aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/liblzma/check/Makefile.inc3
-rw-r--r--src/liblzma/check/crc32_fast.c120
-rw-r--r--src/liblzma/check/crc64_fast.c128
-rw-r--r--src/liblzma/check/crc_clmul.c414
-rw-r--r--src/liblzma/check/crc_common.h190
5 files changed, 435 insertions, 420 deletions
diff --git a/src/liblzma/check/Makefile.inc b/src/liblzma/check/Makefile.inc
index 1b016356..7780d20d 100644
--- a/src/liblzma/check/Makefile.inc
+++ b/src/liblzma/check/Makefile.inc
@@ -26,6 +26,9 @@ if COND_ASM_X86
liblzma_la_SOURCES += check/crc32_x86.S
else
liblzma_la_SOURCES += check/crc32_fast.c
+if COND_CRC_CLMUL
+liblzma_la_SOURCES += check/crc_clmul.c
+endif
endif
endif
endif
diff --git a/src/liblzma/check/crc32_fast.c b/src/liblzma/check/crc32_fast.c
index 3ac9b6d7..8849a476 100644
--- a/src/liblzma/check/crc32_fast.c
+++ b/src/liblzma/check/crc32_fast.c
@@ -34,11 +34,11 @@
#include "check.h"
#include "crc_common.h"
+#ifdef CRC_GENERIC
+
///////////////////
// Generic CRC32 //
///////////////////
-#ifdef CRC_GENERIC
-
static uint32_t
crc32_generic(const uint8_t *buf, size_t size, uint32_t crc)
@@ -99,118 +99,6 @@ crc32_generic(const uint8_t *buf, size_t size, uint32_t crc)
}
#endif
-
-/////////////////////
-// x86 CLMUL CRC32 //
-/////////////////////
-
-#ifdef CRC_CLMUL
-
-#include <immintrin.h>
-
-
-/*
-// These functions were used to generate the constants
-// at the top of crc32_clmul().
-static uint64_t
-calc_lo(uint64_t p, uint64_t a, int n)
-{
- uint64_t b = 0; int i;
- for (i = 0; i < n; i++) {
- b = b >> 1 | (a & 1) << (n - 1);
- a = (a >> 1) ^ ((0 - (a & 1)) & p);
- }
- return b;
-}
-
-// same as ~crc(&a, sizeof(a), ~0)
-static uint64_t
-calc_hi(uint64_t p, uint64_t a, int n)
-{
- int i;
- for (i = 0; i < n; i++)
- a = (a >> 1) ^ ((0 - (a & 1)) & p);
- return a;
-}
-*/
-
-
-// MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC
-// code when optimizations are enabled (release build). According to the bug
-// report, the ebx register is corrupted and the calculated result is wrong.
-// Trying to workaround the problem with "__asm mov ebx, ebx" didn't help.
-// The following pragma works and performance is still good. x86-64 builds
-// aren't affected by this problem.
-//
-// NOTE: Another pragma after the function restores the optimizations.
-// If the #if condition here is updated, the other one must be updated too.
-#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
- && defined(_M_IX86)
-# pragma optimize("g", off)
-#endif
-
-// EDG-based compilers (Intel's classic compiler and compiler for E2K) can
-// define __GNUC__ but the attribute must not be used with them.
-// The new Clang-based ICX needs the attribute.
-//
-// NOTE: Build systems check for this too, keep them in sync with this.
-#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
-__attribute__((__target__("ssse3,sse4.1,pclmul")))
-#endif
-static uint32_t
-crc32_clmul(const uint8_t *buf, size_t size, uint32_t crc)
-{
- // The prototypes of the intrinsics use signed types while most of
- // the values are treated as unsigned here. These warnings in this
- // function have been checked and found to be harmless so silence them.
-#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
-# pragma GCC diagnostic push
-# pragma GCC diagnostic ignored "-Wsign-conversion"
-# pragma GCC diagnostic ignored "-Wconversion"
-#endif
-
-#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
- // The code assumes that there is at least one byte of input.
