MiB
               -6       8 MiB      4 MiB
               -7      16 MiB      8 MiB
               -8      32 MiB     16 MiB
               -9      64 MiB     32 MiB

       The dictionary size differences affect the compressor memory usage too,
       but there are some other differences between LZMA Utils and  XZ  Utils,
       which make the difference even bigger:

              Level     xz      LZMA Utils 4.32.x
               -0       3 MiB          N/A
               -1       9 MiB          2 MiB
               -2      17 MiB         12 MiB
               -3      32 MiB         12 MiB
               -4      48 MiB         16 MiB
               -5      94 MiB         26 MiB
               -6      94 MiB         45 MiB
               -7     186 MiB         83 MiB
               -8     370 MiB        159 MiB
               -9     674 MiB        311 MiB

       The  default  preset  level in LZMA Utils is -7 while in XZ Utils it is
       -6, so both use an 8 MiB dictionary by default.

   Streamed vs. non-streamed .lzma files
       The uncompressed size of the file can be stored in  the  .lzma  header.
       LZMA  Utils  does that when compressing regular files.  The alternative
       is to mark that uncompressed size is  unknown  and  use  end-of-payload
       marker to indicate where the decompressor should stop.  LZMA Utils uses
       this method when uncompressed size isn't known, which is the case,  for
       example, in pipes.

       xz  supports  decompressing  .lzma files with or without end-of-payload
       marker, but all .lzma files  created  by  xz  will  use  end-of-payload
       marker  and  have  uncompressed  size  marked  as  unknown in the .lzma
       header.  This may be a problem in some uncommon situations.  For  exam-
       ple,  a  .lzma  decompressor in an embedded device might work only with
       files that have known uncompressed size.  If you hit this problem,  you
       need to use LZMA Utils or LZMA SDK to create .lzma files with known un-
       compressed size.

   Unsupported .lzma files
       The .lzma format allows lc values up to 8, and lp values up to 4.  LZMA
       Utils can decompress files with any lc and lp, but always creates files
       with lc=3 and lp=0.  Creating files with other lc and  lp  is  possible
       with xz and with LZMA SDK.

       The implementation of the LZMA1 filter in liblzma requires that the sum
       of lc and lp must not exceed 4.  Thus, .lzma files, which  exceed  this
       limitation, cannot be decompressed with xz.

       LZMA Utils creates only .lzma files which have a dictionary size of 2^n
       (a power of 2) but accepts files with any dictionary size.  liblzma ac-
       cepts  only  .lzma  files  which have a dictionary size of 2^n or 2^n +
       2^(n-1).  This is to decrease  false  positives  when  detecting  .lzma
       files.

       These limitations shouldn't be a problem in practice, since practically
       all .lzma files have been compressed with settings  that  liblzma  will
       accept.

   Trailing garbage
       When  decompressing,  LZMA  Utils  silently ignore everything after the
       first .lzma stream.  In most situations, this  is  a  bug.   This  also
       means  that  LZMA  Utils don't support decompressing concatenated .lzma
       files.

       If there is data left after the first .lzma stream,  xz  considers  the
       file to be corrupt unless --single-stream was used.  This may break ob-
       scure scripts which have assumed that trailing garbage is ignored.

NOTES
   Compressed output may vary
       The exact compressed output produced from the same  uncompressed  input
       file may vary between XZ Utils versions even if compression options are
       identical.  This is because the encoder can be improved (faster or bet-
       ter  compression)  without  affecting  the file format.  The output can
       vary even between different builds of the same  XZ  Utils  version,  if
       different build options are used.

       The above means that once --rsyncable has been implemented, the result-
       ing files won't necessarily be rsyncable unless both old and new  files
       have  been  compressed  with  the same xz version.  This problem can be
       fixed if a part of the encoder implementation is frozen to keep rsynca-
       ble output stable across xz versions.

   Embedded .xz decompressors
       Embedded .xz decompressor implementations like XZ Embedded don't neces-
       sarily support files created with integrity check types other than none
       and   crc32.    Since  the  default  is  --check=crc64,  you  must  use
       --check=none or --check=crc32 when creating files for embedded systems.

       Outside embedded systems, all .xz format decompressors support all  the
       check  types, or at least are able to decompress the file without veri-
       fying the integrity check if the particular check is not supported.

       XZ Embedded supports BCJ filters, but only with the default start  off-
       set.

EXAMPLES
   Basics
       Compress  the  file foo into foo.xz using the default compression level
       (-6), and remove foo if compression is successful:

              xz foo

       Decompress bar.xz into bar and don't remove bar.xz even  if  decompres-
       sion is successful:

              xz -dk bar.xz

       Create  baz.tar.xz  with the preset -4e (-4 --extreme), which is slower
       than the default -6, but needs less memory for compression  and  decom-
       pression (48 MiB and 5 MiB, respectively):

              tar cf - baz | xz -4e > baz.tar.xz

       A mix of compressed and uncompressed files can be decompressed to stan-
       dard output with a single command:

              xz -dcf a.txt b.txt.xz c.txt d.txt.lzma > abcd.txt

   Parallel compression of many files
       On GNU and *BSD, find(1) and xargs(1) can be used to  parallelize  com-
       pression of many files:

              find . -type f \! -name '*.xz' -print0 \
                  | xargs -0r -P4 -n16 xz -T1

       The  -P  option  to  xargs(1) sets the number of parallel xz processes.
       The best value for the -n option depends on how many files there are to
       be  compressed.   If there are only a couple of files, the value should
       probably be 1; with tens of thousands of files, 100 or even more may be
       appropriate  to  reduce  the  number of xz processes that xargs(1) will
       eventually create.

