aboutsummaryrefslogtreecommitdiff
path: root/src/liblzma
diff options
context:
space:
mode:
Diffstat (limited to 'src/liblzma')
-rw-r--r--src/liblzma/api/lzma/container.h90
-rw-r--r--src/liblzma/common/Makefile.inc5
-rw-r--r--src/liblzma/common/common.h4
-rw-r--r--src/liblzma/common/stream_decoder_mt.c1814
-rw-r--r--src/liblzma/liblzma.map1
5 files changed, 1907 insertions, 7 deletions
diff --git a/src/liblzma/api/lzma/container.h b/src/liblzma/api/lzma/container.h
index cbb37c8b..b2b912d5 100644
--- a/src/liblzma/api/lzma/container.h
+++ b/src/liblzma/api/lzma/container.h
@@ -69,7 +69,11 @@ typedef struct {
*
* Set this to zero if no flags are wanted.
*
- * No flags are currently supported.
+ * Encoder: No flags are currently supported.
+ *
+ * Decoder: Bitwise-or of zero or more of the decoder flags:
+ * LZMA_TELL_NO_CHECK, LZMA_TELL_UNSUPPORTED_CHECK,
+ * LZMA_TELL_ANY_CHECK, LZMA_CONCATENATED
*/
uint32_t flags;
@@ -79,7 +83,7 @@ typedef struct {
uint32_t threads;
/**
- * \brief Maximum uncompressed size of a Block
+ * \brief Encoder only: Maximum uncompressed size of a Block
*
* The encoder will start a new .xz Block every block_size bytes.
* Using LZMA_FULL_FLUSH or LZMA_FULL_BARRIER with lzma_code()
@@ -135,7 +139,7 @@ typedef struct {
uint32_t timeout;
/**
- * \brief Compression preset (level and possible flags)
+ * \brief Encoder only: Compression preset
*
* The preset is set just like with lzma_easy_encoder().
* The preset is ignored if filters below is non-NULL.
@@ -143,7 +147,7 @@ typedef struct {
uint32_t preset;
/**
- * \brief Filter chain (alternative to a preset)
+ * \brief Encoder only: Filter chain (alternative to a preset)
*
* If this is NULL, the preset above is used. Otherwise the preset
* is ignored and the filter chain specified here is used.
@@ -151,7 +155,7 @@ typedef struct {
const lzma_filter *filters;
/**
- * \brief Integrity check type
+ * \brief Encoder only: Integrity check type
*
* See check.h for available checks. The xz command line tool
* defaults to LZMA_CHECK_CRC64, which is a good choice if you
@@ -173,8 +177,50 @@ typedef struct {
uint32_t reserved_int2;
uint32_t reserved_int3;
uint32_t reserved_int4;
- uint64_t reserved_int5;
- uint64_t reserved_int6;
+
+ /**
+ * \brief Memory usage limit to reduce the number of threads
+ *
+ * Encoder: Ignored.
+ *
+ * Decoder:
+ *
+ * If the number of threads has been set so high that more than
+ * memlimit_threading bytes of memory would be needed, the number
+ * of threads will be reduced so that the memory usage will not exceed
+ * memlimit_threading bytes. However, if memlimit_threading cannot
+ * be met even in single-threaded mode, then decoding will continue
+ * in single-threaded mode and memlimit_threading may be exceeded
+ * even by a large amount. That is, memlimit_threading will never make
+ * lzma_code() return LZMA_MEMLIMIT_ERROR. To truly cap the memory
+ * usage, see memlimit_stop below.
+ *
+ * Setting memlimit_threading to UINT64_MAX or a similar huge value
+ * means that liblzma is allowed to keep the whole compressed file
+ * and the whole uncompressed file in memory in addition to the memory
+ * needed by the decompressor data structures used by each thread!
+ * In other words, a reasonable value limit must be set here or it
+ * will cause problems sooner or later. If you have no idea what
+ * a reasonable value could be, try lzma_physmem() / 4 as a starting
+ * point. Setting this limit will never prevent decompression of
+ * a file; this will only reduce the number of threads.
+ *
+ * If memlimit_threading is greater than memlimit_stop, then the value
+ * of memlimit_stop will be used for both.
+ */
+ uint64_t memlimit_threading;
+
+ /**
+ * \brief Memory usage limit that should never be exceeded
+ *
+ * Encoder: Ignored.
+ *
+ * Decoder: If decompressing will need more than this amount of
+ * memory even in the single-threaded mode, then lzma_code() will
+ * return LZMA_MEMLIMIT_ERROR.
+ */
+ uint64_t memlimit_stop;
+
uint64_t reserved_int7;
uint64_t reserved_int8;
void *reserved_ptr1;
@@ -593,6 +639,36 @@ extern LZMA_API(lzma_ret) lzma_stream_decoder(
/**
+ * \brief Initialize multithreaded .xz Stream decoder
+ *
+ * \param strm Pointer to properly prepared lzma_stream
+ * \param options Pointer to multithreaded compression options
+ *
+ * The decoder can decode multiple Blocks in parallel. This requires that each
+ * Block Header contains the Compressed Size and Uncompressed size fields
+ * which are added by the multi-threaded encoder, see lzma_stream_encoder_mt().
+ *
+ * A Stream with one Block will only utilize one thread. A Stream with multiple
+ * Blocks but without size information in Block Headers will be processed in
+ * single-threaded mode in the same way as done by lzma_stream_decoder().
+ * Concatenated Streams are processed one Stream at a time; no inter-Stream
+ * parallelization is done.
+ *
+ * This function behaves like lzma_stream_decoder() when options->threads == 1
+ * and options->memlimit_threading <= 1.
+ *
+ * \return - LZMA_OK: Initialization was successful.
+ * - LZMA_MEM_ERROR: Cannot allocate memory.
+ * - LZMA_MEMLIMIT_ERROR: Memory usage limit was reached.
+ * - LZMA_OPTIONS_ERROR: Unsupported flags.
+ * - LZMA_PROG_ERROR
+ */
+extern LZMA_API(lzma_ret) lzma_stream_decoder_mt(
+ lzma_stream *strm, const lzma_mt *options)
+ lzma_nothrow lzma_attr_warn_unused_result;
+
+
+/**
* \brief Decode .xz Streams and .lzma files with autodetection
*
* This decoder autodetects between the .xz and .lzma file formats, and
diff --git a/src/liblzma/common/Makefile.inc b/src/liblzma/common/Makefile.inc
index 1a4fb126..8f0d84ec 100644
--- a/src/liblzma/common/Makefile.inc
+++ b/src/liblzma/common/Makefile.inc
@@ -80,4 +80,9 @@ liblzma_la_SOURCES += \
common/stream_decoder.h \
common/stream_flags_decoder.c \
common/vli_decoder.c
+
+if COND_THREADS
+liblzma_la_SOURCES += \
+ common/stream_decoder_mt.c
+endif
endif
diff --git a/src/liblzma/common/common.h b/src/liblzma/common/common.h
index 95313042..67996228 100644
--- a/src/liblzma/common/common.h
+++ b/src/liblzma/common/common.h
@@ -86,6 +86,10 @@
/// LZMA_OK in lzma_code().
#define LZMA_TIMED_OUT LZMA_RET_INTERNAL1
+/// Special return value (lzma_ret) for use in stream_decoder_mt.c to
+/// indicate Index was detected instead of a Block Header.
+#define LZMA_INDEX_DETECTED LZMA_RET_INTERNAL2
+
typedef struct lzma_next_coder_s lzma_next_coder;
diff --git a/src/liblzma/common/stream_decoder_mt.c b/src/liblzma/common/stream_decoder_mt.c
new file mode 100644
index 00000000..1f1cd771
--- /dev/null
+++ b/src/liblzma/common/stream_decoder_mt.c
@@ -0,0 +1,1814 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file stream_decoder_mt.c
+/// \brief Multithreaded .xz Stream decoder
+//
+// Authors: Sebastian Andrzej Siewior
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "common.h"
+#include "block_decoder.h"
+#include "stream_decoder.h"
+#include "index.h"
+#include "outqueue.h"
+
+
+typedef enum {
+ /// Waiting for work.
+ /// Main thread may change this to THR_RUN or THR_EXIT.
+ THR_IDLE,
+
+ /// Decoding is in progress.
+ /// Main thread may change this to THR_STOP or THR_EXIT.
+ /// The worker thread may change this to THR_IDLE.
+ THR_RUN,
+
+ /// The main thread wants the thread to stop whatever it was doing
+ /// but not exit. Main thread may change this to THR_EXIT.
+ /// The worker thread may change this to THR_IDLE.