- if (size == 0)
- return crc;
-#endif
-
- // uint32_t poly = 0xedb88320;
- uint64_t p = 0x1db710640; // p << 1
- uint64_t mu = 0x1f7011641; // calc_lo(p, p, 32) << 1 | 1
- uint64_t k5 = 0x163cd6124; // calc_hi(p, p, 32) << 1
- uint64_t k4 = 0x0ccaa009e; // calc_hi(p, p, 64) << 1
- uint64_t k3 = 0x1751997d0; // calc_hi(p, p, 128) << 1
-
- __m128i vfold4 = _mm_set_epi64x(mu, p);
- __m128i vfold8 = _mm_set_epi64x(0, k5);
- __m128i vfold16 = _mm_set_epi64x(k4, k3);
-
- __m128i v0, v1, v2;
-
- crc_simd_body(buf, size, &v0, &v1, vfold16, _mm_cvtsi32_si128(~crc));
-
- v1 = _mm_xor_si128(
- _mm_clmulepi64_si128(v0, vfold16, 0x10), v1); // xxx0
- v2 = _mm_shuffle_epi32(v1, 0xe7); // 0xx0
- v0 = _mm_slli_epi64(v1, 32); // [0]
- v0 = _mm_clmulepi64_si128(v0, vfold8, 0x00);
- v0 = _mm_xor_si128(v0, v2); // [1] [2]
- v2 = _mm_clmulepi64_si128(v0, vfold4, 0x10);
- v2 = _mm_clmulepi64_si128(v2, vfold4, 0x00);
- v0 = _mm_xor_si128(v0, v2); // [2]
- return ~_mm_extract_epi32(v0, 2);
-
-#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
-# pragma GCC diagnostic pop
-#endif
-}
-#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
- && defined(_M_IX86)
-# pragma optimize("", on)
-#endif
-#endif
-
#if defined(CRC_GENERIC) && defined(CRC_CLMUL)
typedef uint32_t (*crc32_func_type)(
const uint8_t *buf, size_t size, uint32_t crc);
@@ -226,7 +114,7 @@ typedef uint32_t (*crc32_func_type)(
static crc32_func_type
crc32_resolve(void)
{
- return is_clmul_supported() ? &crc32_clmul : &crc32_generic;
+ return lzma_is_clmul_supported() ? &lzma_crc32_clmul : &crc32_generic;
}
#if defined(HAVE_FUNC_ATTRIBUTE_IFUNC) && defined(__clang__)
@@ -305,7 +193,7 @@ lzma_crc32(const uint8_t *buf, size_t size, uint32_t crc)
return crc32_func(buf, size, crc);
#elif defined(CRC_CLMUL)
- return crc32_clmul(buf, size, crc);
+ return lzma_crc32_clmul(buf, size, crc);
#else
return crc32_generic(buf, size, crc);
diff --git a/src/liblzma/check/crc64_fast.c b/src/liblzma/check/crc64_fast.c
index 79b662a4..07f4f576 100644
--- a/src/liblzma/check/crc64_fast.c
+++ b/src/liblzma/check/crc64_fast.c
@@ -31,13 +31,12 @@
#include "check.h"
#include "crc_common.h"
+#ifdef CRC_GENERIC
+
/////////////////////////////////
// Generic slice-by-four CRC64 //
/////////////////////////////////
-#ifdef CRC_GENERIC
-
-
#ifdef WORDS_BIGENDIAN
# define A1(x) ((x) >> 56)
#else
@@ -93,125 +92,6 @@ crc64_generic(const uint8_t *buf, size_t size, uint64_t crc)
}
#endif
-
-/////////////////////
-// x86 CLMUL CRC64 //
-/////////////////////
-
-#ifdef CRC_CLMUL
-
-#include <immintrin.h>
-
-
-/*
-// These functions were used to generate the constants
-// at the top of crc64_clmul().
-static uint64_t
-calc_lo(uint64_t poly)
-{
- uint64_t a = poly;
- uint64_t b = 0;
-
- for (unsigned i = 0; i < 64; ++i) {
- b = (b >> 1) | (a << 63);
- a = (a >> 1) ^ (a & 1 ? poly : 0);
- }
-
- return b;
-}
-
-static uint64_t
-calc_hi(uint64_t poly, uint64_t a)
-{
- for (unsigned i = 0; i < 64; ++i)
- a = (a >> 1) ^ (a & 1 ? poly : 0);
-
- return a;
-}
-*/
-
-
-// MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC
-// code when optimizations are enabled (release build). According to the bug
-// report, the ebx register is corrupted and the calculated result is wrong.
-// Trying to workaround the problem with "__asm mov ebx, ebx" didn't help.
-// The following pragma works and performance is still good. x86-64 builds
-// aren't affected by this problem.
-//
-// NOTE: Another pragma after the function restores the optimizations.
-// If the #if condition here is updated, the other one must be updated too.
-#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
- && defined(_M_IX86)
-# pragma optimize("g", off)
-#endif
-
-// EDG-based compilers (Intel's classic compiler and compiler for E2K) can
-// define __GNUC__ but the attribute must not be used with them.
