/////////////////////////////////////////////////////////////////////////////// // /// \file block_encoder.c /// \brief Encodes .lzma Blocks // // Copyright (C) 2007 Lasse Collin // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // /////////////////////////////////////////////////////////////////////////////// #include "block_encoder.h" #include "block_private.h" #include "raw_encoder.h" #include "check.h" struct lzma_coder_s { /// The filters in the chain; initialized with lzma_raw_decoder_init(). lzma_next_coder next; /// Encoding options; we also write Total Size, Compressed Size, and /// Uncompressed Size back to this structure when the encoding has /// been finished. lzma_options_block *options; enum { SEQ_CODE, SEQ_CHECK_FINISH, SEQ_CHECK_COPY, SEQ_UNCOMPRESSED_SIZE, SEQ_BACKWARD_SIZE, SEQ_PADDING, } sequence; /// Position in .header and .check. size_t pos; /// Check of the uncompressed data lzma_check check; /// Total Size calculated while encoding lzma_vli total_size; /// Compressed Size calculated while encoding lzma_vli compressed_size; /// Uncompressed Size calculated while encoding lzma_vli uncompressed_size; /// Maximum allowed total_size lzma_vli total_limit; /// Maximum allowed uncompressed_size lzma_vli uncompressed_limit; /// Backward Size - This is a copy of total_size right before /// the Backward Size field. lzma_vli backward_size; }; static lzma_ret block_encode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { // Check that our amount of input stays in proper limits. if (coder->options->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) { if (action == LZMA_FINISH) { if (coder->options->uncompressed_size - coder->uncompressed_size != (lzma_vli)(in_size - *in_pos)) return LZMA_DATA_ERROR; } else { if (coder->options->uncompressed_size - coder->uncompressed_size < (lzma_vli)(in_size - *in_pos)) return LZMA_DATA_ERROR; } } else if (LZMA_VLI_VALUE_MAX - coder->uncompressed_size < (lzma_vli)(in_size - *in_pos)) { return LZMA_DATA_ERROR; } // Main loop while (*out_pos < out_size && (*in_pos < in_size || action != LZMA_RUN)) switch (coder->sequence) { case SEQ_CODE: { const size_t in_start = *in_pos; const size_t out_start = *out_pos; const lzma_ret ret = coder->next.code(coder->next.coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); const size_t in_used = *in_pos - in_start; const size_t out_used = *out_pos - out_start; if (update_size(&coder->total_size, out_used, coder->total_limit) || update_size(&coder->compressed_size, out_used, coder->options->compressed_size)) return LZMA_DATA_ERROR; // No need to check for overflow because we have already // checked it at the beginning of this function. coder->uncompressed_size += in_used; lzma_check_update(&coder->check, coder->options->check, in + in_start, in_used); if (ret != LZMA_STREAM_END || action == LZMA_SYNC_FLUSH) return ret; assert(*in_pos == in_size); // Compressed and Uncompressed Sizes are now at their final // values. Verify that they match the values give to us. if (!is_size_valid(coder->compressed_size, coder->options->compressed_size) || !is_size_valid(coder->uncompressed_size, coder->options->uncompressed_size)) return LZMA_DATA_ERROR; coder->sequence = SEQ_CHECK_FINISH; break; } case SEQ_CHECK_FINISH: if (coder->options->check == LZMA_CHECK_NONE) { coder->sequence = SEQ_UNCOMPRESSED_SIZE; break; } lzma_check_finish(&coder->check, coder->options->check); coder->sequence = SEQ_CHECK_COPY; // Fall through case SEQ_CHECK_COPY: assert(lzma_check_sizes[coder->options->check] > 0); switch (coder->options->check) { case LZMA_CHECK_CRC32: out[*out_pos] = coder->check.crc32 >> (coder->pos * 8); break; case LZMA_CHECK_CRC64: out[*out_pos] = coder->check.crc64 >> (coder->pos * 8); break; case LZMA_CHECK_SHA256: out[*out_pos] = coder->check.sha256.buffer[coder->pos]; break; default: assert(0); return LZMA_PROG_ERROR; } ++*out_pos; if (update_size(&coder->total_size, 1, coder->total_limit)) return LZMA_DATA_ERROR; if (++coder->pos == lzma_check_sizes[coder->options->check]) { coder->pos = 0; coder->sequence = SEQ_UNCOMPRESSED_SIZE; } break; case SEQ_UNCOMPRESSED_SIZE: if (coder->options->has_uncompressed_size_in_footer) { const size_t out_start = *out_pos; const lzma_ret ret = lzma_vli_encode( coder->uncompressed_size, &coder->pos, 1, out, out_pos, out_size); // Updating the size this way instead of doing in a // single chunk using lzma_vli_size(), because this // way we detect when exactly we are going out of // our limits. if (update_size(&coder->total_size, *out_pos - out_start, coder->total_limit)) return LZMA_DATA_ERROR; if (ret != LZMA_STREAM_END) return ret; coder->pos = 0; } coder->backward_size = coder->total_size; coder->sequence = SEQ_BACKWARD_SIZE; break; case SEQ_BACKWARD_SIZE: if (coder->options->has_backward_size) { const size_t out_start = *out_pos; const lzma_ret ret = lzma_vli_encode( coder->backward_size, &coder->pos, 1, out, out_pos, out_size); if (update_size(&coder->total_size, *out_pos - out_start, coder->total_limit)) return LZMA_DATA_ERROR; if (ret != LZMA_STREAM_END) return ret; } coder->sequence = SEQ_PADDING; break; case SEQ_PADDING: if (coder->options->handle_padding) { assert(coder->options->total_size != LZMA_VLI_VALUE_UNKNOWN); if (coder->total_size < coder->options->total_size) { out[*out_pos] = 0x00; ++*out_pos; if (update_size(&coder->total_size, 1, coder->total_limit)) return LZMA_DATA_ERROR; break; } } // Now also Total Size is known. Verify it. if (!is_size_valid(coder->total_size, coder->options->total_size)) return LZMA_DATA_ERROR; // Copy the values into coder->options. The caller // may use this information to construct Index. coder->options->total_size = coder->total_size; coder->options->compressed_size = coder->compressed_size; coder->options->uncompressed_size = coder->uncompressed_size; return LZMA_STREAM_END; default: return LZMA_PROG_ERROR; } return LZMA_OK; } static void block_encoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_coder_end(&coder->next, allocator); lzma_free(coder, allocator); return; } static lzma_ret block_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, lzma_options_block *options) { // Validate some options. if (validate_options_1(options) || validate_options_2(options) || (options->handle_padding && options->total_size == LZMA_VLI_VALUE_UNKNOWN)) return LZMA_PROG_ERROR; // Allocate and initialize *next->coder if needed. if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &block_encode; next->end = &block_encoder_end; next->coder->next = LZMA_NEXT_CODER_INIT; } // Initialize the check. return_if_error(lzma_check_init(&next->coder->check, options->check)); // If End of Payload Marker is not used and Uncompressed Size is zero, // Compressed Data is empty. That is, we don't call the encoder at all. // We initialize it though; it allows detecting invalid options. if (!options->has_eopm && options->uncompressed_size == 0) { // Also Compressed Size must be zero if it has been // given to us. if (!is_size_valid(0, options->compressed_size)) return LZMA_PROG_ERROR; next->coder->sequence = SEQ_CHECK_FINISH; } else { next->coder->sequence = SEQ_CODE; } // Other initializations next->coder->options = options; next->coder->pos = 0; next->coder->total_size = options->header_size; next->coder->compressed_size = 0; next->coder->uncompressed_size = 0; next->coder->total_limit = MIN(options->total_size, options->total_limit); next->coder->uncompressed_limit = MIN(options->uncompressed_size, options->uncompressed_limit); // Initialize the requested filters. return lzma_raw_encoder_init(&next->coder->next, allocator, options->filters, options->has_eopm ? LZMA_VLI_VALUE_UNKNOWN : options->uncompressed_size, true); } extern lzma_ret lzma_block_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, lzma_options_block *options) { lzma_next_coder_init(block_encoder_init, next, allocator, options); } extern LZMA_API lzma_ret lzma_block_encoder(lzma_stream *strm, lzma_options_block *options) { lzma_next_strm_init(strm, block_encoder_init, options); strm->internal->supported_actions[LZMA_RUN] = true; strm->internal->supported_actions[LZMA_FINISH] = true; return LZMA_OK; }