/////////////////////////////////////////////////////////////////////////////// // /// \file block_encoder.c /// \brief Encodes .lzma Blocks // // Copyright (C) 2007 Lasse Collin // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // /////////////////////////////////////////////////////////////////////////////// #include "block_encoder.h" #include "filter_encoder.h" #include "check.h" /// The maximum size of a single Block is limited by the maximum size of /// a Stream, which is 2^63 - 1 bytes (i.e. LZMA_VLI_MAX). We could /// take into account the headers etc. to determine the exact maximum size /// of the Compressed Data field, but the complexity would give us nothing /// useful. Instead, limit the size of Compressed Data so that even with /// biggest possible Block Header and Check fields the total size of the /// Block stays as valid VLI. This way we don't produce incorrect output /// if someone will really try creating a Block of 8 EiB. /// /// ~LZMA_VLI_C(3) is to guarantee that if we need padding at the end of /// the Compressed Data field, it will still stay in the proper limit. #define COMPRESSED_SIZE_MAX ((LZMA_VLI_MAX - LZMA_BLOCK_HEADER_SIZE_MAX \ - LZMA_CHECK_SIZE_MAX) & ~LZMA_VLI_C(3)) struct lzma_coder_s { /// The filters in the chain; initialized with lzma_raw_decoder_init(). lzma_next_coder next; /// Encoding options; we also write Total Size, Compressed Size, and /// Uncompressed Size back to this structure when the encoding has /// been finished. lzma_block *options; enum { SEQ_CODE, SEQ_PADDING, SEQ_CHECK, } sequence; /// Compressed Size calculated while encoding lzma_vli compressed_size; /// Uncompressed Size calculated while encoding lzma_vli uncompressed_size; /// Position when writing out the Check field size_t check_pos; /// Check of the uncompressed data lzma_check_state check; }; static lzma_ret block_encode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { // Check that our amount of input stays in proper limits. if (LZMA_VLI_MAX - coder->uncompressed_size < in_size - *in_pos) return LZMA_PROG_ERROR; switch (coder->sequence) { case SEQ_CODE: { const size_t in_start = *in_pos; const size_t out_start = *out_pos; const lzma_ret ret = coder->next.code(coder->next.coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); const size_t in_used = *in_pos - in_start; const size_t out_used = *out_pos - out_start; if (COMPRESSED_SIZE_MAX - coder->compressed_size < out_used) return LZMA_DATA_ERROR; coder->compressed_size += out_used; // No need to check for overflow because we have already // checked it at the beginning of this function. coder->uncompressed_size += in_used; lzma_check_update(&coder->check, coder->options->check, in + in_start, in_used); if (ret != LZMA_STREAM_END || action == LZMA_SYNC_FLUSH) return ret; assert(*in_pos == in_size); assert(action == LZMA_FINISH); coder->sequence = SEQ_PADDING; } // Fall through case SEQ_PADDING: // Pad Compressed Data to a multiple of four bytes. while (coder->compressed_size & 3) { if (*out_pos >= out_size) return LZMA_OK; out[*out_pos] = 0x00; ++*out_pos; // No need to use check for overflow here since we // have already checked in SEQ_CODE that Compressed // Size will stay in proper limits. ++coder->compressed_size; } // Copy the values into coder->options. The caller // may use this information to construct Index. coder->options->compressed_size = coder->compressed_size; coder->options->uncompressed_size = coder->uncompressed_size; if (coder->options->check == LZMA_CHECK_NONE) return LZMA_STREAM_END; lzma_check_finish(&coder->check, coder->options->check); coder->sequence = SEQ_CHECK; // Fall through case SEQ_CHECK: { const uint32_t check_size = lzma_check_size(coder->options->check); while (*out_pos < out_size) { out[*out_pos] = coder->check.buffer.u8[ coder->check_pos]; ++*out_pos; if (++coder->check_pos == check_size) return LZMA_STREAM_END; } return LZMA_OK; } } return LZMA_PROG_ERROR; } static void block_encoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_end(&coder->next, allocator); lzma_free(coder, allocator); return; } extern lzma_ret lzma_block_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, lzma_block *options) { lzma_next_coder_init(lzma_block_encoder_init, next, allocator); // If the Check ID is not supported, we cannot calculate the check and // thus not create a proper Block. if ((unsigned)(options->check) > LZMA_CHECK_ID_MAX) return LZMA_PROG_ERROR; if (!lzma_check_is_supported(options->check)) return LZMA_UNSUPPORTED_CHECK; // Allocate and initialize *next->coder if needed. if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &block_encode; next->end = &block_encoder_end; next->coder->next = LZMA_NEXT_CODER_INIT; } // Basic initializations next->coder->sequence = SEQ_CODE; next->coder->options = options; next->coder->compressed_size = 0; next->coder->uncompressed_size = 0; // Initialize the check next->coder->check_pos = 0; lzma_check_init(&next->coder->check, options->check); // Initialize the requested filters. return lzma_raw_encoder_init(&next->coder->next, allocator, options->filters); } extern LZMA_API lzma_ret lzma_block_encoder(lzma_stream *strm, lzma_block *options) { lzma_next_strm_init(lzma_block_encoder_init, strm, options); strm->internal->supported_actions[LZMA_RUN] = true; strm->internal->supported_actions[LZMA_FINISH] = true; return LZMA_OK; }