aboutsummaryrefslogtreecommitdiff
path: root/src/liblzma/lz
diff options
context:
space:
mode:
Diffstat (limited to 'src/liblzma/lz')
-rw-r--r--src/liblzma/lz/Makefile.am35
-rw-r--r--src/liblzma/lz/bt2.c27
-rw-r--r--src/liblzma/lz/bt2.h31
-rw-r--r--src/liblzma/lz/bt3.c29
-rw-r--r--src/liblzma/lz/bt3.h31
-rw-r--r--src/liblzma/lz/bt4.c30
-rw-r--r--src/liblzma/lz/bt4.h31
-rw-r--r--src/liblzma/lz/hc3.c30
-rw-r--r--src/liblzma/lz/hc3.h31
-rw-r--r--src/liblzma/lz/hc4.c31
-rw-r--r--src/liblzma/lz/hc4.h31
-rw-r--r--src/liblzma/lz/lz_decoder.c547
-rw-r--r--src/liblzma/lz/lz_decoder.h308
-rw-r--r--src/liblzma/lz/lz_encoder.c780
-rw-r--r--src/liblzma/lz/lz_encoder.h334
-rw-r--r--src/liblzma/lz/lz_encoder_hash.h104
-rw-r--r--src/liblzma/lz/lz_encoder_mf.c780
-rw-r--r--src/liblzma/lz/lz_encoder_private.h40
-rw-r--r--src/liblzma/lz/match_c.h412
-rw-r--r--src/liblzma/lz/match_h.h69
20 files changed, 1865 insertions, 1846 deletions
diff --git a/src/liblzma/lz/Makefile.am b/src/liblzma/lz/Makefile.am
index 5c27e2f2..bf41d8e6 100644
--- a/src/liblzma/lz/Makefile.am
+++ b/src/liblzma/lz/Makefile.am
@@ -20,43 +20,16 @@ liblz_la_CPPFLAGS = \
liblz_la_SOURCES =
-if COND_MAIN_ENCODER
+if COND_ENCODER_LZ
liblz_la_SOURCES += \
lz_encoder.c \
lz_encoder.h \
- lz_encoder_private.h \
- match_c.h \
- match_h.h
-
-if COND_MF_HC3
-liblz_la_SOURCES += hc3.c hc3.h
-liblz_la_CPPFLAGS += -DHAVE_HC3
-endif
-
-if COND_MF_HC4
-liblz_la_SOURCES += hc4.c hc4.h
-liblz_la_CPPFLAGS += -DHAVE_HC4
-endif
-
-if COND_MF_BT2
-liblz_la_SOURCES += bt2.c bt2.h
-liblz_la_CPPFLAGS += -DHAVE_BT2
-endif
-
-if COND_MF_BT3
-liblz_la_SOURCES += bt3.c bt3.h
-liblz_la_CPPFLAGS += -DHAVE_BT3
-endif
-
-if COND_MF_BT4
-liblz_la_SOURCES += bt4.c bt4.h
-liblz_la_CPPFLAGS += -DHAVE_BT4
-endif
-
+ lz_encoder_hash.h \
+ lz_encoder_mf.c
endif
-if COND_MAIN_DECODER
+if COND_DECODER_LZ
liblz_la_SOURCES += \
lz_decoder.c \
lz_decoder.h
diff --git a/src/liblzma/lz/bt2.c b/src/liblzma/lz/bt2.c
deleted file mode 100644
index 7dc4cb80..00000000
--- a/src/liblzma/lz/bt2.c
+++ /dev/null
@@ -1,27 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file bt2.c
-/// \brief Binary Tree 2
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#include "bt2.h"
-
-#undef IS_HASH_CHAIN
-#undef HASH_ARRAY_2
-#undef HASH_ARRAY_3
-
-#include "match_c.h"
diff --git a/src/liblzma/lz/bt2.h b/src/liblzma/lz/bt2.h
deleted file mode 100644
index 33cb52cd..00000000
--- a/src/liblzma/lz/bt2.h
+++ /dev/null
@@ -1,31 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file bt2.h
-/// \brief Binary Tree 2
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#ifndef LZMA_BT2_H
-#define LZMA_BT2_H
-
-#undef LZMA_MATCH_FINDER_NAME_LOWER
-#undef LZMA_MATCH_FINDER_NAME_UPPER
-#define LZMA_MATCH_FINDER_NAME_LOWER bt2
-#define LZMA_MATCH_FINDER_NAME_UPPER BT2
-
-#include "match_h.h"
-
-#endif
diff --git a/src/liblzma/lz/bt3.c b/src/liblzma/lz/bt3.c
deleted file mode 100644
index d44310f3..00000000
--- a/src/liblzma/lz/bt3.c
+++ /dev/null
@@ -1,29 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file bt3.c
-/// \brief Binary Tree 3
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#include "bt3.h"
-
-#undef IS_HASH_CHAIN