+ THR_STOP,
+
+ /// The main thread wants the thread to exit.
+ THR_EXIT,
+
+} worker_state;
+
+
+struct worker_thread {
+ /// Worker state is protected with our mutex.
+ worker_state state;
+
+ /// Input buffer that will contain the whole Block except Block Header.
+ uint8_t *in;
+
+ /// Amount of memory allocated for "in"
+ size_t in_size;
+
+ /// Number of bytes written to "in" by the main thread
+ size_t in_filled;
+
+ /// Number of bytes consumed from "in" by the worker thread.
+ size_t in_pos;
+
+ /// Amount of uncompressed data that has been decoded. This local
+ /// copy is needed because updating outbuf->pos requires locking
+ /// the main mutex (coder->mutex).
+ size_t out_pos;
+
+ /// Pointer to the main structure is needed to (1) lock the main
+ /// mutex (coder->mutex) when updating outbuf->pos and (2) when
+ /// putting this thread back to the stack of free threads.
+ struct lzma_stream_coder *coder;
+
+ /// The allocator is set by the main thread. Since a copy of the
+ /// pointer is kept here, the application must not change the
+ /// allocator before calling lzma_end().
+ const lzma_allocator *allocator;
+
+ /// Output queue buffer to which the uncompressed data is written.
+ lzma_outbuf *outbuf;
+
+ /// Amount of compressed data that has already been decompressed.
+ /// This is updated from in_pos when our mutex is locked.
+ /// This is size_t, not uint64_t, because per-thread progress
+ /// is limited to sizes of allocated buffers.
+ size_t progress_in;
+
+ /// Like progress_in but for uncompressed data.
+ size_t progress_out;
+
+ /// Updating outbuf->pos requires locking the main mutex
+ /// (coder->mutex). Since the main thread will only read output
+ /// from the oldest outbuf in the queue, only the worker thread
+ /// that is associated with the oldest outbuf needs to update its
+ /// outbuf->pos. This avoids useless mutex contention that would
+ /// happen if all worker threads were frequently locking the main
+ /// mutex to update their outbuf->pos.
+ ///
+ /// Only when partial_update is true, this worker thread will update
+ /// outbuf->pos after each call to the Block decoder.
+ bool partial_update;
+
+ /// Block decoder
+ lzma_next_coder block_decoder;
+
+ /// Thread-specific Block options are needed because the Block
+ /// decoder modifies the struct given to it at initialization.
+ lzma_block block_options;
+
+ /// Filter chain memory usage
+ uint64_t mem_filters;
+
+ /// Next structure in the stack of free worker threads.
+ struct worker_thread *next;
+
+ mythread_mutex mutex;
+ mythread_cond cond;
+
+ /// The ID of this thread is used to join the thread
+ /// when it's not needed anymore.
+ mythread thread_id;
+};
+
+
+struct lzma_stream_coder {
+ enum {
+ SEQ_STREAM_HEADER,
+ SEQ_BLOCK_HEADER,
+ SEQ_BLOCK_INIT,
+ SEQ_BLOCK_THR_INIT,
+ SEQ_BLOCK_THR_RUN,
+ SEQ_BLOCK_DIRECT_INIT,
+ SEQ_BLOCK_DIRECT_RUN,
+ SEQ_INDEX_WAIT_OUTPUT,
+ SEQ_INDEX_DECODE,
+ SEQ_STREAM_FOOTER,
+ SEQ_STREAM_PADDING,
+ SEQ_ERROR,
+ } sequence;
+
+ /// Block decoder
+ lzma_next_coder block_decoder;
+
+ /// Every Block Header will be decoded into this structure.
+ /// This is also used to initialize a Block decoder when in
+ /// direct mode. In threaded mode, a thread-specific copy will
+ /// be made for decoder initialization because the Block decoder
+ /// will modify the structure given to it.
+ lzma_block block_options;
+
+ /// Buffer to hold a filter chain for Block Header decoding and
+ /// initialization. These are freed after successful Block decoder
+ /// initialization or at stream_decoder_mt_end(). The thread-specific
+ /// copy of block_options won't hold a pointer to filters[] after
+ /// initialization.
+ lzma_filter filters[LZMA_FILTERS_MAX + 1];
+
+ /// Stream Flags from Stream Header
+ lzma_stream_flags stream_flags;
+
+ /// Index is hashed so that it can be compared to the sizes of Blocks
+ /// with O(1) memory usage.
+ lzma_index_hash *index_hash;
+
+
+ /// Maximum wait time if cannot use all the input and cannot
+ /// fill the output buffer. This is in milliseconds.
+ uint32_t timeout;
+
+
+ /// Error code from a worker thread.
+ ///
+ /// \note Use mutex.
+ lzma_ret thread_error;
+
+ /// Error code to return after pending output has been copied out. If
+ /// set in read_output_and_wait(), this is a mirror of thread_error.
+ /// If set in stream_decode_mt() then it's, for example, error that
+ /// occurred when decoding Block Header.
+ lzma_ret pending_error;
+
+ /// Number of threads that will be created at maximum.
+ uint32_t threads_max;
+
+ /// Number of thread structures that have been initialized from
+ /// "threads", and thus the number of worker threads actually
+ /// created so far.
+ uint32_t threads_initialized;
+
+ /// Array of allocated thread-specific structures. When no threads
+ /// are in use (direct mode) this is NULL. In threaded mode this
+ /// points to an array of threads_max number of worker_thread structs.
+ struct worker_thread *threads;
+
+ /// Stack of free threads. When a thread finishes, it puts itself
+ /// back into this stack. This starts as empty because threads
+ /// are created only when actually needed.
+ ///
+ /// \note Use mutex.
+ struct worker_thread *threads_free;
+
+ /// The most recent worker thread to which the main thread writes
+ /// the new input from the application.
+ struct worker_thread *thr;
+
+ /// Output buffer queue for decompressed data from the worker threads
+ ///
+ /// \note Use mutex with operations that need it.
+ lzma_outq outq;
+
+ mythread_mutex mutex;
+ mythread_cond cond;
+
+
+ /// Memory usage that will not be exceeded in multi-threaded mode.
+ /// Single-threaded mode can exceed this even by a large amount.
+ uint64_t memlimit_threading;
+
+ /// Memory usage limit that should never be exceeded.
+ /// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
+ /// even in single-threaded mode without exceeding this limit.
+ uint64_t memlimit_stop;
+
+ /// Amount of memory in use by the direct mode decoder
+ /// (coder->block_decoder). In threaded mode this is 0.
+ uint64_t mem_direct_mode;
+
+ /// Amount of memory needed by the running worker threads.
+ /// This doesn't include the memory needed by the output buffer.
+ ///
+ /// \note Use mutex.
+ uint64_t mem_in_use;
+
+ /// Amount of memory used by the idle (cached) threads.
+ ///
+ /// \note Use mutex.
+ uint64_t mem_cached;
+
+
+ /// Amount of memory needed for the filter chain of the next Block.
+ uint64_t mem_next_filters;
+
+ /// Amount of memory needed for the thread-specific input buffer
+ /// for the next Block.
+ uint64_t mem_next_in;
+
+ /// Amount of memory actually needed to decode the next Block
+ /// in threaded mode. This is
+ /// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
+ uint64_t mem_next_block;
+
+
+ /// Amount of compressed data in Stream Header + Blocks that have
+ /// already been finished.
+ ///
+ /// \note Use mutex.
+ uint64_t progress_in;
+
+ /// Amount of uncompressed data in Blocks that have already
+ /// been finished.
+ ///
+ /// \note Use mutex.
+ uint64_t progress_out;
+
+
+ /// If true, LZMA_NO_CHECK is returned if the Stream has
+ /// no integrity check.
+ bool tell_no_check;
+
+ /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
+ /// an integrity check that isn't supported by this liblzma build.
+ bool tell_unsupported_check;
+
+ /// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
+ bool tell_any_check;
+
+ /// If true, we will tell the Block decoder to skip calculating
+ /// and verifying the integrity check.
+ bool ignore_check;
+
+ /// If true, we will decode concatenated Streams that possibly have
+ /// Stream Padding between or after them. LZMA_STREAM_END is returned
+ /// once the application isn't giving us any new input (LZMA_FINISH),
+ /// and we aren't in the middle of a Stream, and possible
+ /// Stream Padding is a multiple of four bytes.
+ bool concatenated;
+
+ /// When decoding concatenated Streams, this is true as long as we
+ /// are decoding the first Stream. This is needed to avoid misleading
+ /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
+ /// bytes.
+ bool first_stream;
+
+
+ /// Write position in buffer[] and position in Stream Padding
+ size_t pos;
+
+ /// Buffer to hold Stream Header, Block Header, and Stream Footer.