-// The new Clang-based ICX needs the attribute.
-//
-// NOTE: Build systems check for this too, keep them in sync with this.
-#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
-__attribute__((__target__("ssse3,sse4.1,pclmul")))
-#endif
-static uint64_t
-crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc)
-{
- // The prototypes of the intrinsics use signed types while most of
- // the values are treated as unsigned here. These warnings in this
- // function have been checked and found to be harmless so silence them.
-#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
-# pragma GCC diagnostic push
-# pragma GCC diagnostic ignored "-Wsign-conversion"
-# pragma GCC diagnostic ignored "-Wconversion"
-#endif
-
-#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
- // The code assumes that there is at least one byte of input.
- if (size == 0)
- return crc;
-#endif
-
- // const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial
- const uint64_t p = 0x92d8af2baf0e1e85; // (poly << 1) | 1
- const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1
- const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1)
- const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2)
-
- const __m128i vfold8 = _mm_set_epi64x(p, mu);
- const __m128i vfold16 = _mm_set_epi64x(k2, k1);
-
- __m128i v0, v1, v2;
-
-#if defined(__i386__) || defined(_M_IX86)
- crc_simd_body(buf, size, &v0, &v1, vfold16, _mm_set_epi64x(0, ~crc));
-#else
- // GCC and Clang would produce good code with _mm_set_epi64x
- // but MSVC needs _mm_cvtsi64_si128 on x86-64.
- crc_simd_body(buf, size, &v0, &v1, vfold16, _mm_cvtsi64_si128(~crc));
-#endif
-
- v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold16, 0x10), v1);
- v0 = _mm_clmulepi64_si128(v1, vfold8, 0x00);
- v2 = _mm_clmulepi64_si128(v0, vfold8, 0x10);
- v0 = _mm_xor_si128(_mm_xor_si128(v1, _mm_slli_si128(v0, 8)), v2);
-
-#if defined(__i386__) || defined(_M_IX86)
- return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) |
- (uint64_t)(uint32_t)_mm_extract_epi32(v0, 2));
-#else
- return ~(uint64_t)_mm_extract_epi64(v0, 1);
-#endif
-
-#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
-# pragma GCC diagnostic pop
-#endif
-}
-#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
- && defined(_M_IX86)
-# pragma optimize("", on)
-#endif
-#endif
-
#if defined(CRC_GENERIC) && defined(CRC_CLMUL)
typedef uint64_t (*crc64_func_type)(
const uint8_t *buf, size_t size, uint64_t crc);
@@ -227,7 +107,7 @@ typedef uint64_t (*crc64_func_type)(
static crc64_func_type
crc64_resolve(void)
{
- return is_clmul_supported() ? &crc64_clmul : &crc64_generic;
+ return lzma_is_clmul_supported() ? &lzma_crc64_clmul : &crc64_generic;
}
#if defined(HAVE_FUNC_ATTRIBUTE_IFUNC) && defined(__clang__)
@@ -322,7 +202,7 @@ lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc)
//
// FIXME: Lookup table isn't currently omitted on 32-bit x86,
// see crc64_table.c.
- return crc64_clmul(buf, size, crc);
+ return lzma_crc64_clmul(buf, size, crc);
#else
return crc64_generic(buf, size, crc);
diff --git a/src/liblzma/check/crc_clmul.c b/src/liblzma/check/crc_clmul.c
new file mode 100644
index 00000000..f53fcc92
--- /dev/null
+++ b/src/liblzma/check/crc_clmul.c
@@ -0,0 +1,414 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file crc_clmul.c
+/// \brief CRC32 and CRC64 implementations using CLMUL instructions.
+///
+/// lzma_crc32_clmul() and lzma_crc64_clmul() use 32/64-bit x86
+/// SSSE3, SSE4.1, and CLMUL instructions. This is compatible with
+/// Elbrus 2000 (E2K) too.
+///
+/// They were derived from
+/// https://www.researchgate.net/publication/263424619_Fast_CRC_computation
+/// and the public domain code from https://github.com/rawrunprotected/crc
+/// (URLs were checked on 2023-10-14).
+///
+/// FIXME: Builds for 32-bit x86 use the assembly .S files by default
+/// unless configured with --disable-assembler. Even then the lookup table
+/// isn't omitted in crc64_table.c since it doesn't know that assembly
+/// code has been disabled.