-#undef HASH_ARRAY_2
-#undef HASH_ARRAY_3
-
-#define HASH_ARRAY_2
-
-#include "match_c.h"
diff --git a/src/liblzma/lz/bt3.h b/src/liblzma/lz/bt3.h
deleted file mode 100644
index 247c7e5f..00000000
--- a/src/liblzma/lz/bt3.h
+++ /dev/null
@@ -1,31 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file bt3.h
-/// \brief Binary Tree 3
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#ifndef LZMA_BT3_H
-#define LZMA_BT3_H
-
-#undef LZMA_MATCH_FINDER_NAME_LOWER
-#undef LZMA_MATCH_FINDER_NAME_UPPER
-#define LZMA_MATCH_FINDER_NAME_LOWER bt3
-#define LZMA_MATCH_FINDER_NAME_UPPER BT3
-
-#include "match_h.h"
-
-#endif
diff --git a/src/liblzma/lz/bt4.c b/src/liblzma/lz/bt4.c
deleted file mode 100644
index 6e1042c9..00000000
--- a/src/liblzma/lz/bt4.c
+++ /dev/null
@@ -1,30 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file bt4.c
-/// \brief Binary Tree 4
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#include "bt4.h"
-
-#undef IS_HASH_CHAIN
-#undef HASH_ARRAY_2
-#undef HASH_ARRAY_3
-
-#define HASH_ARRAY_2
-#define HASH_ARRAY_3
-
-#include "match_c.h"
diff --git a/src/liblzma/lz/bt4.h b/src/liblzma/lz/bt4.h
deleted file mode 100644
index e3fcf6ac..00000000
--- a/src/liblzma/lz/bt4.h
+++ /dev/null
@@ -1,31 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file bt4.h
-/// \brief Binary Tree 4
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#ifndef LZMA_BT4_H
-#define LZMA_BT4_H
-
-#undef LZMA_MATCH_FINDER_NAME_LOWER
-#undef LZMA_MATCH_FINDER_NAME_UPPER
-#define LZMA_MATCH_FINDER_NAME_LOWER bt4
-#define LZMA_MATCH_FINDER_NAME_UPPER BT4
-
-#include "match_h.h"
-
-#endif
diff --git a/src/liblzma/lz/hc3.c b/src/liblzma/lz/hc3.c
deleted file mode 100644
index 22b5689b..00000000
--- a/src/liblzma/lz/hc3.c
+++ /dev/null
@@ -1,30 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file hc3.c
-/// \brief Hash Chain 3
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#include "hc3.h"
-
-#undef IS_HASH_CHAIN
-#undef HASH_ARRAY_2
-#undef HASH_ARRAY_3
-
-#define IS_HASH_CHAIN
-#define HASH_ARRAY_2
-
-#include "match_c.h"
diff --git a/src/liblzma/lz/hc3.h b/src/liblzma/lz/hc3.h
deleted file mode 100644
index 97be0b1d..00000000
--- a/src/liblzma/lz/hc3.h
+++ /dev/null
@@ -1,31 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file hc3.h
-/// \brief Hash Chain 3
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#ifndef LZMA_HC3_H
-#define LZMA_HC3_H
-
-#undef LZMA_MATCH_FINDER_NAME_LOWER
-#undef LZMA_MATCH_FINDER_NAME_UPPER
-#define LZMA_MATCH_FINDER_NAME_LOWER hc3
-#define LZMA_MATCH_FINDER_NAME_UPPER HC3
-
-#include "match_h.h"
-
-#endif
diff --git a/src/liblzma/lz/hc4.c b/src/liblzma/lz/hc4.c
deleted file mode 100644
index a55cfd09..00000000
--- a/src/liblzma/lz/hc4.c
+++ /dev/null
@@ -1,31 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file hc4.c
-/// \brief Hash Chain 4
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#include "hc4.h"
-
-#undef IS_HASH_CHAIN
-#undef HASH_ARRAY_2
-#undef HASH_ARRAY_3
-
-#define IS_HASH_CHAIN
-#define HASH_ARRAY_2
-#define HASH_ARRAY_3
-
-#include "match_c.h"
diff --git a/src/liblzma/lz/hc4.h b/src/liblzma/lz/hc4.h
deleted file mode 100644
index dc072e2f..00000000
--- a/src/liblzma/lz/hc4.h