+ /// Block Header has biggest maximum size.
+ uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
+};
+
+
+/// Enables updating of outbuf->pos. This is a callback function that is
+/// used with lzma_outq_enable_partial_output().
+static void
+worker_enable_partial_update(void *thr_ptr)
+{
+ struct worker_thread *thr = thr_ptr;
+
+ mythread_sync(thr->mutex) {
+ thr->partial_update = true;
+ }
+}
+
+
+/// Things do to at THR_STOP or when finishing a Block.
+/// This is called with thr->mutex locked.
+static void
+worker_stop(struct worker_thread *thr)
+{
+ // Update memory usage counters.
+ thr->coder->mem_in_use -= thr->in_size;
+ thr->in_size = 0; // thr->in was freed above.
+
+ thr->coder->mem_in_use -= thr->mem_filters;
+ thr->coder->mem_cached += thr->mem_filters;
+
+ // Put this thread to the stack of free threads.
+ thr->next = thr->coder->threads_free;
+ thr->coder->threads_free = thr;
+
+ mythread_cond_signal(&thr->coder->cond);
+ return;
+}
+
+
+static MYTHREAD_RET_TYPE
+worker_decoder(void *thr_ptr)
+{
+ struct worker_thread *thr = thr_ptr;
+ size_t in_filled;
+ lzma_ret ret;
+
+next_loop_lock:
+
+ mythread_mutex_lock(&thr->mutex);
+next_loop_unlocked:
+
+ if (thr->state == THR_IDLE) {
+ mythread_cond_wait(&thr->cond, &thr->mutex);
+ goto next_loop_unlocked;
+ }
+
+ if (thr->state == THR_EXIT) {
+ mythread_mutex_unlock(&thr->mutex);
+
+ lzma_free(thr->in, thr->allocator);
+ lzma_next_end(&thr->block_decoder, thr->allocator);
+
+ mythread_mutex_destroy(&thr->mutex);
+ mythread_cond_destroy(&thr->cond);
+
+ return MYTHREAD_RET_VALUE;
+ }
+
+ if (thr->state == THR_STOP) {
+ thr->state = THR_IDLE;
+ mythread_mutex_unlock(&thr->mutex);
+
+ mythread_sync(thr->coder->mutex) {
+ worker_stop(thr);
+ }
+
+ goto next_loop_lock;
+ }
+
+ assert(thr->state == THR_RUN);
+
+ in_filled = thr->in_filled;
+
+ if (in_filled == thr->in_pos) {
+ mythread_cond_wait(&thr->cond, &thr->mutex);
+ goto next_loop_unlocked;
+ }
+
+ mythread_mutex_unlock(&thr->mutex);
+
+ // Pass the input in small chunks to the Block decoder.
+ // This way we react reasonably fast if we are told to stop/exit,
+ // and (when partial_update is true) we tell about our progress
+ // to the main thread frequently enough.
+ const size_t chunk_size = 16384;
+ if ((in_filled - thr->in_pos) > chunk_size)
+ in_filled = thr->in_pos + chunk_size;
+
+ ret = thr->block_decoder.code(
+ thr->block_decoder.coder, thr->allocator,
+ thr->in, &thr->in_pos, in_filled,
+ thr->outbuf->buf, &thr->out_pos,
+ thr->outbuf->allocated, LZMA_RUN);
+
+ if (ret == LZMA_OK) {
+ bool partial_update;
+
+ mythread_sync(thr->mutex) {
+ // Update progress info for get_progress().
+ thr->progress_in = thr->in_pos;
+ thr->progress_out = thr->out_pos;
+
+ partial_update = thr->partial_update;
+ }
+
+ if (partial_update) {
+ // The main thread is reading decompressed data
+ // from thr->outbuf. Tell the main thread about
+ // our progress.
+ //
+ // NOTE: It's possible that we consumed input without
+ // producing any new output so it's possible that
+ // only in_pos has changed.
+ mythread_sync(thr->coder->mutex) {
+ thr->outbuf->pos = thr->out_pos;
+ thr->outbuf->decoder_in_pos = thr->in_pos;
+ mythread_cond_signal(&thr->coder->cond);
+ }
+ }
+
+ goto next_loop_lock;
+ }
+
+ // Either we finished successfully (LZMA_STREAM_END) or an error
+ // occurred. Both cases are handled almost identically. The error
+ // case requires updating thr->coder->thread_error.
+ //
+ // The sizes are in the Block Header and the Block decoder
+ // checks that they match, thus we know these:
+ assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size);
+ assert(ret != LZMA_STREAM_END
+ || thr->out_pos == thr->block_options.uncompressed_size);
+
+ // Free the input buffer. Don't update in_size as we need
+ // it later to update thr->coder->mem_in_use.
+ lzma_free(thr->in, thr->allocator);
+ thr->in = NULL;
+
+ mythread_sync(thr->mutex) {
+ if (thr->state != THR_EXIT)
+ thr->state = THR_IDLE;
+ }
+
+ mythread_sync(thr->coder->mutex) {
+ // Move our progress info to the main thread.
+ thr->coder->progress_in += thr->in_pos;
+ thr->coder->progress_out += thr->out_pos;
+ thr->progress_in = 0;
+ thr->progress_out = 0;
+
+ // Mark the outbuf as finished.
+ thr->outbuf->pos = thr->out_pos;
+ thr->outbuf->decoder_in_pos = thr->in_pos;
+ thr->outbuf->finished = true;
+ thr->outbuf->finish_ret = ret;
+ thr->outbuf = NULL;
+
+ // If an error occurred, tell it to the main thread.
+ if (ret != LZMA_STREAM_END
+ && thr->coder->thread_error == LZMA_OK)
+ thr->coder->thread_error = ret;
+
+ worker_stop(thr);
+ }
+
+ goto next_loop_lock;
+}
+
+
+/// Tells the worker threads to exit and waits for them to terminate.
+static void
+threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
+{
+ for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
+ mythread_sync(coder->threads[i].mutex) {
+ coder->threads[i].state = THR_EXIT;
+ mythread_cond_signal(&coder->threads[i].cond);
+ }
+ }
+
+ for (uint32_t i = 0; i < coder->threads_initialized; ++i)
+ mythread_join(coder->threads[i].thread_id);
+
+ lzma_free(coder->threads, allocator);
+ coder->threads_initialized = 0;
+ coder->threads = NULL;
+ coder->threads_free = NULL;
+
+ // The threads don't update these when they exit. Do it here.
+ coder->mem_in_use = 0;
+ coder->mem_cached = 0;
+
+ return;
+}
+
+
+static void
+threads_stop(struct lzma_stream_coder *coder)
+{
+ for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
+ mythread_sync(coder->threads[i].mutex) {
+ // The state must be changed conditionally because
+ // THR_IDLE -> THR_STOP is not a valid state change.
+ if (coder->threads[i].state != THR_IDLE) {
+ coder->threads[i].state = THR_STOP;
+ mythread_cond_signal(&coder->threads[i].cond);
+ }
+ }
+ }
+
+ return;
+}
+
+
+/// Initialize a new worker_thread structure and create a new thread.
+static lzma_ret
+initialize_new_thread(struct lzma_stream_coder *coder,
+ const lzma_allocator *allocator)
+{
+ // Allocate the coder->threads array if needed. It's done here instead
+ // of when initializing the decoder because we don't need this if we
+ // use the direct mode (we may even free coder->threads in the middle
+ // of the file if we switch from threaded to direct mode).
+ if (coder->threads == NULL) {
+ coder->threads = lzma_alloc(
+ coder->threads_max * sizeof(struct worker_thread),
+ allocator);
+
+ if (coder->threads == NULL)
+ return LZMA_MEM_ERROR;
+ }
+
+ // Pick a free structure.
+ assert(coder->threads_initialized < coder->threads_max);
+ struct worker_thread *thr
+ = &coder->threads[coder->threads_initialized];
+
+ if (mythread_mutex_init(&thr->mutex))
+ goto error_mutex;
+
+ if (mythread_cond_init(&thr->cond))
+ goto error_cond;
+
+ thr->state = THR_IDLE;
+ thr->in = NULL;
+ thr->in_size = 0;
+ thr->allocator = allocator;
+ thr->coder = coder;
+ thr->outbuf = NULL;
+ thr->block_decoder = LZMA_NEXT_CODER_INIT;
+ thr->mem_filters = 0;
+
+ if (mythread_create(&thr->thread_id, worker_decoder, thr))
+ goto error_thread;
+
+ ++coder->threads_initialized;
+ coder->thr = thr;
+
+ return LZMA_OK;
+
+error_thread:
+ mythread_cond_destroy(&thr->cond);
+
+error_cond:
+ mythread_mutex_destroy(&thr->mutex);
+
+error_mutex:
+ return LZMA_MEM_ERROR;
+}
+
+
+static lzma_ret
+get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
+{
+ // If there is a free structure on the stack, use it.
