From a9477d1e0c6fd0e47e637d051e7b9e2a5d9af517 Mon Sep 17 00:00:00 2001 From: Lasse Collin Date: Sun, 3 Aug 2014 21:08:12 +0300 Subject: liblzma: SHA-256: Optimize the way rotations are done. This looks weird because the rotations become sequential, but it helps quite a bit on both 32-bit and 64-bit x86: - It requires fewer instructions on two-operand instruction sets like x86. - It requires one register less which matters especially on 32-bit x86. I hope this doesn't hurt other archs. I didn't invent this idea myself, but I don't remember where I saw it first. --- src/liblzma/check/sha256.c | 17 +++++++++++------ 1 file changed, 11 insertions(+), 6 deletions(-) (limited to 'src/liblzma/check/sha256.c') diff --git a/src/liblzma/check/sha256.c b/src/liblzma/check/sha256.c index 6e2f65f1..e0e2f10b 100644 --- a/src/liblzma/check/sha256.c +++ b/src/liblzma/check/sha256.c @@ -23,8 +23,13 @@ #include "check.h" -// At least on x86, GCC is able to optimize this to a rotate instruction. -#define rotr_32(num, amount) ((num) >> (amount) | (num) << (32 - (amount))) +// Rotate a uint32_t. GCC can optimize this to a rotate instruction +// at least on x86. +static inline uint32_t +rotr_32(uint32_t num, unsigned amount) +{ + return (num >> amount) | (num << (32 - amount)); +} #define blk0(i) (W[i] = conv32be(data[i])) #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \ @@ -49,10 +54,10 @@ #define R0(i) R(i, 0, blk0(i)) #define R2(i) R(i, j, blk2(i)) -#define S0(x) (rotr_32(x, 2) ^ rotr_32(x, 13) ^ rotr_32(x, 22)) -#define S1(x) (rotr_32(x, 6) ^ rotr_32(x, 11) ^ rotr_32(x, 25)) -#define s0(x) (rotr_32(x, 7) ^ rotr_32(x, 18) ^ (x >> 3)) -#define s1(x) (rotr_32(x, 17) ^ rotr_32(x, 19) ^ (x >> 10)) +#define S0(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 9), 11), 2) +#define S1(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 14), 5), 6) +#define s0(x) (rotr_32(x ^ rotr_32(x, 11), 7) ^ (x >> 3)) +#define s1(x) (rotr_32(x ^ rotr_32(x, 2), 17) ^ (x >> 10)) static const uint32_t SHA256_K[64] = { -- cgit v1.2.3