aboutsummaryrefslogtreecommitdiff
path: root/src/liblzma/rangecoder
diff options
context:
space:
mode:
Diffstat (limited to 'src/liblzma/rangecoder')
-rw-r--r--src/liblzma/rangecoder/range_decoder.h491
1 files changed, 491 insertions, 0 deletions
diff --git a/src/liblzma/rangecoder/range_decoder.h b/src/liblzma/rangecoder/range_decoder.h
index 7f768dc2..0480e116 100644
--- a/src/liblzma/rangecoder/range_decoder.h
+++ b/src/liblzma/rangecoder/range_decoder.h
@@ -416,4 +416,495 @@ do { \
t_offset &= ~t_match_bit ^ rc_mask)
*/
+
+////////////
+// x86-64 //
+////////////
+
+#if defined(__x86_64__) && (defined(__GNUC__) || defined(__clang__))
+
+// rc_asm_y and rc_asm_n are used as arguments to macros to control which
+// strings to include or omit.
+#define rc_asm_y(str) str
+#define rc_asm_n(str)
+
+// There are a few possible variations for normalization.
+// This is the smallest variant which is also used by LZMA SDK.
+//
+// - This has partial register write (the MOV from (%[in_ptr])).
+//
+// - INC saves one byte in code size over ADD. False dependency on
+// partial flags from INC shouldn't become a problem on any processor
+// because the instructions after normalization don't read the flags
+// until SUB which sets all flags.
+//
+#define rc_asm_normalize \
+ "cmp %[top_value], %[range]\n\t" \
+ "jae 1f\n\t" \
+ "shl %[shift_bits], %[code]\n\t" \
+ "mov (%[in_ptr]), %b[code]\n\t" \
+ "shl %[shift_bits], %[range]\n\t" \
+ "inc %[in_ptr]\n" \
+ "1:\n"
+
+// rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)...
+//
+// rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
+// if (rc.code < rc_bound)
+//
+// ...but the bound is stored in "range":
+//
+// t0 = range;
+// range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
+// t0 -= range;
+// t1 = code;
+// code -= range;
+//
+// The carry flag (CF) from the last subtraction holds the negation of
+// the decoded bit (if CF==0 then the decoded bit is 1).
+// The values in t0 and t1 are needed for rc_update_0(prob) and
+// rc_update_1(prob). If the bit is 0, rc_update_0(prob)...
+//
+// rc.range = rc_bound;
+//
+// ...has already been done but the "code -= range" has to be reverted using
+// the old value stored in t1. (Also, prob needs to be updated.)
+//
+// If the bit is 1, rc_update_1(prob)...
+//
+// rc.range -= rc_bound;
+// rc.code -= rc_bound;
+//
+// ...is already done for "code" but the value for "range" needs to be taken
+// from t0. (Also, prob needs to be updated here as well.)
+//
+// The assignments from t0 and t1 can be done in a branchless manner with CMOV
+// after the instructions from this macro. The CF from SUB tells which moves
+// are needed.
+#define rc_asm_calc(prob) \
+ "mov %[range], %[t0]\n\t" \
+ "shr %[bit_model_total_bits], %[range]\n\t" \
+ "imul %[" prob "], %[range]\n\t" \
+ "sub %[range], %[t0]\n\t" \
+ "mov %[code], %[t1]\n\t" \
+ "sub %[range], %[code]\n\t"
+
+// Also, prob needs to be updated: The update math depends on the decoded bit.
+// It can be expressed in a few slightly different ways but this is fairly
+// convenient here:
+//
+// prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS;
+//
+// To do it in branchless way when the negation of the decoded bit is in CF,
+// both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired
+// value can be picked with CMOV. The addition can be done using LEA without
+// affecting CF.
+//
+// (This prob update method is a tiny bit different from LZMA SDK 23.01.
+// In the LZMA SDK a single register is reserved solely for a constant to
+// be used with CMOV when updating prob. That is fine since there are enough
+// free registers to do so. The method used here uses one fewer register,
+// which is valuable with inline assembly.)
+//
+// * * *
+//
+// In bittree decoding, each (unrolled) loop iteration decodes one bit
+// and needs one prob variable. To make it faster, the prob variable of
+// the iteration N+1 is loaded during iteration N. There are two possible
+// prob variables to choose from for N+1. Both are loaded from memory and
+// the correct one is chosen with CMOV using the same CF as is used for
+// other things described above.
+//
+// This preloading/prefetching requires an extra register. To avoid
+// useless moves from "preloaded prob register" to "current prob register",
+// the macros swap between the two registers for odd and even iterations.
+//
+// * * *
+//
+// Finally, the decoded bit has to be stored in "symbol". Since the negation
+// of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is,
+// if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0"
+// and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is
+// the same as "symbol += 1".