+ mythread_sync(coder->mutex) {
+ if (coder->threads_free != NULL) {
+ coder->thr = coder->threads_free;
+ coder->threads_free = coder->threads_free->next;
+
+ // The thread is no longer in the cache so substract
+ // it from the cached memory usage. Don't add it
+ // to mem_in_use though; the caller will handle it
+ // since it knows how much memory it will actually
+ // use (the filter chain might change).
+ coder->mem_cached -= coder->thr->mem_filters;
+ }
+ }
+
+ if (coder->thr == NULL) {
+ assert(coder->threads_initialized < coder->threads_max);
+
+ // Initialize a new thread.
+ return_if_error(initialize_new_thread(coder, allocator));
+ }
+
+ coder->thr->in_filled = 0;
+ coder->thr->in_pos = 0;
+ coder->thr->out_pos = 0;
+
+ coder->thr->progress_in = 0;
+ coder->thr->progress_out = 0;
+
+ coder->thr->partial_update = false;
+
+ return LZMA_OK;
+}
+
+
+static lzma_ret
+read_output_and_wait(struct lzma_stream_coder *coder,
+ const lzma_allocator *allocator,
+ uint8_t *restrict out, size_t *restrict out_pos,
+ size_t out_size,
+ bool *input_is_possible,
+ bool waiting_allowed,
+ mythread_condtime *wait_abs, bool *has_blocked)
+{
+ lzma_ret ret = LZMA_OK;
+
+ mythread_sync(coder->mutex) {
+ do {
+ // Get as much output from the queue as is possible
+ // without blocking.
+ do {
+ ret = lzma_outq_read(&coder->outq, allocator,
+ out, out_pos, out_size,
+ NULL, NULL);
+
+ // If a Block was finished, tell the worker
+ // thread of the next Block (if it is still
+ // running) to start telling the main thread
+ // when new output is available.
+ if (ret == LZMA_STREAM_END)
+ lzma_outq_enable_partial_output(
+ &coder->outq,
+ &worker_enable_partial_update);
+
+ // Loop until a Block wasn't finished.
+ // It's important to loop around even if
+ // *out_pos == out_size because there could
+ // be an empty Block that will return
+ // LZMA_STREAM_END without needing any
+ // output space.
+ } while (ret == LZMA_STREAM_END);
+
+ // Check if lzma_outq_read reported an error from
+ // the Block decoder.
+ if (ret != LZMA_OK)
+ break;
+
+ // Check if any thread has indicated an error.
+ if (coder->thread_error != LZMA_OK) {
+ if (coder->pending_error == LZMA_OK)
+ coder->pending_error
+ = coder->thread_error;
+
+ // FIXME? Add a flag to do this conditionally?
+ // That way errors would get reported to the
+ // application without a delay.
+// if (coder->fast_errors) {
+// ret = coder->thread_error;
+// break;
+// }
+ }
+
+ // Check if decoding of the next Block can be started.
+ // The memusage of the active threads must be low
+ // enough, there must be a free buffer slot in the
+ // output queue, and there must be a free thread
+ // (that can be either created or an existing one
+ // reused).
+ //
+ // NOTE: This is checked after reading the output
+ // above because reading the output can free a slot in
+ // the output queue and also reduce active memusage.
+ //
+ // NOTE: If output queue is empty, then input will
+ // always be possible.
+ if (input_is_possible != NULL
+ && coder->memlimit_threading
+ - coder->mem_in_use
+ - coder->outq.mem_in_use
+ >= coder->mem_next_block
+ && lzma_outq_has_buf(&coder->outq)
+ && (coder->threads_initialized
+ < coder->threads_max
+ || coder->threads_free
+ != NULL)) {
+ *input_is_possible = true;
+ break;
+ }
+
+ // If the caller doesn't want us to block, return now.
+ if (!waiting_allowed)
+ break;
+
+ // This check is needed only when input_is_possible
+ // is NULL. We must return if we aren't waiting for
+ // input to become possible and there is no more
+ // output coming from the queue.
+ if (lzma_outq_is_empty(&coder->outq)) {
+ assert(input_is_possible == NULL);
+ break;
+ }
+
+ // If there is more data available from the queue,
+ // our out buffer must be full and we need to return
+ // so that the application can provide more output
+ // space.
+ //
+ // NOTE: In general lzma_outq_is_readable() can return
+ // true also when there are no more bytes available.
+ // This can happen when a Block has finished without
+ // providing any new output. We know that this is not
+ // the case because in the beginning of this loop we
+ // tried to read as much as possible even when we had
+ // no output space left and the mutex has been locked
+ // all the time (so worker threads cannot have changed
+ // anything). Thus there must be actual pending output
+ // in the queue.
+ if (lzma_outq_is_readable(&coder->outq)) {
+ assert(*out_pos == out_size);
+ break;
+ }
+
+ // If the application stops providing more input
+ // in the middle of a Block, there will eventually
+ // be one worker thread left that is stuck waiting for
+ // more input (that might never arrive) and a matching
+ // outbuf which the worker thread cannot finish due
+ // to lack of input. We must detect this situation,
+ // otherwise we would end up waiting indefinitely
+ // (if no timeout is in use) or keep returning
+ // LZMA_TIMED_OUT while making no progress. Thus, the
+ // application would never get LZMA_BUF_ERROR from
+ // lzma_code() which would tell the application that
+ // no more progress is possible. No LZMA_BUF_ERROR
+ // means that, for example, truncated .xz files could
+ // cause an infinite loop.
+ //
+ // A worker thread doing partial updates will
+ // store not only the output position in outbuf->pos
+ // but also the matching input position in
+ // outbuf->decoder_in_pos. Here we check if that
+ // input position matches the amount of input that
+ // the worker thread has been given (in_filled).
+ // If so, we must return and not wait as no more
+ // output will be coming without first getting more
+ // input to the worker thread. If the application
+ // keeps calling lzma_code() without providing more
+ // input, it will eventually get LZMA_BUF_ERROR.
+ //
+ // NOTE: We can read partial_update and in_filled
+ // without thr->mutex as only the main thread
+ // modifies these variables. decoder_in_pos requires
+ // coder->mutex which we are already holding.
+ if (coder->thr != NULL && coder->thr->partial_update) {
+ // There is exactly one outbuf in the queue.
+ assert(coder->thr->outbuf == coder->outq.head);
+ assert(coder->thr->outbuf == coder->outq.tail);
+
+ if (coder->thr->outbuf->decoder_in_pos
+ == coder->thr->in_filled)
+ break;
+ }
+
+ // Wait for input or output to become possible.
+ if (coder->timeout != 0) {
+ // See the comment in stream_encoder_mt.c
+ // about why mythread_condtime_set() is used
+ // like this.
+ //
+ // FIXME?
+ // In contrast to the encoder, this calls
+ // _condtime_set while the mutex is locked.
+ if (!*has_blocked) {
+ *has_blocked = true;
+ mythread_condtime_set(wait_abs,
+ &coder->cond,
+ coder->timeout);
+ }
+
+ if (mythread_cond_timedwait(&coder->cond,
+ &coder->mutex,
+ wait_abs) != 0) {
+ ret = LZMA_TIMED_OUT;
+ break;
+ }
+ } else {
+ mythread_cond_wait(&coder->cond,
+ &coder->mutex);
+ }
+ } while (ret == LZMA_OK);
+ }
+
+ // If we are returning an error, then the application cannot get
+ // more output from us and thus keeping the threads running is
+ // useless and waste of CPU time.
+ if (ret != LZMA_OK)
+ threads_stop(coder);
+
+ return ret;
+}
+
+
+static lzma_ret
+decode_block_header(struct lzma_stream_coder *coder,
+ const lzma_allocator *allocator, const uint8_t *restrict in,
+ size_t *restrict in_pos, size_t in_size)
+{
+ if (*in_pos >= in_size)
+ return LZMA_OK;
+
+ if (coder->pos == 0) {
+ // Detect if it's Index.
+ if (in[*in_pos] == 0x00)
+ return LZMA_INDEX_DETECTED;
+
+ // Calculate the size of the Block Header. Note that
+ // Block Header decoder wants to see this byte too
+ // so don't advance *in_pos.
+ coder->block_options.header_size
+ = lzma_block_header_size_decode(
+ in[*in_pos]);
+ }
+
+ // Copy the Block Header to the internal buffer.
+ lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
+ coder->block_options.header_size);
+
+ // Return if we didn't get the whole Block Header yet.
+ if (coder->pos < coder->block_options.header_size)
+ return LZMA_OK;
+
+ coder->pos = 0;
+
+ // Version 1 is needed to support the .ignore_check option.
+ coder->block_options.version = 1;
+
+ // Block Header decoder will initialize all members of this array
+ // so we don't need to do it here.
+ coder->block_options.filters = coder->filters;
+
+ // Decode the Block Header.
+ return_if_error(lzma_block_header_decode(&coder->block_options,
+ allocator, coder->buffer));
+
+ // If LZMA_IGNORE_CHECK was used, this flag needs to be set.
+ // It has to be set after lzma_block_header_decode() because
+ // it always resets this to false.
+ coder->block_options.ignore_check = coder->ignore_check;
+
+ // coder->block_options is ready now.
+ return LZMA_STREAM_END;
+}
+
+
+static void
+cleanup_filters(lzma_filter *filters, const lzma_allocator *allocator)
+{
+ for (uint32_t i = 0; i < LZMA_FILTERS_MAX; ++i) {
+ lzma_free(filters[i].options, allocator);
+ filters[i].options = NULL;
+ }
+
+ return;
+}
+
+
+/// Get the size of the Compressed Data + Block Padding + Check.
+static size_t
+comp_blk_size(const struct lzma_stream_coder *coder)
+{
+ return vli_ceil4(coder->block_options.compressed_size)
+ + lzma_check_size(coder->stream_flags.check);
+}
+
+
+/// Returns true if the size (compressed or uncompressed) is such that
+/// threaded decompression cannot be used. Sizes that are too big compared
+/// to SIZE_MAX must be rejected to avoid integer overflows and truncations
+/// when lzma_vli is assigned to a size_t.
+static bool
+is_direct_mode_needed(lzma_vli size)
+{
+ return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3;
+}
+
+
+static lzma_ret
+stream_decoder_reset(struct lzma_stream_coder *coder,
+ const lzma_allocator *allocator)
+{
+ // Initialize the Index hash used to verify the Index.
+ coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
+ if (coder->index_hash == NULL)
+ return LZMA_MEM_ERROR;
+
+ // Reset the rest of the variables.
+ coder->sequence = SEQ_STREAM_HEADER;
+ coder->pos = 0;
+
+ return LZMA_OK;
+}
+
+
+static lzma_ret
+stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator,
+ const uint8_t *restrict in, size_t *restrict in_pos,
+ size_t in_size,
+ uint8_t *restrict out, size_t *restrict out_pos,
+ size_t out_size, lzma_action action)
+{
+ struct lzma_stream_coder *coder = coder_ptr;
+
+ const size_t in_start = *in_pos;
+
+ mythread_condtime wait_abs;
+ bool has_blocked = false;
+
+ while (true)
+ switch (coder->sequence) {
+ case SEQ_STREAM_HEADER: {
+ // Copy the Stream Header to the internal buffer.
+ const size_t in_old = *in_pos;
+ lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
+ LZMA_STREAM_HEADER_SIZE);
+ coder->progress_in += *in_pos - in_old;
+
+ // Return if we didn't get the whole Stream Header yet.
+ if (coder->pos < LZMA_STREAM_HEADER_SIZE)
+ return LZMA_OK;
+
+ coder->pos = 0;
+
+ // Decode the Stream Header.
+ const lzma_ret ret = lzma_stream_header_decode(
+ &coder->stream_flags, coder->buffer);
+ if (ret != LZMA_OK)
+ return ret == LZMA_FORMAT_ERROR && !coder->first_stream
+ ? LZMA_DATA_ERROR : ret;
+
+ // If we are decoding concatenated Streams, and the later
+ // Streams have invalid Header Magic Bytes, we give
+ // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
+ coder->first_stream = false;
+
+ // Copy the type of the Check so that Block Header and Block
+ // decoders see it.
+ coder->block_options.check = coder->stream_flags.check;
+
+ // Even if we return LZMA_*_CHECK below, we want
+ // to continue from Block Header decoding.
+ coder->sequence = SEQ_BLOCK_HEADER;
+
+ // Detect if there's no integrity check or if it is
+ // unsupported if those were requested by the application.
+ if (coder->tell_no_check && coder->stream_flags.check
+ == LZMA_CHECK_NONE)
+ return LZMA_NO_CHECK;
+
+ if (coder->tell_unsupported_check
+ && !lzma_check_is_supported(
+ coder->stream_flags.check))
+ return LZMA_UNSUPPORTED_CHECK;
+
+ if (coder->tell_any_check)
+ return LZMA_GET_CHECK;
+ }
+
+ // Fall through
+
+ case SEQ_BLOCK_HEADER: {
+ const size_t in_old = *in_pos;
+ const lzma_ret ret = decode_block_header(coder, allocator,
+ in, in_pos, in_size);
+ coder->progress_in += *in_pos - in_old;
+
+ if (ret == LZMA_OK) {
+ // We didn't decode the whole Block Header yet.
+ //
+ // Read output from the queue before returning. This
+ // is important because it is possible that the
+ // application doesn't have any new input available
+ // immediately. If we didn't try to copy output from
+ // the output queue here, lzma_code() could end up
+ // returning LZMA_BUF_ERROR even though queued output
+ // is available.
+ //
+ // If the lzma_code() call provided at least one input
+ // byte, only copy as much data from the output queue
+ // as is available immediately. This way the
+ // application will be able to provide more input
+ // without a delay.
+ //
+ // On the other hand, if lzma_code() was called with
+ // an empty input buffer (in_start == in_size), treat
+ // it specially: try to fill the output buffer even
+ // if it requires waiting for the worker threads to
+ // provide output (timeout, if specified, can still
+ // cause us to return).
+ //
+ // - This way the application will be able to get all
+ // data that can be decoded from the input provided
+ // so far.
+ //
+ // - We avoid both premature LZMA_BUF_ERROR and
+ // busy-waiting where the application repeatedly
+ // calls lzma_code() which immediately returns
+ // LZMA_OK without providing new data.
+ //
+ // - If the queue becomes empty, we won't wait
+ // anything and will return LZMA_OK immediately
+ // (coder->timeout is completely ignored).
+ //
+ assert(*in_pos == in_size);
+
+ return_if_error(read_output_and_wait(coder, allocator,
+ out, out_pos, out_size,
+ NULL, in_start == in_size,
+ &wait_abs, &has_blocked));
+
+ if (coder->pending_error != LZMA_OK) {
+ coder->sequence = SEQ_ERROR;
+ break;
+ }
+
+ return LZMA_OK;
+ }
+
+ if (ret == LZMA_INDEX_DETECTED) {
+ coder->sequence = SEQ_INDEX_WAIT_OUTPUT;
+ break;
+ }
+
+ // See if an error occurred.
+ if (ret != LZMA_STREAM_END) {
+ if (coder->pending_error == LZMA_OK)
+ coder->pending_error = ret;
+
+ coder->sequence = SEQ_ERROR;
+ break;
+ }
+
+ // Calculate the memory usage of the filters / Block decoder.
+ coder->mem_next_filters = lzma_raw_decoder_memusage(
+ coder->filters);
+
+ if (coder->mem_next_filters == UINT64_MAX) {
+ // One or more unknown Filter IDs.
+ if (coder->pending_error == LZMA_OK)
+ coder->pending_error = LZMA_OPTIONS_ERROR;
+
+ coder->sequence = SEQ_ERROR;
+ break;
+ }
+
+ coder->sequence = SEQ_BLOCK_INIT;
+ }
+
+ // Fall through
+
+ case SEQ_BLOCK_INIT: {
+ // Check if decoding is possible at all with the current
+ // memlimit_stop which we must never exceed.
+ //
+ // This needs to be the first thing in SEQ_BLOCK_INIT
+ // to make it possible to restart decoding after increasing
+ // memlimit_stop with lzma_memlimit_set().
+ if (coder->mem_next_filters > coder->memlimit_stop) {
+ // Flush pending output before returning
+ // LZMA_MEMLIMIT_ERROR. If the application doesn't
+ // want to increase the limit, at least it will get
+ // all the output possible so far.
+ return_if_error(read_output_and_wait(coder, allocator,
+ out, out_pos, out_size,
+ NULL, true, &wait_abs, &has_blocked));
+
+ if (!lzma_outq_is_empty(&coder->outq))
+ return LZMA_OK;
+
+ return LZMA_MEMLIMIT_ERROR;
+ }
+
+ // Check if the size information is available in Block Header.
