/////////////////////////////////////////////////////////////////////////////// // /// \file arm64.c /// \brief Filter for ARM64 binaries /// /// This converts ARM64 relative addresses in the BL and ADRP immediates /// to absolute values to increase redundancy of ARM64 code. /// /// Converting B or ADR instructions was also tested but it's not useful. /// A majority of the jumps for the B instruction are very small (+/- 0xFF). /// These are typical for loops and if-statements. Encoding them to their /// absolute address reduces redundancy since many of the small relative /// jump values are repeated, but very few of the absolute addresses are. // // Authors: Lasse Collin // Jia Tan // Igor Pavlov // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "simple_private.h" static size_t arm64_code(void *simple lzma_attribute((__unused__)), uint32_t now_pos, bool is_encoder, uint8_t *buffer, size_t size) { size_t i; // Clang 14.0.6 on x86-64 makes this four times bigger and 40 % slower // with auto-vectorization that is enabled by default with -O2. // Such vectorization bloat happens with -O2 when targeting ARM64 too // but performance hasn't been tested. #ifdef __clang__ # pragma clang loop vectorize(disable) #endif for (i = 0; i + 4 <= size; i += 4) { uint32_t pc = (uint32_t)(now_pos + i); uint32_t instr = read32le(buffer + i); if ((instr >> 26) == 0x25) { // BL instruction: // The full 26-bit immediate is converted. // The range is +/-128 MiB. // // Using the full range is helps quite a lot with // big executables. Smaller range would reduce false // positives in non-code sections of the input though // so this is a compromise that slightly favors big // files. With the full range only six bits of the 32 // need to match to trigger a conversion. const uint32_t src = instr; instr = 0x94000000; pc >>= 2; if (!is_encoder) pc = 0U - pc; instr |= (src + pc) & 0x03FFFFFF; write32le(buffer + i, instr); } else if ((instr & 0x9F000000) == 0x90000000) { // ADRP instruction: // Only values in the range +/-512 MiB are converted. // // Using less than the full +/-4 GiB range reduces // false positives on non-code sections of the input // while being excellent for executables up to 512 MiB. // The positive effect of ADRP conversion is smaller // than that of BL but it also doesn't hurt so much in // non-code sections of input because, with +/-512 MiB // range, nine bits of 32 need to match to trigger a // conversion (two 10-bit match choices = 9 bits). const uint32_t src = ((instr >> 29) & 3) | ((instr >> 3) & 0x001FFFFC); // With the addition only one branch is needed to // check the +/- range. This is usually false when // processing ARM64 code so branch prediction will // handle it well in terms of performance. // //if ((src & 0x001E0000) != 0 // && (src & 0x001E0000) != 0x001E0000) if ((src + 0x00020000) & 0x001C0000) continue; instr &= 0x9000001F; pc >>= 12; if (!is_encoder) pc = 0U - pc; const uint32_t dest = src + pc; instr |= (dest & 3) << 29; instr |= (dest & 0x0003FFFC) << 3; instr |= (0U - (dest & 0x00020000)) & 0x00E00000; write32le(buffer + i, instr); } } return i; } static lzma_ret arm64_coder_init(lzma_next_coder *next, const lzma_allocator *allocator, const lzma_filter_info *filters, bool is_encoder) { return lzma_simple_coder_init(next, allocator, filters, &arm64_code, 0, 4, 4, is_encoder); } #ifdef HAVE_ENCODER_ARM64 extern lzma_ret lzma_simple_arm64_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator, const lzma_filter_info *filters) { return arm64_coder_init(next, allocator, filters, true); } #endif #ifdef HAVE_DECODER_ARM64 extern lzma_ret lzma_simple_arm64_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator, const lzma_filter_info *filters) { return arm64_coder_init(next, allocator, filters, false); } #endif