+//
+// Authors: Ilya Kurdyukov
+// Hans Jansen
+// Lasse Collin
+// Jia Tan
+//
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "common.h"
+#include "crc_common.h"
+#include <immintrin.h>
+
+
+#define MASK_L(in, mask, r) r = _mm_shuffle_epi8(in, mask)
+
+#define MASK_H(in, mask, r) \
+ r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign))
+
+#define MASK_LH(in, mask, low, high) \
+ MASK_L(in, mask, low); \
+ MASK_H(in, mask, high)
+
+
+// MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC
+// code when optimizations are enabled (release build). According to the bug
+// report, the ebx register is corrupted and the calculated result is wrong.
+// Trying to workaround the problem with "__asm mov ebx, ebx" didn't help.
+// The following pragma works and performance is still good. x86-64 builds
+// aren't affected by this problem.
+//
+// NOTE: Another pragma after lzma_crc64_clmul() restores the optimizations.
+// If the #if condition here is updated, the other one must be updated too.
+#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
+ && defined(_M_IX86)
+# pragma optimize("g", off)
+#endif
+
+
+#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
+__attribute__((__target__("ssse3,sse4.1,pclmul")))
+#endif
+#if lzma_has_attribute(__no_sanitize_address__)
+__attribute__((__no_sanitize_address__))
+#endif
+static inline void
+crc_simd_body(const uint8_t *buf, const size_t size, __m128i *v0, __m128i *v1,
+ const __m128i vfold16, const __m128i initial_crc)
+{
+ // Create a vector with 8-bit values 0 to 15. This is used to
+ // construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8.
+ const __m128i vramp = _mm_setr_epi32(
+ 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c);
+
+ // This is used to inverse the control mask of _mm_shuffle_epi8
+ // so that bytes that wouldn't be picked with the original mask
+ // will be picked and vice versa.
+ const __m128i vsign = _mm_set1_epi8(-0x80);
+
+ // Memory addresses A to D and the distances between them:
+ //
+ // A B C D
+ // [skip_start][size][skip_end]
+ // [ size2 ]
+ //
+ // A and D are 16-byte aligned. B and C are 1-byte aligned.
+ // skip_start and skip_end are 0-15 bytes. size is at least 1 byte.
+ //
+ // A = aligned_buf will initially point to this address.
+ // B = The address pointed by the caller-supplied buf.
+ // C = buf + size == aligned_buf + size2
+ // D = buf + size + skip_end == aligned_buf + size2 + skip_end
+ const size_t skip_start = (size_t)((uintptr_t)buf & 15);
+ const size_t skip_end = (size_t)((0U - (uintptr_t)(buf + size)) & 15);
+ const __m128i *aligned_buf = (const __m128i *)(
+ (uintptr_t)buf & ~(uintptr_t)15);
+
+ // If size2 <= 16 then the whole input fits into a single 16-byte
+ // vector. If size2 > 16 then at least two 16-byte vectors must
+ // be processed. If size2 > 16 && size <= 16 then there is only
+ // one 16-byte vector's worth of input but it is unaligned in memory.
+ //
+ // NOTE: There is no integer overflow here if the arguments
+ // are valid. If this overflowed, buf + size would too.
+ const size_t size2 = skip_start + size;
+
+ // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8:
+ // The first skip_start or skip_end bytes in the vectors will have
+ // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8
+ // will produce zeros for these positions. (Bitwise-xor of these
+ // masks with vsign will produce the opposite behavior.)
+ const __m128i mask_start
+ = _mm_sub_epi8(vramp, _mm_set1_epi8((char)skip_start));
+ const __m128i mask_end
+ = _mm_sub_epi8(vramp, _mm_set1_epi8((char)skip_end));
+
+ // Get the first 1-16 bytes into data0. If loading less than 16
+ // bytes, the bytes are loaded to the high bits of the vector and
+ // the least significant positions are filled with zeros.
+ const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf),
+ _mm_setzero_si128(), mask_start);
+ aligned_buf++;
+
+ __m128i v2, v3;
+
+#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
+ if (size <= 16) {
+ // Right-shift initial_crc by 1-16 bytes based on "size"
+ // and store the result in v1 (high bytes) and v0 (low bytes).
+ //
+ // NOTE: The highest 8 bytes of initial_crc are zeros so
+ // v1 will be filled with zeros if size >= 8. The highest
+ // 8 bytes of v1 will always become zeros.