+ // If it is, check if the sizes are small enough that we don't
+ // need to worry *too* much about integer overflows later in
+ // the code. If these conditions are not met, we must use the
+ // single-threaded direct mode.
+ if (is_direct_mode_needed(coder->block_options.compressed_size)
+ || is_direct_mode_needed(
+ coder->block_options.uncompressed_size)) {
+ coder->sequence = SEQ_BLOCK_DIRECT_INIT;
+ break;
+ }
+
+ // Calculate the amount of memory needed for the input and
+ // output buffers in threaded mode.
+ //
+ // These cannot overflow because we already checked that
+ // the sizes are small enough using is_direct_mode_needed().
+ coder->mem_next_in = comp_blk_size(coder);
+ const uint64_t mem_buffers = coder->mem_next_in
+ + lzma_outq_outbuf_memusage(
+ coder->block_options.uncompressed_size);
+
+ // Add the amount needed by the filters.
+ // Avoid integer overflows.
+ if (UINT64_MAX - mem_buffers < coder->mem_next_filters) {
+ // Use direct mode if the memusage would overflow.
+ // This is a theoretical case that shouldn't happen
+ // in practice unless the input file is weird (broken
+ // or malicious).
+ coder->sequence = SEQ_BLOCK_DIRECT_INIT;
+ break;
+ }
+
+ // Amount of memory needed to decode this Block in
+ // threaded mode:
+ coder->mem_next_block = coder->mem_next_filters + mem_buffers;
+
+ // If this alone would exceed memlimit_threading, then we must
+ // use the single-threaded direct mode.
+ if (coder->mem_next_block > coder->memlimit_threading) {
+ coder->sequence = SEQ_BLOCK_DIRECT_INIT;
+ break;
+ }
+
+ // Use the threaded mode. Free the direct mode decoder in
+ // case it has been initialized.
+ lzma_next_end(&coder->block_decoder, allocator);
+ coder->mem_direct_mode = 0;
+
+ // Since we already know what the sizes are supposed to be,
+ // we can already add them to the Index hash. The Block
+ // decoder will verify the values while decoding.
+ const lzma_ret ret = lzma_index_hash_append(coder->index_hash,
+ lzma_block_unpadded_size(
+ &coder->block_options),
+ coder->block_options.uncompressed_size);
+ if (ret != LZMA_OK) {
+ if (coder->pending_error == LZMA_OK)
+ coder->pending_error = ret;
+
+ coder->sequence = SEQ_ERROR;
+ break;
+ }
+
+ coder->sequence = SEQ_BLOCK_THR_INIT;
+ }
+
+ // Fall through
+
+ case SEQ_BLOCK_THR_INIT: {
+ // We need to wait for a multiple conditions to become true
+ // until we can initialize the Block decoder and let a worker
+ // thread decode it:
+ //
+ // - Wait for the memory usage of the active threads to drop
+ // so that starting the decoding of this Block won't make
+ // us go over memlimit_threading.
+ //
+ // - Wait for at least one free output queue slot.
+ //
+ // - Wait for a free worker thread.
+ //
+ // While we wait, we must copy decompressed data to the out
+ // buffer and catch possible decoder errors.
+ //
+ // read_output_and_wait() does all the above.
+ bool block_can_start = false;
+
+ return_if_error(read_output_and_wait(coder, allocator,
+ out, out_pos, out_size,
+ &block_can_start, true,
+ &wait_abs, &has_blocked));
+
+ if (coder->pending_error != LZMA_OK) {
+ coder->sequence = SEQ_ERROR;
+ break;
+ }
+
+ if (!block_can_start) {
+ // It's not a timeout because return_if_error handles
+ // it already. Output queue cannot be empty either
+ // because in that case block_can_start would have
+ // been true. Thus the output buffer must be full and
+ // the queue isn't empty.
+ assert(*out_pos == out_size);
+ assert(!lzma_outq_is_empty(&coder->outq));
+ return LZMA_OK;
+ }
+
+ // We know that we can start decoding this Block without
+ // exceeding memlimit_threading. However, to stay below
+ // memlimit_threading may require freeing some of the
+ // cached memory.
+ //
+ // Get a local copy of variables that require locking the
+ // mutex. It is fine if the worker threads modify the real
+ // values after we read these as those changes can only be
+ // towards more favorable conditions (less memory in use,
+ // more in cache).
+ uint64_t mem_in_use;
+ uint64_t mem_cached;
+ struct worker_thread *thr;
+
+ mythread_sync(coder->mutex) {
+ mem_in_use = coder->mem_in_use;
+ mem_cached = coder->mem_cached;
+ thr = coder->threads_free;
+ }
+
+ // The maximum amount of memory that can be held by other
+ // threads and cached buffers while allowing us to start
+ // decoding the next Block.
+ const uint64_t mem_max = coder->memlimit_threading
+ - coder->mem_next_block;
+
+ // If the existing allocations are so large that starting
+ // to decode this Block might exceed memlimit_threads,
+ // try to free memory from the output queue cache first.
+ //
+ // NOTE: This math assumes the worst case. It's possible
+ // that the limit wouldn't be exceeded if the existing cached
+ // allocations are reused.
+ if (mem_in_use + mem_cached + coder->outq.mem_allocated
+ > mem_max) {
+ // Clear the outq cache except leave one buffer in
+ // the cache if its size is correct. That way we
+ // don't free and almost immediately reallocate
+ // an identical buffer.
+ lzma_outq_clear_cache2(&coder->outq, allocator,
+ coder->block_options.uncompressed_size);
+ }
+
+ // If there is at least one worker_thread in the cache and
+ // the existing allocations are so large that starting to
+ // decode this Block might exceed memlimit_threads, free
+ // memory by freeing cached Block decoders.
+ //
+ // NOTE: The comparison is different here than above.
+ // Here we don't care about cached buffers in outq anymore
+ // and only look at memory actually in use. This is because
+ // if there is something in outq cache, it's a single buffer
+ // that can be used as is. We ensured this in the above
+ // if-block.
+ uint64_t mem_freed = 0;
+ if (thr != NULL && mem_in_use + mem_cached
+ + coder->outq.mem_in_use > mem_max) {
+ // Don't free the first Block decoder if its memory
+ // usage isn't greater than what this Block will need.
+ // Typically the same filter chain is used for all
+ // Blocks so this way the allocations can be reused
+ // when get_thread() picks the first worker_thread
+ // from the cache.
+ if (thr->mem_filters <= coder->mem_next_filters)
+ thr = thr->next;
+
+ while (thr != NULL) {
+ lzma_next_end(&thr->block_decoder, allocator);
+ mem_freed += thr->mem_filters;
+ thr->mem_filters = 0;
+ thr = thr->next;
+ }
+ }
+
+ // Update the memory usage counters. Note that coder->mem_*
+ // may have changed since we read them so we must substract
+ // or add the changes.
+ mythread_sync(coder->mutex) {
+ coder->mem_cached -= mem_freed;
+
+ // Memory needed for the filters and the input buffer.
+ // The output queue takes care of its own counter so
+ // we don't touch it here.
+ //
+ // NOTE: After this, coder->mem_in_use +
+ // coder->mem_cached might count the same thing twice.
+ // If so, this will get corrected in get_thread() when
+ // a worker_thread is picked from coder->free_threads
+ // and its memory usage is substracted from mem_cached.
+ coder->mem_in_use += coder->mem_next_in
+ + coder->mem_next_filters;
+ }
+
+ // Allocate memory for the output buffer in the output queue.
+ return_if_error(lzma_outq_prealloc_buf(
+ &coder->outq, allocator,
+ coder->block_options.uncompressed_size));
+
+ // Set up coder->thr.
+ return_if_error(get_thread(coder, allocator));
+
+ // The new Block decoder memory usage is already counted in
+ // coder->mem_in_use. Store it in the thread too.
+ coder->thr->mem_filters = coder->mem_next_filters;
+
+ // Initialize the Block decoder.
+ coder->thr->block_options = coder->block_options;
+ const lzma_ret ret = lzma_block_decoder_init(
+ &coder->thr->block_decoder, allocator,
+ &coder->thr->block_options);
+
+ // Free the allocated filter options since they are needed
+ // only to initialize the Block decoder.
+ cleanup_filters(coder->filters, allocator);
+ coder->thr->block_options.filters = NULL;
+
+ // Check if memory usage calculation and Block encoder
+ // initialization succeeded.
+ if (ret != LZMA_OK) {
+ if (coder->pending_error == LZMA_OK)
+ coder->pending_error = ret;
+
+ coder->sequence = SEQ_ERROR;
+ break;
+ }
+
+ // Allocate the input buffer.
