/* * Speed-optimized CRC64 using slicing-by-four algorithm * Instruction set: i386 * Optimized for: i686 * * This code has been put into the public domain by its authors: * Igor Pavlov * Lasse Collin * * This code needs lzma_crc64_table, which can be created using the * following C code: uint64_t lzma_crc64_table[4][256]; void init_table(void) { static const uint64_t poly64 = UINT64_C(0xC96C5795D7870F42); for (size_t s = 0; s < 4; ++s) { for (size_t b = 0; b < 256; ++b) { uint64_t r = s == 0 ? b : lzma_crc64_table[s - 1][b]; for (size_t i = 0; i < 8; ++i) { if (r & 1) r = (r >> 1) ^ poly64; else r >>= 1; } lzma_crc64_table[s][b] = r; } } } * The prototype of the CRC64 function: * extern uint64_t lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc); */ .text .globl lzma_crc64 .type lzma_crc64, @function .align 16 lzma_crc64: /* * Register usage: * %eax crc LSB * %edx crc MSB * %esi buf * %edi size or buf + size * %ebx lzma_crc64_table * %ebp Table index * %ecx Temporary */ pushl %ebx pushl %esi pushl %edi pushl %ebp movl 0x14(%esp), %esi /* buf */ movl 0x18(%esp), %edi /* size */ movl 0x1C(%esp), %eax /* crc LSB */ movl 0x20(%esp), %edx /* crc MSB */ /* * Store the address of lzma_crc64_table to %ebx. This is needed to * get position-independent code (PIC). */ call .L_PIC .L_PIC: popl %ebx addl $_GLOBAL_OFFSET_TABLE_+[.-.L_PIC], %ebx movl lzma_crc64_table@GOT(%ebx), %ebx /* Complement the initial value. */ notl %eax notl %edx .L_align: /* * Check if there is enough input to use slicing-by-four. * We need eight bytes, because the loop pre-reads four bytes. */ cmpl $8, %edi jl .L_rest /* Check if we have reached alignment of four bytes. */ testl $3, %esi jz .L_slice /* Calculate CRC of the next input byte. */ movzbl (%esi), %ebp incl %esi movzbl %al, %ecx xorl %ecx, %ebp shrdl $8, %edx, %eax xorl (%ebx, %ebp, 8), %eax shrl $8, %edx xorl 4(%ebx, %ebp, 8), %edx decl %edi jmp .L_align .L_slice: /* * If we get here, there's at least eight bytes of aligned input * available. Make %edi multiple of four bytes. Store the possible * remainder over the "size" variable in the argument stack. */ movl %edi, 0x18(%esp) andl $-4, %edi subl %edi, 0x18(%esp) /* * Let %edi be buf + size - 4 while running the main loop. This way * we can compare for equality to determine when exit the loop. */ addl %esi, %edi subl $4, %edi /* Read in the first four aligned bytes. */ movl (%esi), %ecx .L_loop: xorl %eax, %ecx movzbl %cl, %ebp movl 0x1800(%ebx, %ebp, 8), %eax xorl %edx, %eax movl 0x1804(%ebx, %ebp, 8), %edx movzbl %ch, %ebp xorl 0x1000(%ebx, %ebp, 8), %eax xorl 0x1004(%ebx, %ebp, 8), %edx shrl $16, %ecx movzbl %cl, %ebp xorl 0x0800(%ebx, %ebp, 8), %eax xorl 0x0804(%ebx, %ebp, 8), %edx movzbl %ch, %ebp addl $4, %esi xorl (%ebx, %ebp, 8), %eax xorl 4(%ebx, %ebp, 8), %edx /* Check for end of aligned input. */ cmpl %edi, %esi /* * Copy the next input byte to %ecx. It is slightly faster to * read it here than at the top of the loop. */ movl (%esi), %ecx jl .L_loop /* * Process the remaining four bytes, which we have already * copied to %ecx. */ xorl %eax, %ecx movzbl %cl, %ebp movl 0x1800(%ebx, %ebp, 8), %eax xorl %edx, %eax movl 0x1804(%ebx, %ebp, 8), %edx movzbl %ch, %ebp xorl 0x1000(%ebx, %ebp, 8), %eax xorl 0x1004(%ebx, %ebp, 8), %edx shrl $16, %ecx movzbl %cl, %ebp xorl 0x0800(%ebx, %ebp, 8), %eax xorl 0x0804(%ebx, %ebp, 8), %edx movzbl %ch, %ebp addl $4, %esi xorl (%ebx, %ebp, 8), %eax xorl 4(%ebx, %ebp, 8), %edx /* Copy the number of remaining bytes to %edi. */ movl 0x18(%esp), %edi .L_rest: /* Check for end of input. */ testl %edi, %edi jz .L_return /* Calculate CRC of the next input byte. */ movzbl (%esi), %ebp incl %esi movzbl %al, %ecx xorl %ecx, %ebp shrdl $8, %edx, %eax xorl (%ebx, %ebp, 8), %eax shrl $8, %edx xorl 4(%ebx, %ebp, 8), %edx decl %edi jmp .L_rest .L_return: /* Complement the final value. */ notl %eax notl %edx popl %ebp popl %edi popl %esi popl %ebx ret .size lzma_crc32, .-lzma_crc32