/////////////////////////////////////////////////////////////////////////////// // /// \file block_decoder.c /// \brief Decodes .lzma Blocks // // Copyright (C) 2007 Lasse Collin // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // /////////////////////////////////////////////////////////////////////////////// #include "block_decoder.h" #include "block_private.h" #include "raw_decoder.h" #include "check.h" struct lzma_coder_s { enum { SEQ_CODE, SEQ_PADDING, SEQ_CHECK, } sequence; /// The filters in the chain; initialized with lzma_raw_decoder_init(). lzma_next_coder next; /// Decoding options; we also write Compressed Size and Uncompressed /// Size back to this structure when the encoding has been finished. lzma_options_block *options; /// Compressed Size calculated while encoding lzma_vli compressed_size; /// Uncompressed Size calculated while encoding lzma_vli uncompressed_size; /// Maximum allowed Compressed Size; this takes into account the /// size of the Block Header and Check fields when Compressed Size /// is unknown. lzma_vli compressed_limit; /// Position when reading the Check field size_t check_pos; /// Check of the uncompressed data lzma_check check; }; static lzma_ret block_decode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { switch (coder->sequence) { case SEQ_CODE: { if (*out_pos >= out_size) return LZMA_OK; const size_t in_start = *in_pos; const size_t out_start = *out_pos; const lzma_ret ret = coder->next.code(coder->next.coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); const size_t in_used = *in_pos - in_start; const size_t out_used = *out_pos - out_start; // NOTE: We compare to compressed_limit here, which prevents // the total size of the Block growing past LZMA_VLI_VALUE_MAX. if (update_size(&coder->compressed_size, in_used, coder->compressed_limit) || update_size(&coder->uncompressed_size, out_used, coder->options->uncompressed_size)) return LZMA_DATA_ERROR; lzma_check_update(&coder->check, coder->options->check, out + out_start, out_used); if (ret != LZMA_STREAM_END) return ret; coder->sequence = SEQ_PADDING; } // Fall through case SEQ_PADDING: // If Compressed Data is padded to a multiple of four bytes. while (coder->compressed_size & 3) { if (*in_pos >= in_size) return LZMA_OK; if (in[(*in_pos)++] != 0x00) return LZMA_DATA_ERROR; if (update_size(&coder->compressed_size, 1, coder->compressed_limit)) return LZMA_DATA_ERROR; } // Compressed and Uncompressed Sizes are now at their final // values. Verify that they match the values given to us. if (!is_size_valid(coder->compressed_size, coder->options->compressed_size) || !is_size_valid(coder->uncompressed_size, coder->options->uncompressed_size)) return LZMA_DATA_ERROR; // Copy the values into coder->options. The caller // may use this information to construct Index. coder->options->compressed_size = coder->compressed_size; coder->options->uncompressed_size = coder->uncompressed_size; if (coder->options->check == LZMA_CHECK_NONE) return LZMA_STREAM_END; lzma_check_finish(&coder->check, coder->options->check); coder->sequence = SEQ_CHECK; // Fall through case SEQ_CHECK: while (*in_pos < in_size) { if (in[(*in_pos)++] != coder->check.buffer[ coder->check_pos]) return LZMA_DATA_ERROR; if (++coder->check_pos == lzma_check_sizes[ coder->options->check]) return LZMA_STREAM_END; } return LZMA_OK; } return LZMA_PROG_ERROR; } static void block_decoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_coder_end(&coder->next, allocator); lzma_free(coder, allocator); return; } static lzma_ret block_decoder_init(lzma_next_coder *next, lzma_allocator *allocator, lzma_options_block *options) { // While lzma_block_total_size_get() is meant to calculate the Total // Size, it also validates the options excluding the filters. if (lzma_block_total_size_get(options) == 0) return LZMA_PROG_ERROR; // Allocate and initialize *next->coder if needed. if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &block_decode; next->end = &block_decoder_end; next->coder->next = LZMA_NEXT_CODER_INIT; } // Basic initializations next->coder->sequence = SEQ_CODE; next->coder->options = options; next->coder->compressed_size = 0; next->coder->uncompressed_size = 0; // If Compressed Size is not known, we calculate the maximum allowed // value so that Total Size of the Block still is a valid VLI and // a multiple of four. next->coder->compressed_limit = options->compressed_size == LZMA_VLI_VALUE_UNKNOWN ? (LZMA_VLI_VALUE_MAX & ~LZMA_VLI_C(3)) - options->header_size - lzma_check_sizes[options->check] : options->compressed_size; // Initialize the check next->coder->check_pos = 0; return_if_error(lzma_check_init(&next->coder->check, options->check)); return lzma_raw_decoder_init(&next->coder->next, allocator, options->filters); } extern lzma_ret lzma_block_decoder_init(lzma_next_coder *next, lzma_allocator *allocator, lzma_options_block *options) { lzma_next_coder_init(block_decoder_init, next, allocator, options); } extern LZMA_API lzma_ret lzma_block_decoder(lzma_stream *strm, lzma_options_block *options) { lzma_next_strm_init(strm, block_decoder_init, options); strm->internal->supported_actions[LZMA_RUN] = true; strm->internal->supported_actions[LZMA_SYNC_FLUSH] = true; return LZMA_OK; }