+ coder->thr->in_size = coder->mem_next_in;
+ coder->thr->in = lzma_alloc(coder->thr->in_size, allocator);
+ if (coder->thr->in == NULL)
+ return LZMA_MEM_ERROR;
+
+ // Get the preallocated output buffer.
+ coder->thr->outbuf = lzma_outq_get_buf(
+ &coder->outq, coder->thr);
+
+ // Start the decoder.
+ mythread_sync(coder->thr->mutex) {
+ assert(coder->thr->state == THR_IDLE);
+ coder->thr->state = THR_RUN;
+ mythread_cond_signal(&coder->thr->cond);
+ }
+
+ // Enable output from the thread that holds the oldest output
+ // buffer in the output queue (if such a thread exists).
+ mythread_sync(coder->mutex) {
+ lzma_outq_enable_partial_output(&coder->outq,
+ &worker_enable_partial_update);
+ }
+
+ coder->sequence = SEQ_BLOCK_THR_RUN;
+ }
+
+ // Fall through
+
+ case SEQ_BLOCK_THR_RUN: {
+ // Copy input to the worker thread.
+ size_t cur_in_filled = coder->thr->in_filled;
+ lzma_bufcpy(in, in_pos, in_size, coder->thr->in,
+ &cur_in_filled, coder->thr->in_size);
+
+ // Tell the thread how much we copied.
+ mythread_sync(coder->thr->mutex) {
+ coder->thr->in_filled = cur_in_filled;
+
+ // NOTE: Most of the time we are copying input faster
+ // than the thread can decode so most of the time
+ // calling mythread_cond_signal() is useless but
+ // we cannot make it conditional because thr->in_pos
+ // is updated without a mutex. And the overhead should
+ // be very much negligible anyway.
+ mythread_cond_signal(&coder->thr->cond);
+ }
+
+ // Read output from the output queue. Just like in
+ // SEQ_BLOCK_HEADER, we wait to fill the output buffer
+ // only if lzma_code() was called without providing any input.
+ return_if_error(read_output_and_wait(coder, allocator,
+ out, out_pos, out_size,
+ NULL, in_start == in_size,
+ &wait_abs, &has_blocked));
+
+ if (coder->pending_error != LZMA_OK) {
+ coder->sequence = SEQ_ERROR;
+ break;
+ }
+
+ // Return if the input didn't contain the whole Block.
+ if (coder->thr->in_filled < coder->thr->in_size) {
+ assert(*in_pos == in_size);
+ return LZMA_OK;
+ }
+
+ // The whole Block has been copied to the thread-specific
+ // buffer. Continue from the next Block Header or Index.
+ coder->thr = NULL;
+ coder->sequence = SEQ_BLOCK_HEADER;
+ break;
+ }
+
+ case SEQ_BLOCK_DIRECT_INIT: {
+ // Wait for the threads to finish and that all decoded data
+ // has been copied to the output. That is, wait until the
+ // output queue becomes empty.
+ //
+ // NOTE: No need to check for coder->pending_error as
+ // we aren't consuming any input until the queue is empty
+ // and if there is a pending error, read_output_and_wait()
+ // will eventually return it before the queue is empty.
+ return_if_error(read_output_and_wait(coder, allocator,
+ out, out_pos, out_size,
+ NULL, true, &wait_abs, &has_blocked));
+ if (!lzma_outq_is_empty(&coder->outq))
+ return LZMA_OK;
+
+ // Free the cached output buffers.
+ lzma_outq_clear_cache(&coder->outq, allocator);
+
+ // Get rid of the worker threads, including the coder->threads
+ // array.
+ threads_end(coder, allocator);
+
+ // Initialize the Block decoder.
+ const lzma_ret ret = lzma_block_decoder_init(
+ &coder->block_decoder, allocator,
+ &coder->block_options);
+
+ // Free the allocated filter options since they are needed
+ // only to initialize the Block decoder.
+ cleanup_filters(coder->filters, allocator);
+ coder->block_options.filters = NULL;
+
+ // Check if Block decoder initialization succeeded.
+ if (ret != LZMA_OK)
+ return ret;
+
+ // Make the memory usage visible to _memconfig().
+ coder->mem_direct_mode = coder->mem_next_filters;
+
+ coder->sequence = SEQ_BLOCK_DIRECT_RUN;
+ }
+
+ // Fall through
+
+ case SEQ_BLOCK_DIRECT_RUN: {
+ const size_t in_old = *in_pos;
+ const size_t out_old = *out_pos;
+ const lzma_ret ret = coder->block_decoder.code(
+ coder->block_decoder.coder, allocator,
+ in, in_pos, in_size, out, out_pos, out_size,
+ action);
+ coder->progress_in += *in_pos - in_old;
+ coder->progress_out += *out_pos - out_old;
+
+ if (ret != LZMA_STREAM_END)
+ return ret;
+
+ // Block decoded successfully. Add the new size pair to
+ // the Index hash.
+ return_if_error(lzma_index_hash_append(coder->index_hash,
+ lzma_block_unpadded_size(
+ &coder->block_options),
+ coder->block_options.uncompressed_size));
+
+ coder->sequence = SEQ_BLOCK_HEADER;
+ break;
+ }
+
+ case SEQ_INDEX_WAIT_OUTPUT:
+ // Flush the output from all worker threads so that we can
+ // decode the Index without thinking about threading.
+ return_if_error(read_output_and_wait(coder, allocator,
+ out, out_pos, out_size,
+ NULL, true, &wait_abs, &has_blocked));
+
+ if (!lzma_outq_is_empty(&coder->outq))
+ return LZMA_OK;
+
+ coder->sequence = SEQ_INDEX_DECODE;
+
+ // Fall through
+
+ case SEQ_INDEX_DECODE: {
+ // If we don't have any input, don't call
+ // lzma_index_hash_decode() since it would return
+ // LZMA_BUF_ERROR, which we must not do here.
+ if (*in_pos >= in_size)
+ return LZMA_OK;
+
+ // Decode the Index and compare it to the hash calculated
+ // from the sizes of the Blocks (if any).
+ const size_t in_old = *in_pos;
+ const lzma_ret ret = lzma_index_hash_decode(coder->index_hash,
+ in, in_pos, in_size);
+ coder->progress_in += *in_pos - in_old;
+ if (ret != LZMA_STREAM_END)
+ return ret;
+
+ coder->sequence = SEQ_STREAM_FOOTER;
+ }
+
+ // Fall through
+
+ case SEQ_STREAM_FOOTER: {
+ // Copy the Stream Footer to the internal buffer.
+ const size_t in_old = *in_pos;
+ lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
+ LZMA_STREAM_HEADER_SIZE);
+ coder->progress_in += *in_pos - in_old;
+
+ // Return if we didn't get the whole Stream Footer yet.
+ if (coder->pos < LZMA_STREAM_HEADER_SIZE)
+ return LZMA_OK;
+
+ coder->pos = 0;
+
+ // Decode the Stream Footer. The decoder gives
+ // LZMA_FORMAT_ERROR if the magic bytes don't match,
+ // so convert that return code to LZMA_DATA_ERROR.
+ lzma_stream_flags footer_flags;
+ const lzma_ret ret = lzma_stream_footer_decode(
+ &footer_flags, coder->buffer);
+ if (ret != LZMA_OK)
+ return ret == LZMA_FORMAT_ERROR
+ ? LZMA_DATA_ERROR : ret;
+
+ // Check that Index Size stored in the Stream Footer matches
+ // the real size of the Index field.
+ if (lzma_index_hash_size(coder->index_hash)
+ != footer_flags.backward_size)
+ return LZMA_DATA_ERROR;
+
+ // Compare that the Stream Flags fields are identical in
+ // both Stream Header and Stream Footer.
+ return_if_error(lzma_stream_flags_compare(
+ &coder->stream_flags, &footer_flags));
+
+ if (!coder->concatenated)
+ return LZMA_STREAM_END;
+
+ coder->sequence = SEQ_STREAM_PADDING;
+ }
+
+ // Fall through
+
+ case SEQ_STREAM_PADDING:
+ assert(coder->concatenated);
+
+ // Skip over possible Stream Padding.
+ while (true) {
+ if (*in_pos >= in_size) {
+ // Unless LZMA_FINISH was used, we cannot
+ // know if there's more input coming later.
+ if (action != LZMA_FINISH)
+ return LZMA_OK;
+
+ // Stream Padding must be a multiple of
+ // four bytes.
+ return coder->pos == 0
+ ? LZMA_STREAM_END
+ : LZMA_DATA_ERROR;
+ }
+
+ // If the byte is not zero, it probably indicates
+ // beginning of a new Stream (or the file is corrupt).