+//
+// The instructions for all things are intertwined for a few reasons:
+// - freeing temporary registers for new use
+// - not modifying CF too early
+// - instruction scheduling
+//
+// The first and last iterations can cheat a little. For example,
+// on the first iteration "symbol" is known to start from 1 so it
+// doesn't need to be read; it can even be immediately initialized
+// to 2 to prepare for the second iteration of the loop.
+//
+// * * *
+//
+// a = number of the current prob variable (0 or 1)
+// b = number of the next prob variable (1 or 0)
+// *_only = rc_asm_y or _n to include or exclude code marked with them
+#define rc_asm_bittree(a, b, first_only, middle_only, last_only) \
+ first_only( \
+ "movzw 2(%[probs_base]), %[prob" #a "]\n\t" \
+ "mov $2, %[symbol]\n\t" \
+ "movzw 4(%[probs_base]), %[prob" #b "]\n\t" \
+ ) \
+ middle_only( \
+ /* Note the scaling of 4 instead of 2: */ \
+ "movzw (%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \
+ ) \
+ last_only( \
+ "add %[symbol], %[symbol]\n\t" \
+ ) \
+ \
+ rc_asm_normalize \
+ rc_asm_calc("prob" #a) \
+ \
+ "cmovae %[t0], %[range]\n\t" \
+ \
+ first_only( \
+ "movzw 6(%[probs_base]), %[t0]\n\t" \
+ "cmovae %[t0], %[prob" #b "]\n\t" \
+ ) \
+ middle_only( \
+ "movzw 2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \
+ "lea (%q[symbol], %q[symbol]), %[symbol]\n\t" \
+ "cmovae %[t0], %[prob" #b "]\n\t" \
+ ) \
+ last_only( \
+ /*"lea (%q[symbol], %q[symbol]), %[symbol]\n\t"*/ \
+ ) \
+ \
+ "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
+ "cmovb %[t1], %[code]\n\t" \
+ "mov %[symbol], %[t1]\n\t" \
+ "cmovae %[prob" #a "], %[t0]\n\t" \
+ \
+ first_only( \
+ "sbb $-1, %[symbol]\n\t" \
+ ) \
+ middle_only( \
+ "sbb $-1, %[symbol]\n\t" \
+ ) \
+ last_only( \
+ "sbb %[last_sbb], %[symbol]\n\t" \
+ ) \
+ \
+ "shr %[move_bits], %[t0]\n\t" \
+ "sub %[t0], %[prob" #a "]\n\t" \
+ /* Scaling of 1 instead of 2 because symbol <<= 1. */ \
+ "mov %w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t"
+
+// NOTE: The order of variables in __asm__ can affect speed and code size.
+#define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \
+do { \
+ uint32_t t0; \
+ uint32_t t1; \
+ uint32_t t_prob0; \
+ uint32_t t_prob1; \
+ \
+ __asm__( \
+ asm_str \
+ : \
+ [range] "+&r"(rc.range), \
+ [code] "+&r"(rc.code), \
+ [t0] "=&r"(t0), \
+ [t1] "=&r"(t1), \
+ [prob0] "=&r"(t_prob0), \
+ [prob1] "=&r"(t_prob1), \
+ [symbol] "=&r"(symbol), \
+ [in_ptr] "+&r"(rc_in_ptr) \
+ : \
+ [probs_base] "r"(probs_base_var), \
+ [last_sbb] "n"(-1 - (final_add)), \
+ [top_value] "n"(RC_TOP_VALUE), \
+ [shift_bits] "n"(RC_SHIFT_BITS), \
+ [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
+ [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
+ [move_bits] "n"(RC_MOVE_BITS) \
+ : \
+ "cc", "memory"); \
+} while (0)
+
+#undef rc_bittree3
+#define rc_bittree3(probs_base_var, final_add) \
+ rc_asm_bittree_n(probs_base_var, final_add, \
+ rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
+ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \
+ )
+
+#undef rc_bittree6
+#define rc_bittree6(probs_base_var, final_add) \
+ rc_asm_bittree_n(probs_base_var, final_add, \
+ rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
+ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
+ )
+
+#undef rc_bittree8
+#define rc_bittree8(probs_base_var, final_add) \
+ rc_asm_bittree_n(probs_base_var, final_add, \
+ rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
+ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
+ )
+
+
+// Fixed-sized reverse bittree
+//
+// This uses the indexing that constructs the final value in symbol directly.