+ //
+ // [ v1 ][ v0 ]
+ // [ initial_crc ] size == 1
+ // [ initial_crc ] size == 2
+ // [ initial_crc ] size == 15
+ // [ initial_crc ] size == 16 (all in v0)
+ const __m128i mask_low = _mm_add_epi8(
+ vramp, _mm_set1_epi8((char)(size - 16)));
+ MASK_LH(initial_crc, mask_low, *v0, *v1);
+
+ if (size2 <= 16) {
+ // There are 1-16 bytes of input and it is all
+ // in data0. Copy the input bytes to v3. If there
+ // are fewer than 16 bytes, the low bytes in v3
+ // will be filled with zeros. That is, the input
+ // bytes are stored to the same position as
+ // (part of) initial_crc is in v0.
+ MASK_L(data0, mask_end, v3);
+ } else {
+ // There are 2-16 bytes of input but not all bytes
+ // are in data0.
+ const __m128i data1 = _mm_load_si128(aligned_buf);
+
+ // Collect the 2-16 input bytes from data0 and data1
+ // to v2 and v3, and bitwise-xor them with the
+ // low bits of initial_crc in v0. Note that the
+ // the second xor is below this else-block as it
+ // is shared with the other branch.
+ MASK_H(data0, mask_end, v2);
+ MASK_L(data1, mask_end, v3);
+ *v0 = _mm_xor_si128(*v0, v2);
+ }
+
+ *v0 = _mm_xor_si128(*v0, v3);
+ *v1 = _mm_alignr_epi8(*v1, *v0, 8);
+ } else
+#endif
+ {
+ // There is more than 16 bytes of input.
+ const __m128i data1 = _mm_load_si128(aligned_buf);
+ const __m128i *end = (const __m128i*)(
+ (const char *)aligned_buf - 16 + size2);
+ aligned_buf++;
+
+ MASK_LH(initial_crc, mask_start, *v0, *v1);
+ *v0 = _mm_xor_si128(*v0, data0);
+ *v1 = _mm_xor_si128(*v1, data1);
+
+ while (aligned_buf < end) {
+ *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
+ *v0, vfold16, 0x00));
+ *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
+ *v0, vfold16, 0x11));
+ *v1 = _mm_load_si128(aligned_buf++);
+ }
+
+ if (aligned_buf != end) {
+ MASK_H(*v0, mask_end, v2);
+ MASK_L(*v0, mask_end, *v0);
+ MASK_L(*v1, mask_end, v3);
+ *v1 = _mm_or_si128(v2, v3);
+ }
+
+ *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
+ *v0, vfold16, 0x00));
+ *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
+ *v0, vfold16, 0x11));
+ *v1 = _mm_srli_si128(*v0, 8);
+ }
+}
+
+
+/////////////////////
+// x86 CLMUL CRC32 //
+/////////////////////
+
+/*
+// These functions were used to generate the constants
+// at the top of lzma_crc32_clmul().
+static uint64_t
+calc_lo(uint64_t p, uint64_t a, int n)
+{
+ uint64_t b = 0; int i;
+ for (i = 0; i < n; i++) {
+ b = b >> 1 | (a & 1) << (n - 1);
+ a = (a >> 1) ^ ((0 - (a & 1)) & p);
+ }
+ return b;
+}
+
+// same as ~crc(&a, sizeof(a), ~0)
+static uint64_t
+calc_hi(uint64_t p, uint64_t a, int n)
+{
+ int i;
+ for (i = 0; i < n; i++)
+ a = (a >> 1) ^ ((0 - (a & 1)) & p);
+ return a;
+}
+*/
+
+#ifdef HAVE_CHECK_CRC32
+
+// EDG-based compilers (Intel's classic compiler and compiler for E2K) can
+// define __GNUC__ but the attribute must not be used with them.
+// The new Clang-based ICX needs the attribute.
+//
+// NOTE: Build systems check for this too, keep them in sync with this.
+#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
+__attribute__((__target__("ssse3,sse4.1,pclmul")))
+#endif
+extern uint32_t
+lzma_crc32_clmul(const uint8_t *buf, size_t size, uint32_t crc)
+{
+#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
+ // The code assumes that there is at least one byte of input.
