/////////////////////////////////////////////////////////////////////////////// // /// \file memcmplen.h /// \brief Optimized comparison of two buffers // // Author: Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #ifndef LZMA_MEMCMPLEN_H #define LZMA_MEMCMPLEN_H #include "common.h" #ifdef HAVE_IMMINTRIN_H # include #endif /// Find out how many equal bytes the two buffers have. /// /// \param buf1 First buffer /// \param buf2 Second buffer /// \param len How many bytes have already been compared and will /// be assumed to match /// \param limit How many bytes to compare at most, including the /// already-compared bytes. This must be significantly /// smaller than UINT32_MAX to avoid integer overflows. /// Up to LZMA_MEMCMPLEN_EXTRA bytes may be read past /// the specified limit from both buf1 and buf2. /// /// \return Number of equal bytes in the buffers is returned. /// This is always at least len and at most limit. /// /// \note LZMA_MEMCMPLEN_EXTRA defines how many extra bytes may be read. /// It's rounded up to 2^n. This extra amount needs to be /// allocated in the buffers being used. It needs to be /// initialized too to keep Valgrind quiet. static inline uint32_t lzma_attribute((__always_inline__)) lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2, uint32_t len, uint32_t limit) { assert(len <= limit); assert(limit <= UINT32_MAX / 2); #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \ && ((TUKLIB_GNUC_REQ(3, 4) && defined(__x86_64__)) \ || (defined(__INTEL_COMPILER) && defined(__x86_64__)) \ || (defined(__INTEL_COMPILER) && defined(_M_X64)) \ || (defined(_MSC_VER) && defined(_M_X64))) // NOTE: This will use 64-bit unaligned access which // TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit, but // it's convenient here at least as long as it's x86-64 only. // // I keep this x86-64 only for now since that's where I know this // to be a good method. This may be fine on other 64-bit CPUs too. // On big endian one should use xor instead of subtraction and switch // to __builtin_clzll(). #define LZMA_MEMCMPLEN_EXTRA 8 while (len < limit) { const uint64_t x = unaligned_read64ne(buf1 + len) - unaligned_read64ne(buf2 + len); if (x != 0) { # if defined(_M_X64) // MSVC or Intel C compiler on Windows unsigned long tmp; _BitScanForward64(&tmp, x); len += (uint32_t)tmp >> 3; # else // GCC, clang, or Intel C compiler len += (uint32_t)__builtin_ctzll(x) >> 3; # endif return my_min(len, limit); } len += 8; } return limit; #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) \ && defined(HAVE__MM_MOVEMASK_EPI8) \ && ((defined(__GNUC__) && defined(__SSE2_MATH__)) \ || (defined(__INTEL_COMPILER) && defined(__SSE2__)) \ || (defined(_MSC_VER) && defined(_M_IX86_FP) \ && _M_IX86_FP >= 2)) // NOTE: Like above, this will use 128-bit unaligned access which // TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit. // // SSE2 version for 32-bit and 64-bit x86. On x86-64 the above // version is sometimes significantly faster and sometimes // slightly slower than this SSE2 version, so this SSE2 // version isn't used on x86-64. # define LZMA_MEMCMPLEN_EXTRA 16 while (len < limit) { const uint32_t x = 0xFFFF ^ _mm_movemask_epi8(_mm_cmpeq_epi8( _mm_loadu_si128((const __m128i *)(buf1 + len)), _mm_loadu_si128((const __m128i *)(buf2 + len)))); if (x != 0) { # if defined(__INTEL_COMPILER) len += _bit_scan_forward(x); # elif defined(_MSC_VER) unsigned long tmp; _BitScanForward(&tmp, x); len += tmp; # else len += __builtin_ctz(x); # endif return my_min(len, limit); } len += 16; } return limit; #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && !defined(WORDS_BIGENDIAN) // Generic 32-bit little endian method # define LZMA_MEMCMPLEN_EXTRA 4 while (len < limit) { uint32_t x = unaligned_read32ne(buf1 + len) - unaligned_read32ne(buf2 + len); if (x != 0) { if ((x & 0xFFFF) == 0) { len += 2; x >>= 16; } if ((x & 0xFF) == 0) ++len; return my_min(len, limit); } len += 4; } return limit; #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && defined(WORDS_BIGENDIAN) // Generic 32-bit big endian method # define LZMA_MEMCMPLEN_EXTRA 4 while (len < limit) { uint32_t x = unaligned_read32ne(buf1 + len) ^ unaligned_read32ne(buf2 + len); if (x != 0) { if ((x & 0xFFFF0000) == 0) { len += 2; x <<= 16; } if ((x & 0xFF000000) == 0) ++len; return my_min(len, limit); } len += 4; } return limit; #else // Simple portable version that doesn't use unaligned access. # define LZMA_MEMCMPLEN_EXTRA 0 while (len < limit && buf1[len] == buf2[len]) ++len; return len; #endif } #endif