+++ /dev/null
@@ -1,31 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file hc4.h
-/// \brief Hash Chain 4
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#ifndef LZMA_HC4_H
-#define LZMA_HC4_H
-
-#undef LZMA_MATCH_FINDER_NAME_LOWER
-#undef LZMA_MATCH_FINDER_NAME_UPPER
-#define LZMA_MATCH_FINDER_NAME_LOWER hc4
-#define LZMA_MATCH_FINDER_NAME_UPPER HC4
-
-#include "match_h.h"
-
-#endif
diff --git a/src/liblzma/lz/lz_decoder.c b/src/liblzma/lz/lz_decoder.c
index ae969d62..5c3f1d18 100644
--- a/src/liblzma/lz/lz_decoder.c
+++ b/src/liblzma/lz/lz_decoder.c
@@ -18,351 +18,142 @@
//
///////////////////////////////////////////////////////////////////////////////
-#include "lz_decoder.h"
+// liblzma supports multiple LZ77-based filters. The LZ part is shared
+// between these filters. The LZ code takes care of dictionary handling
+// and passing the data between filters in the chain. The filter-specific
+// part decodes from the input buffer to the dictionary.
-/// Minimum size of allocated dictionary
-#define DICT_SIZE_MIN 8192
+#include "lz_decoder.h"
-/// When there is less than this amount of data available for decoding,
-/// it is moved to the temporary buffer which
-/// - protects from reads past the end of the buffer; and
-/// - stored the incomplete data between lzma_code() calls.
-///
-/// \note TEMP_LIMIT must be at least as much as
-/// REQUIRED_IN_BUFFER_SIZE defined in lzma_decoder.c.
-#define TEMP_LIMIT 32
-// lzma_lz_decoder.dict[] must be three times the size of TEMP_LIMIT.
-// 2 * TEMP_LIMIT is used for the actual data, and the third TEMP_LIMIT
-// bytes is needed for safety to allow decode_dummy() in lzma_decoder.c
-// to read past end of the buffer. This way it should be both fast and simple.
-#if LZMA_BUFFER_SIZE < 3 * TEMP_LIMIT
-# error LZMA_BUFFER_SIZE < 3 * TEMP_LIMIT
-#endif
+struct lzma_coder_s {
+ /// Dictionary (history buffer)
+ lzma_dict dict;
+ /// The actual LZ-based decoder e.g. LZMA
+ lzma_lz_decoder lz;
-struct lzma_coder_s {
+ /// Next filter in the chain, if any. Note that LZMA and LZMA2 are
+ /// only allowed as the last filter, but the long-range filter in
+ /// future can be in the middle of the chain.
lzma_next_coder next;
- lzma_lz_decoder lz;
- // There are more members in this structure but they are not
- // visible in LZ coder.
+ /// True if the next filter in the chain has returned LZMA_STREAM_END.
+ bool next_finished;
+
+ /// True if the LZ decoder (e.g. LZMA) has detected end of payload
+ /// marker. This may become true before next_finished becomes true.
+ bool this_finished;
+
+ /// Temporary buffer needed when the LZ-based filter is not the last
+ /// filter in the chain. The output of the next filter is first
+ /// decoded into buffer[], which is then used as input for the actual
+ /// LZ-based decoder.
+ struct {
+ size_t pos;
+ size_t size;
+ uint8_t buffer[LZMA_BUFFER_SIZE];
+ } temp;
};
-/// - Copy as much data as possible from lz->dict[] to out[].
-/// - Update *out_pos, lz->start, and lz->end accordingly.
-/// - Wrap lz-pos to the beginning of lz->dict[] if there is a danger that
-/// it may go past the end of the buffer (lz->pos >= lz->must_flush_pos).