+ if (size == 0)
+ return crc;
+#endif
+
+ // uint32_t poly = 0xedb88320;
+ const int64_t p = 0x1db710640; // p << 1
+ const int64_t mu = 0x1f7011641; // calc_lo(p, p, 32) << 1 | 1
+ const int64_t k5 = 0x163cd6124; // calc_hi(p, p, 32) << 1
+ const int64_t k4 = 0x0ccaa009e; // calc_hi(p, p, 64) << 1
+ const int64_t k3 = 0x1751997d0; // calc_hi(p, p, 128) << 1
+
+ const __m128i vfold4 = _mm_set_epi64x(mu, p);
+ const __m128i vfold8 = _mm_set_epi64x(0, k5);
+ const __m128i vfold16 = _mm_set_epi64x(k4, k3);
+
+ __m128i v0, v1, v2;
+
+ crc_simd_body(buf, size, &v0, &v1, vfold16,
+ _mm_cvtsi32_si128((int32_t)~crc));
+
+ v1 = _mm_xor_si128(
+ _mm_clmulepi64_si128(v0, vfold16, 0x10), v1); // xxx0
+ v2 = _mm_shuffle_epi32(v1, 0xe7); // 0xx0
+ v0 = _mm_slli_epi64(v1, 32); // [0]
+ v0 = _mm_clmulepi64_si128(v0, vfold8, 0x00);
+ v0 = _mm_xor_si128(v0, v2); // [1] [2]
+ v2 = _mm_clmulepi64_si128(v0, vfold4, 0x10);
+ v2 = _mm_clmulepi64_si128(v2, vfold4, 0x00);
+ v0 = _mm_xor_si128(v0, v2); // [2]
+ return ~(uint32_t)_mm_extract_epi32(v0, 2);
+}
+#endif // HAVE_CHECK_CRC32
+
+
+/////////////////////
+// x86 CLMUL CRC64 //
+/////////////////////
+
+/*
+// These functions were used to generate the constants
+// at the top of lzma_crc64_clmul().
+static uint64_t
+calc_lo(uint64_t poly)
+{
+ uint64_t a = poly;
+ uint64_t b = 0;
+
+ for (unsigned i = 0; i < 64; ++i) {
+ b = (b >> 1) | (a << 63);
+ a = (a >> 1) ^ (a & 1 ? poly : 0);
+ }
+
+ return b;
+}
+
+static uint64_t
+calc_hi(uint64_t poly, uint64_t a)
+{
+ for (unsigned i = 0; i < 64; ++i)
+ a = (a >> 1) ^ (a & 1 ? poly : 0);
+
+ return a;
+}
+*/
+
+#ifdef HAVE_CHECK_CRC64
+
+#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
+__attribute__((__target__("ssse3,sse4.1,pclmul")))
+#endif
+extern uint64_t
+lzma_crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc)
+{
+#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
+ // The code assumes that there is at least one byte of input.
+ if (size == 0)
+ return crc;
+#endif
+
+ // const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial
+ const uint64_t p = 0x92d8af2baf0e1e85; // (poly << 1) | 1
+ const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1
+ const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1)
+ const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2)
+
+ const __m128i vfold8 = _mm_set_epi64x((int64_t)p, (int64_t)mu);
+ const __m128i vfold16 = _mm_set_epi64x((int64_t)k2, (int64_t)k1);
+
+ __m128i v0, v1, v2;
+
+#if defined(__i386__) || defined(_M_IX86)
+ crc_simd_body(buf, size, &v0, &v1, vfold16,
+ _mm_set_epi64x(0, (int64_t)~crc));
+#else
+ // GCC and Clang would produce good code with _mm_set_epi64x
+ // but MSVC needs _mm_cvtsi64_si128 on x86-64.
+ crc_simd_body(buf, size, &v0, &v1, vfold16,
+ _mm_cvtsi64_si128((int64_t)~crc));
+#endif
+
+ v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold16, 0x10), v1);
+ v0 = _mm_clmulepi64_si128(v1, vfold8, 0x00);
+ v2 = _mm_clmulepi64_si128(v0, vfold8, 0x10);
+ v0 = _mm_xor_si128(_mm_xor_si128(v1, _mm_slli_si128(v0, 8)), v2);
+
+#if defined(__i386__) || defined(_M_IX86)
+ return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) |
+ (uint64_t)(uint32_t)_mm_extract_epi32(v0, 2));
+#else
+ return ~(uint64_t)_mm_extract_epi64(v0, 1);
+#endif
+}
+#endif // HAVE_CHECK_CRC64
+
+
+#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
+ && defined(_M_IX86)
+# pragma optimize("", on)
+#endif
+
+
+////////////////////////
+// Detect CPU support //
+////////////////////////
+
+extern bool
+lzma_is_clmul_supported(void)
+{
+ int success = 1;
+ uint32_t r[4]; // eax, ebx, ecx, edx
+
+#if defined(_MSC_VER)
+ // This needs <intrin.h> with MSVC. ICC has it as a built-in
+ // on all platforms.
+ __cpuid(r, 1);
+#elif defined(HAVE_CPUID_H)
+ // Compared to just using __asm__ to run CPUID, this also checks
+ // that CPUID is supported and saves and restores ebx as that is
+ // needed with GCC < 5 with position-independent code (PIC).