+// add = 1, 2, 4, 8
+// dcur = -, 4, 8, 16
+// dnext0 = 4, 8, 16, -
+// dnext0 = 6, 12, 24, -
+#define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \
+ first_only, middle_only, last_only) \
+ first_only( \
+ "movzw 2(%[probs_base]), %[prob" #a "]\n\t" \
+ "xor %[symbol], %[symbol]\n\t" \
+ "movzw 4(%[probs_base]), %[prob" #b "]\n\t" \
+ ) \
+ middle_only( \
+ "movzw " #dnext0 "(%[probs_base], %q[symbol], 2), " \
+ "%[prob" #b "]\n\t" \
+ ) \
+ \
+ rc_asm_normalize \
+ rc_asm_calc("prob" #a) \
+ \
+ "cmovae %[t0], %[range]\n\t" \
+ \
+ first_only( \
+ "movzw 6(%[probs_base]), %[t0]\n\t" \
+ "cmovae %[t0], %[prob" #b "]\n\t" \
+ ) \
+ middle_only( \
+ "movzw " #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \
+ "cmovae %[t0], %[prob" #b "]\n\t" \
+ ) \
+ \
+ "lea " #add "(%q[symbol]), %[t0]\n\t" \
+ "cmovb %[t1], %[code]\n\t" \
+ middle_only( \
+ "mov %[symbol], %[t1]\n\t" \
+ ) \
+ last_only( \
+ "mov %[symbol], %[t1]\n\t" \
+ ) \
+ "cmovae %[t0], %[symbol]\n\t" \
+ "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
+ "cmovae %[prob" #a "], %[t0]\n\t" \
+ \
+ "shr %[move_bits], %[t0]\n\t" \
+ "sub %[t0], %[prob" #a "]\n\t" \
+ first_only( \
+ "mov %w[prob" #a "], 2(%[probs_base])\n\t" \
+ ) \
+ middle_only( \
+ "mov %w[prob" #a "], " \
+ #dcur "(%[probs_base], %q[t1], 2)\n\t" \
+ ) \
+ last_only( \
+ "mov %w[prob" #a "], " \
+ #dcur "(%[probs_base], %q[t1], 2)\n\t" \
+ )
+
+#undef rc_bittree_rev4
+#define rc_bittree_rev4(probs_base_var) \
+rc_asm_bittree_n(probs_base_var, 4, \
+ rc_asm_bittree_rev(0, 1, 1, -, 4, 6, rc_asm_y, rc_asm_n, rc_asm_n) \
+ rc_asm_bittree_rev(1, 0, 2, 4, 8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree_rev(0, 1, 4, 8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \
+ rc_asm_bittree_rev(1, 0, 8, 16, -, -, rc_asm_n, rc_asm_n, rc_asm_y) \
+)
+
+
+#undef rc_bit_add_if_1
+#define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \
+do { \
+ uint32_t t0; \
+ uint32_t t1; \
+ uint32_t t2 = (value_to_add_if_1); \
+ uint32_t t_prob; \
+ uint32_t t_index; \
+ \
+ __asm__( \
+ "movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \
+ "mov %[symbol], %[index]\n\t" \
+ \
+ "add %[dest], %[t2]\n\t" \
+ "add %[symbol], %[symbol]\n\t" \
+ \
+ rc_asm_normalize \
+ rc_asm_calc("prob") \
+ \
+ "cmovae %[t0], %[range]\n\t" \
+ "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \
+ "cmovb %[t1], %[code]\n\t" \
+ "cmovae %[prob], %[t0]\n\t" \
+ \
+ "cmovae %[t2], %[dest]\n\t" \
+ "sbb $-1, %[symbol]\n\t" \
+ \
+ "sar %[move_bits], %[t0]\n\t" \
+ "sub %[t0], %[prob]\n\t" \
+ "mov %w[prob], (%[probs_base], %q[index], 2)" \
+ : \
+ [range] "+&r"(rc.range), \
+ [code] "+&r"(rc.code), \
+ [t0] "=&r"(t0), \
+ [t1] "=&r"(t1), \
+ [prob] "=&r"(t_prob), \
+ [index] "=&r"(t_index), \
+ [symbol] "+&r"(symbol), \
+ [t2] "+&r"(t2), \
+ [dest] "+&r"(dest_var), \
+ [in_ptr] "+&r"(rc_in_ptr) \
+ : \
+ [probs_base] "r"(probs_base_var), \
+ [top_value] "n"(RC_TOP_VALUE), \
+ [shift_bits] "n"(RC_SHIFT_BITS), \
+ [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
+ [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
+ [move_bits] "n"(RC_MOVE_BITS) \
+ : \
+ "cc", "memory"); \
+} while (0)
+
+
+// Literal decoding uses a normal 8-bit bittree but literal with match byte
+// is more complex in picking the probability variable from the correct
+// subtree. This doesn't use preloading/prefetching of the next prob because
+// there are four choices instead of two.
+//
+// FIXME? The first iteration starts with symbol = 1 so it could be optimized
+// by a tiny amount.