+ if (in[*in_pos] != 0x00)
+ break;
+
+ ++*in_pos;
+ ++coder->progress_in;
+ coder->pos = (coder->pos + 1) & 3;
+ }
+
+ // Stream Padding must be a multiple of four bytes (empty
+ // Stream Padding is OK).
+ if (coder->pos != 0) {
+ ++*in_pos;
+ ++coder->progress_in;
+ return LZMA_DATA_ERROR;
+ }
+
+ // Prepare to decode the next Stream.
+ return_if_error(stream_decoder_reset(coder, allocator));
+ break;
+
+ case SEQ_ERROR:
+ // Let the application get all data before the point where
+ // the error was detected. This matches the behavior of
+ // single-threaded use.
+ //
+ // FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
+ // they are returned immediately. Thus in rare cases the
+ // output will be less than in single-threaded mode. But
+ // maybe this doesn't matter much in practice.
+ return_if_error(read_output_and_wait(coder, allocator,
+ out, out_pos, out_size,
+ NULL, true, &wait_abs, &has_blocked));
+
+ // We get here only if the error happened in the main thread,
+ // for example, unsupported Block Header.
+ if (!lzma_outq_is_empty(&coder->outq))
+ return LZMA_OK;
+
+ return coder->pending_error;
+
+ default:
+ assert(0);
+ return LZMA_PROG_ERROR;
+ }
+
+ // Never reached
+}
+
+
+static void
+stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
+{
+ struct lzma_stream_coder *coder = coder_ptr;
+
+ threads_end(coder, allocator);
+ lzma_outq_end(&coder->outq, allocator);
+
+ lzma_next_end(&coder->block_decoder, allocator);
+ cleanup_filters(coder->filters, allocator);
+ lzma_index_hash_end(coder->index_hash, allocator);
+
+ lzma_free(coder, allocator);
+ return;
+}
+
+
+static lzma_check
+stream_decoder_mt_get_check(const void *coder_ptr)
+{
+ const struct lzma_stream_coder *coder = coder_ptr;
+ return coder->stream_flags.check;
+}
+
+
+static lzma_ret
+stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage,
+ uint64_t *old_memlimit, uint64_t new_memlimit)
+{
+ // NOTE: This function gets/sets memlimit_stop. For now,
+ // memlimit_threading cannot be modified after initialization.
+ struct lzma_stream_coder *coder = coder_ptr;
+
+ mythread_sync(coder->mutex) {
+ *memusage = coder->mem_direct_mode + coder->mem_in_use
+ + coder->outq.mem_in_use; // FIXME?
+ }
+
+ // If no filter chains are allocated, *memusage may be zero.
+ // Always return at least LZMA_MEMUSAGE_BASE.
+ if (*memusage < LZMA_MEMUSAGE_BASE)
+ *memusage = LZMA_MEMUSAGE_BASE;
+
+ *old_memlimit = coder->memlimit_stop;
+
+ if (new_memlimit != 0) {
+ if (new_memlimit < *memusage) // FIXME?
+ return LZMA_MEMLIMIT_ERROR;
+
+ coder->memlimit_stop = new_memlimit;
+ }
+
+ return LZMA_OK;
+}
+
+
+static void
+stream_decoder_mt_get_progress(void *coder_ptr,
+ uint64_t *progress_in, uint64_t *progress_out)
+{
+ struct lzma_stream_coder *coder = coder_ptr;
+
+ // Lock coder->mutex to prevent finishing threads from moving their
+ // progress info from the worker_thread structure to lzma_stream_coder.
+ mythread_sync(coder->mutex) {
+ *progress_in = coder->progress_in;
+ *progress_out = coder->progress_out;
+
+ for (size_t i = 0; i < coder->threads_initialized; ++i) {
+ mythread_sync(coder->threads[i].mutex) {
+ *progress_in += coder->threads[i].progress_in;
+ *progress_out += coder->threads[i]
+ .progress_out;
+ }
+ }
+ }
+
+ return;
+}
+
+
+static lzma_ret
+stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
+ const lzma_mt *options)
+{
+ struct lzma_stream_coder *coder;
+
+ if (options->threads == 0 || options->threads > LZMA_THREADS_MAX)
+ return LZMA_OPTIONS_ERROR;
+
+ if (options->flags & ~LZMA_SUPPORTED_FLAGS)
+ return LZMA_OPTIONS_ERROR;
+
+ lzma_next_coder_init(&stream_decoder_mt_init, next, allocator);
+
+ coder = next->coder;
+ if (!coder) {
+ coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator);
+ if (coder == NULL)
+ return LZMA_MEM_ERROR;
+
+ next->coder = coder;
+
+ if (mythread_mutex_init(&coder->mutex)) {
+ lzma_free(coder, allocator);
+ return LZMA_MEM_ERROR;
+ }
+
+ if (mythread_cond_init(&coder->cond)) {
+ mythread_mutex_destroy(&coder->mutex);
+ lzma_free(coder, allocator);
+ return LZMA_MEM_ERROR;
+ }
+
+ next->code = &stream_decode_mt;
+ next->end = &stream_decoder_mt_end;
+ next->get_check = &stream_decoder_mt_get_check;
+ next->memconfig = &stream_decoder_mt_memconfig;
+ next->get_progress = &stream_decoder_mt_get_progress;
+
+ memzero(coder->filters, sizeof(coder->filters));
+ memzero(&coder->outq, sizeof(coder->outq));
+
+ coder->block_decoder = LZMA_NEXT_CODER_INIT;
+ coder->mem_direct_mode = 0;
+
+ coder->index_hash = NULL;
+ coder->threads = NULL;
+ coder->threads_free = NULL;
+ coder->threads_initialized = 0;
+ }
+
+ // Cleanup old filter chain if one remains after unfinished decoding
+ // of a previous Stream.
+ cleanup_filters(coder->filters, allocator);
+
+ // By allocating threads from scratch we can start memory-usage
+ // accounting from scratch, too. Changes in filter and block sizes may
+ // affect number of threads.
+ //
+ // FIXME? Reusing should be easy but unlike the single-threaded
+ // decoder, with some types of input file combinations reusing
+ // could leave quite a lot of memory allocated but unused (first
+ // file could allocate a lot, the next files could use fewer
+ // threads and some of the allocations from the first file would not
+ // get freed unless memlimit_threading forces us to clear caches).
+ //
+ // NOTE: The direct mode decoder isn't freed here if one exists.
+ // It will be reused or freed as needed in the main loop.
+ threads_end(coder, allocator);
+
+ // All memusage counters start at 0 (including mem_direct_mode).
+ // The little extra that is needed for the structs in this file
+ // get accounted well enough by the filter chain memory usage
+ // which adds LZMA_MEMUSAGE_BASE for each chain. However,
+ // stream_decoder_mt_memconfig() has to handle this specially so that
+ // it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
+ coder->mem_in_use = 0;
+ coder->mem_cached = 0;
+ coder->mem_next_block = 0;
+
+ coder->progress_in = 0;
+ coder->progress_out = 0;
+
+ coder->sequence = SEQ_STREAM_HEADER;
+ coder->thread_error = LZMA_OK;
+ coder->pending_error = LZMA_OK;
+ coder->thr = NULL;
+
+ coder->timeout = options->timeout;
+
+ coder->memlimit_threading = my_max(1, options->memlimit_threading);
+ coder->memlimit_stop = my_max(1, options->memlimit_stop);
+ if (coder->memlimit_threading > coder->memlimit_stop)
+ coder->memlimit_threading = coder->memlimit_stop;
+
+ coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0;
+ coder->tell_unsupported_check
+ = (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
+ coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0;
+ coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0;
+ coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0;
+ coder->first_stream = true;
+ coder->pos = 0;
+
+ coder->threads_max = options->threads;
+
+ return_if_error(lzma_outq_init(&coder->outq, allocator,
+ coder->threads_max));
+
+ return stream_decoder_reset(coder, allocator);
+}
+
+
+extern LZMA_API(lzma_ret)
+lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options)
+{
+ lzma_next_strm_init(stream_decoder_mt_init, strm, options);
+
+ strm->internal->supported_actions[LZMA_RUN] = true;
+ strm->internal->supported_actions[LZMA_FINISH] = true;
+
+ return LZMA_OK;
+}
diff --git a/src/liblzma/liblzma.map b/src/liblzma/liblzma.map
index 6896a94e..4462dac4 100644
--- a/src/liblzma/liblzma.map
+++ b/src/liblzma/liblzma.map
@@ -109,6 +109,7 @@ global:
lzma_microlzma_decoder;
lzma_microlzma_encoder;
lzma_file_info_decoder;
+ lzma_stream_decoder_mt;
local:
*;