+ success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]);
+#else
+ // Just a fallback that shouldn't be needed.
+ __asm__("cpuid\n\t"
+ : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3])
+ : "a"(1), "c"(0));
+#endif
+
+ // Returns true if these are supported:
+ // CLMUL (bit 1 in ecx)
+ // SSSE3 (bit 9 in ecx)
+ // SSE4.1 (bit 19 in ecx)
+ const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19);
+ return success && (r[2] & ecx_mask) == ecx_mask;
+
+ // Alternative methods that weren't used:
+ // - ICC's _may_i_use_cpu_feature: the other methods should work too.
+ // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul")
+ //
+ // CPUID decding is needed with MSVC anyway and older GCC. This keeps
+ // the feature checks in the build system simpler too. The nice thing
+ // about __builtin_cpu_supports would be that it generates very short
+ // code as is it only reads a variable set at startup but a few bytes
+ // doesn't matter here.
+}
diff --git a/src/liblzma/check/crc_common.h b/src/liblzma/check/crc_common.h
index 55fdd55e..b0176adc 100644
--- a/src/liblzma/check/crc_common.h
+++ b/src/liblzma/check/crc_common.h
@@ -6,6 +6,7 @@
// Authors: Lasse Collin
// Ilya Kurdyukov
// Hans Jansen
+// Jia Tan
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
@@ -77,185 +78,14 @@
# endif
#endif
-////////////////////////
-// Detect CPU support //
-////////////////////////
+/// Detect at runtime if the CPU supports the x86 CLMUL instruction when
+/// both the generic and CLMUL implementations are built.
+extern bool lzma_is_clmul_supported(void);
-#if defined(CRC_GENERIC) && defined(CRC_CLMUL)
-static inline bool
-is_clmul_supported(void)
-{
- int success = 1;
- uint32_t r[4]; // eax, ebx, ecx, edx
+/// CRC32 implemented with the x86 CLMUL instruction.
+extern uint32_t lzma_crc32_clmul(const uint8_t *buf, size_t size,
+ uint32_t crc);
-#if defined(_MSC_VER)
- // This needs <intrin.h> with MSVC. ICC has it as a built-in
- // on all platforms.
- __cpuid(r, 1);
-#elif defined(HAVE_CPUID_H)
- // Compared to just using __asm__ to run CPUID, this also checks
- // that CPUID is supported and saves and restores ebx as that is
- // needed with GCC < 5 with position-independent code (PIC).
- success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]);
-#else
- // Just a fallback that shouldn't be needed.
- __asm__("cpuid\n\t"
- : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3])
- : "a"(1), "c"(0));
-#endif
-
- // Returns true if these are supported:
- // CLMUL (bit 1 in ecx)
- // SSSE3 (bit 9 in ecx)
- // SSE4.1 (bit 19 in ecx)
- const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19);
- return success && (r[2] & ecx_mask) == ecx_mask;
-
- // Alternative methods that weren't used:
- // - ICC's _may_i_use_cpu_feature: the other methods should work too.
- // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul")
- //
- // CPUID decding is needed with MSVC anyway and older GCC. This keeps
- // the feature checks in the build system simpler too. The nice thing
- // about __builtin_cpu_supports would be that it generates very short
- // code as is it only reads a variable set at startup but a few bytes
- // doesn't matter here.
-}
-#endif
-
-
-#define MASK_L(in, mask, r) r = _mm_shuffle_epi8(in, mask);
-#define MASK_H(in, mask, r) \
- r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign));
-#define MASK_LH(in, mask, low, high) \
- MASK_L(in, mask, low) MASK_H(in, mask, high)
-
-#ifdef CRC_CLMUL
-
-#include <immintrin.h>
-
-
-#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
-__attribute__((__target__("ssse3,sse4.1,pclmul")))
-#endif
-#if lzma_has_attribute(__no_sanitize_address__)
-__attribute__((__no_sanitize_address__))
-#endif
-static inline void
-crc_simd_body(const uint8_t *buf, size_t size, __m128i *v0, __m128i *v1,
- __m128i vfold16, __m128i crc2vec)
-{
-#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
-# pragma GCC diagnostic push
-# pragma GCC diagnostic ignored "-Wsign-conversion"
-#endif
- // Memory addresses A to D and the distances between them:
- //
- // A B C D
- // [skip_start][size][skip_end]
- // [ size2 ]
- //
- // A and D are 16-byte aligned. B and C are 1-byte aligned.
- // skip_start and skip_end are 0-15 bytes. size is at least 1 byte.
- //
- // A = aligned_buf will initially point to this address.