       The option -T1 for xz is there to force it to single-threaded mode, be-
       cause xargs(1) is used to control the amount of parallelization.

   Robot mode
       Calculate  how  many  bytes  have been saved in total after compressing
       multiple files:

              xz --robot --list *.xz | awk '/^totals/{print $5-$4}'

       A script may want to know that it is using new enough xz.  The  follow-
       ing  sh(1)  script  checks that the version number of the xz tool is at
       least 5.0.0.  This method is compatible with old beta  versions,  which
       didn't support the --robot option:

              if ! eval "$(xz --robot --version 2> /dev/null)" ||
                      [ "$XZ_VERSION" -lt 50000002 ]; then
                  echo "Your xz is too old."
              fi
              unset XZ_VERSION LIBLZMA_VERSION

       Set a memory usage limit for decompression using XZ_OPT, but if a limit
       has already been set, don't increase it:

              NEWLIM=$((123 << 20))  # 123 MiB
              OLDLIM=$(xz --robot --info-memory | cut -f3)
              if [ $OLDLIM -eq 0 -o $OLDLIM -gt $NEWLIM ]; then
                  XZ_OPT="$XZ_OPT --memlimit-decompress=$NEWLIM"
                  export XZ_OPT
              fi

   Custom compressor filter chains
       The simplest use for custom filter chains is customizing a  LZMA2  pre-
       set.   This  can  be useful, because the presets cover only a subset of
       the potentially useful combinations of compression settings.

       The CompCPU columns of the tables from the descriptions of the  options
       -0  ...  -9  and  --extreme  are useful when customizing LZMA2 presets.
       Here are the relevant parts collected from those two tables:

              Preset   CompCPU
               -0         0
               -1         1

               -2         2
               -3         3
               -4         4
               -5         5
               -6         6
               -5e        7
               -6e        8

       If you know that a file requires somewhat big dictionary (for  example,
       32 MiB)  to  compress well, but you want to compress it quicker than xz
       -8 would do, a preset with a low CompCPU value (for example, 1) can  be
       modified to use a bigger dictionary:

              xz --lzma2=preset=1,dict=32MiB foo.tar

       With  certain  files,  the above command may be faster than xz -6 while
       compressing significantly better.  However, it must be emphasized  that
       only some files benefit from a big dictionary while keeping the CompCPU
       value low.  The most obvious situation, where a big dictionary can help
       a  lot,  is  an archive containing very similar files of at least a few
       megabytes each.  The dictionary size has  to  be  significantly  bigger
       than  any  individual file to allow LZMA2 to take full advantage of the
       similarities between consecutive files.

       If very high compressor and decompressor memory usage is fine, and  the
       file  being compressed is at least several hundred megabytes, it may be
       useful to use an even bigger dictionary than the  64  MiB  that  xz  -9
       would use:

              xz -vv --lzma2=dict=192MiB big_foo.tar

       Using -vv (--verbose --verbose) like in the above example can be useful
       to see the memory requirements of the compressor and decompressor.  Re-
       member that using a dictionary bigger than the size of the uncompressed
       file is waste of memory, so the above command isn't  useful  for  small
       files.

       Sometimes  the  compression  time  doesn't matter, but the decompressor
       memory usage has to be kept low, for example, to make  it  possible  to
       decompress  the file on an embedded system.  The following command uses
       -6e (-6 --extreme) as a base and sets the dictionary  to  only  64 KiB.
       The  resulting  file  can  be decompressed with XZ Embedded (that's why
       there is --check=crc32) using about 100 KiB of memory.

              xz --check=crc32 --lzma2=preset=6e,dict=64KiB foo

       If you want to squeeze out as many bytes  as  possible,  adjusting  the
       number  of  literal  context bits (lc) and number of position bits (pb)
       can sometimes help.  Adjusting the number of literal position bits (lp)
       might help too, but usually lc and pb are more important.  For example,
       a source code archive contains mostly US-ASCII text, so something  like
       the following might give slightly (like 0.1 %) smaller file than xz -6e
       (try also without lc=4):

              xz --lzma2=preset=6e,pb=0,lc=4 source_code.tar

       Using another filter together with LZMA2 can improve  compression  with
       certain file types.  For example, to compress a x86-32 or x86-64 shared
       library using the x86 BCJ filter:

              xz --x86 --lzma2 libfoo.so

       Note that the order of the filter options is significant.  If --x86  is
       specified after --lzma2, xz will give an error, because there cannot be
       any filter after LZMA2, and also because the x86 BCJ filter  cannot  be
       used as the last filter in the chain.

       The  Delta filter together with LZMA2 can give good results with bitmap
       images.  It should usually beat PNG, which has a few more advanced fil-
       ters than simple delta but uses Deflate for the actual compression.

       The  image  has to be saved in uncompressed format, for example, as un-
       compressed TIFF.  The distance parameter of the Delta filter is set  to
       match  the number of bytes per pixel in the image.  For example, 24-bit
       RGB bitmap needs dist=3, and it is also good to pass pb=0 to  LZMA2  to
       accommodate the three-byte alignment:

              xz --delta=dist=3 --lzma2=pb=0 foo.tiff

       If  multiple  images  have been put into a single archive (for example,
       .tar), the Delta filter will work on that too as  long  as  all  images
       have the same number of bytes per pixel.

SEE ALSO
       xzdec(1),   xzdiff(1),   xzgrep(1),   xzless(1),   xzmore(1),  gzip(1),
       bzip2(1), 7z(1)

       XZ Utils: <https://xz.tukaani.org/xz-utils/>
       XZ Embedded: <https://xz.tukaani.org/xz-embedded/>
       LZMA SDK: <https://7-zip.org/sdk.html>



Tukaani                           2024-02-25                             XZ(1)