+#define rc_asm_matched_literal(nonlast_only) \
+ "add %[offset], %[symbol]\n\t" \
+ "and %[offset], %[match_bit]\n\t" \
+ "add %[match_bit], %[symbol]\n\t" \
+ \
+ "movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \
+ \
+ "add %[symbol], %[symbol]\n\t" \
+ \
+ nonlast_only( \
+ "xor %[match_bit], %[offset]\n\t" \
+ "add %[match_byte], %[match_byte]\n\t" \
+ ) \
+ \
+ rc_asm_normalize \
+ rc_asm_calc("prob") \
+ \
+ "cmovae %[t0], %[range]\n\t" \
+ "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \
+ "cmovb %[t1], %[code]\n\t" \
+ "mov %[symbol], %[t1]\n\t" \
+ "cmovae %[prob], %[t0]\n\t" \
+ \
+ nonlast_only( \
+ "cmovae %[match_bit], %[offset]\n\t" \
+ "mov %[match_byte], %[match_bit]\n\t" \
+ ) \
+ \
+ "sbb $-1, %[symbol]\n\t" \
+ \
+ "shr %[move_bits], %[t0]\n\t" \
+ /* Undo symbol += match_bit + offset: */ \
+ "and $0x1FF, %[symbol]\n\t" \
+ "sub %[t0], %[prob]\n\t" \
+ \
+ /* Scaling of 1 instead of 2 because symbol <<= 1. */ \
+ "mov %w[prob], (%[probs_base], %q[t1], 1)\n\t"
+
+
+#undef rc_matched_literal
+#define rc_matched_literal(probs_base_var, match_byte_value) \
+do { \
+ uint32_t t0; \
+ uint32_t t1; \
+ uint32_t t_prob; \
+ uint32_t t_match_byte = (match_byte_value) << 1; \
+ uint32_t t_match_bit = t_match_byte; \
+ uint32_t t_offset = 0x100; \
+ symbol = 1; \
+ \
+ __asm__( \
+ rc_asm_matched_literal(rc_asm_y) \
+ rc_asm_matched_literal(rc_asm_y) \
+ rc_asm_matched_literal(rc_asm_y) \
+ rc_asm_matched_literal(rc_asm_y) \
+ rc_asm_matched_literal(rc_asm_y) \
+ rc_asm_matched_literal(rc_asm_y) \
+ rc_asm_matched_literal(rc_asm_y) \
+ rc_asm_matched_literal(rc_asm_n) \
+ : \
+ [range] "+&r"(rc.range), \
+ [code] "+&r"(rc.code), \
+ [t0] "=&r"(t0), \
+ [t1] "=&r"(t1), \
+ [prob] "=&r"(t_prob), \
+ [match_bit] "+&r"(t_match_bit), \
+ [symbol] "+&r"(symbol), \
+ [match_byte] "+&r"(t_match_byte), \
+ [offset] "+&r"(t_offset), \
+ [in_ptr] "+&r"(rc_in_ptr) \
+ : \
+ [probs_base] "r"(probs_base_var), \
+ [top_value] "n"(RC_TOP_VALUE), \
+ [shift_bits] "n"(RC_SHIFT_BITS), \
+ [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
+ [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
+ [move_bits] "n"(RC_MOVE_BITS) \
+ : \
+ "cc", "memory"); \
+} while (0)
+
+
+// Doing the loop in asm instead of C seems to help a little.
+#undef rc_direct
+#define rc_direct(dest_var, count_var) \
+do { \
+ uint32_t t0; \
+ uint32_t t1; \
+ \
+ __asm__( \
+ "2:\n\t" \
+ "add %[dest], %[dest]\n\t" \
+ "lea 1(%q[dest]), %[t1]\n\t" \
+ \
+ rc_asm_normalize \
+ \
+ "shr $1, %[range]\n\t" \
+ "mov %[code], %[t0]\n\t" \
+ "sub %[range], %[code]\n\t" \
+ "cmovns %[t1], %[dest]\n\t" \
+ "cmovs %[t0], %[code]\n\t" \
+ "dec %[count]\n\t" \
+ "jnz 2b\n\t" \
+ : \
+ [range] "+&r"(rc.range), \
+ [code] "+&r"(rc.code), \
+ [t0] "=&r"(t0), \
+ [t1] "=&r"(t1), \
+ [dest] "+&r"(dest_var), \
+ [count] "+&r"(count_var), \
+ [in_ptr] "+&r"(rc_in_ptr) \
+ : \
+ [top_value] "n"(RC_TOP_VALUE), \
+ [shift_bits] "n"(RC_SHIFT_BITS) \
+ : \
+ "cc", "memory"); \
+} while (0)
+
+#endif // x86_64
+
#endif