- // B = The address pointed by the caller-supplied buf.
- // C = buf + size == aligned_buf + size2
- // D = buf + size + skip_end == aligned_buf + size2 + skip_end
- uintptr_t skip_start = (uintptr_t)buf & 15;
- uintptr_t skip_end = -(uintptr_t)(buf + size) & 15;
-
- // Create a vector with 8-bit values 0 to 15.
- // This is used to construct control masks
- // for _mm_blendv_epi8 and _mm_shuffle_epi8.
- __m128i vramp = _mm_setr_epi32(
- 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c);
-
- // This is used to inverse the control mask of _mm_shuffle_epi8
- // so that bytes that wouldn't be picked with the original mask
- // will be picked and vice versa.
- __m128i vsign = _mm_set1_epi8(-0x80);
-
- // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8
- // The first skip_start or skip_end bytes in the vectors will hav
- // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi
- // will produce zeros for these positions. (Bitwise-xor of thes
- // masks with vsign will produce the opposite behavior.)
- __m128i mask_start = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_start));
- __m128i mask_end = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_end));
-
- // If size2 <= 16 then the whole input fits into a single 16-byte
- // vector. If size2 > 16 then at least two 16-byte vectors must
- // be processed. If size2 > 16 && size <= 16 then there is only
- // one 16-byte vector's worth of input but it is unaligned in memory.
- //
- // NOTE: There is no integer overflow here if the arguments
- // are valid. If this overflowed, buf + size would too.
- uintptr_t size2 = skip_start + size;
- const __m128i *aligned_buf = (const __m128i*)((uintptr_t)buf & -16);
- __m128i v2, v3, vcrc, data0;
-
- vcrc = crc2vec;
-
- // Get the first 1-16 bytes into data0. If loading less than 16
- // bytes, the bytes are loaded to the high bits of the vector and
- // the least significant positions are filled with zeros.
- data0 = _mm_load_si128(aligned_buf);
- data0 = _mm_blendv_epi8(data0, _mm_setzero_si128(), mask_start);
- aligned_buf++;
- if (size2 <= 16) {
- // There are 1-16 bytes of input and it is all
- // in data0. Copy the input bytes to v3. If there
- // are fewer than 16 bytes, the low bytes in v3
- // will be filled with zeros. That is, the input
- // bytes are stored to the same position as
- // (part of) initial_crc is in v0.
- __m128i mask_low = _mm_add_epi8(
- vramp, _mm_set1_epi8(size - 16));
- MASK_LH(vcrc, mask_low, *v0, *v1)
- MASK_L(data0, mask_end, v3)
- *v0 = _mm_xor_si128(*v0, v3);
- *v1 = _mm_alignr_epi8(*v1, *v0, 8);
- } else {
- __m128i data1 = _mm_load_si128(aligned_buf);
- if (size <= 16) {
- // Collect the 2-16 input bytes from data0 and data1
- // to v2 and v3, and bitwise-xor them with the
- // low bits of initial_crc in v0. Note that the
- // the second xor is below this else-block as it
- // is shared with the other branch.
- __m128i mask_low = _mm_add_epi8(
- vramp, _mm_set1_epi8(size - 16));
- MASK_LH(vcrc, mask_low, *v0, *v1);
- MASK_H(data0, mask_end, v2)
- MASK_L(data1, mask_end, v3)
- *v0 = _mm_xor_si128(*v0, v2);
- *v0 = _mm_xor_si128(*v0, v3);
-
- *v1 = _mm_alignr_epi8(*v1, *v0, 8);
- } else {
- const __m128i *end = (const __m128i*)(
- (char*)aligned_buf++ - 16 + size2);
- MASK_LH(vcrc, mask_start, *v0, *v1)
- *v0 = _mm_xor_si128(*v0, data0);
- *v1 = _mm_xor_si128(*v1, data1);
- while (aligned_buf < end) {
- *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x00)); \
- *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x11));
- *v1 = _mm_load_si128(aligned_buf++);
- }
-
- if (aligned_buf != end) {
- MASK_H(*v0, mask_end, v2)
- MASK_L(*v0, mask_end, *v0)
- MASK_L(*v1, mask_end, v3)
- *v1 = _mm_or_si128(v2, v3);
- }
- *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x00));
- *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x11));
-
- *v1 = _mm_srli_si128(*v0, 8);
- }
- }
-}
-#endif
+/// CRC64 implemented with the x86 CLMUL instruction.
+extern uint64_t lzma_crc64_clmul(const uint8_t *buf, size_t size,
+ uint64_t crc);