-static inline bool
-flush(lzma_lz_decoder *restrict lz, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size)
-{
- // Flush uncompressed data from the history buffer to
- // the output buffer. This is done in two phases.
-
- assert(lz->start <= lz->end);
-
- // Flush if pos < start < end.
- if (lz->pos < lz->start && lz->start < lz->end) {
- bufcpy(lz->dict, &lz->start, lz->end, out, out_pos, out_size);
-
- // If we reached end of the data in history buffer,
- // wrap to the beginning.
- if (lz->start == lz->end)
- lz->start = 0;
- }
-
- // Flush if start start < pos <= end. This is not as `else' for
- // previous `if' because the previous one may make this one true.
- if (lz->start < lz->pos) {
- bufcpy(lz->dict, &lz->start,
- lz->pos, out, out_pos, out_size);
-
- if (lz->pos >= lz->must_flush_pos) {
- // Wrap the flushing position if we have
- // flushed the whole history buffer.
- if (lz->pos == lz->start)
- lz->start = 0;
-
- // Wrap the write position and store to lz.end
- // how much there is new data available.
- lz->end = lz->pos;
- lz->pos = 0;
- lz->is_full = true;
- }
- }
-
- assert(lz->pos < lz->must_flush_pos);
-
- return *out_pos == out_size;
-}
-
-
-/// Calculate safe value for lz->limit. If no safe value can be found,
-/// set lz->limit to zero. When flushing, only as little data will be
-/// decoded as is needed to fill the output buffer (lowers both latency
-/// and throughput).
-///
-/// \return true if there is no space for new uncompressed data.
-///
-static inline bool
-set_limit(lzma_lz_decoder *lz, size_t out_avail, bool flushing)
-{
- // Set the limit so that writing to dict[limit + match_max_len - 1]
- // doesn't overwrite any unflushed data and doesn't write past the
- // end of the dict buffer.
- if (lz->start <= lz->pos) {
- // We can fill the buffer from pos till the end
- // of the dict buffer.
- lz->limit = lz->must_flush_pos;
- } else if (lz->pos + lz->match_max_len < lz->start) {
- // There's some unflushed data between pos and end of the
- // buffer. Limit so that we don't overwrite the unflushed data.
- lz->limit = lz->start - lz->match_max_len;
- } else {
- // Buffer is too full.
- lz->limit = 0;
- return true;
- }
-
- // Finetune the limit a bit if it isn't zero.
-
- assert(lz->limit > lz->pos);
- const size_t dict_avail = lz->limit - lz->pos;
-
- if (lz->uncompressed_size < dict_avail) {
- // Finishing a stream that doesn't have
- // an end of stream marker.
- lz->limit = lz->pos + lz->uncompressed_size;
-
- } else if (flushing && out_avail < dict_avail) {
- // Flushing enabled, decoding only as little as needed to
- // fill the out buffer (if there's enough input, of course).
- lz->limit = lz->pos + out_avail;
- }
-
- return lz->limit == lz->pos;
-}
-
-
-/// Takes care of wrapping the data into temporary buffer when needed,
-/// and calls the actual decoder.
-///
-/// \return true if error occurred
-///
-static inline bool
-call_process(lzma_coder *restrict coder, const uint8_t *restrict in,
- size_t *restrict in_pos, size_t in_size)
-{
- // It would be nice and simple if we could just give in[] to the
- // decoder, but the requirement of zlib-like API forces us to be
- // able to make *in_pos == in_size whenever there is enough output
- // space. If needed, we will append a few bytes from in[] to
- // a temporary buffer and decode enough to reach the part that
- // was copied from in[]. Then we can continue with the real in[].
-
- bool error;
- const size_t dict_old_pos = coder->lz.pos;
- const size_t in_avail = in_size - *in_pos;
-
- if (coder->lz.temp_size + in_avail < 2 * TEMP_LIMIT) {
- // Copy all the available input from in[] to temp[].
- memcpy(coder->lz.temp + coder->lz.temp_size,
- in + *in_pos, in_avail);
- coder->lz.temp_size += in_avail;
- *in_pos += in_avail;
- assert(*in_pos == in_size);
-
- // Decode as much as possible.
- size_t temp_used = 0;
- error = coder->lz.process(coder, coder->lz.temp, &temp_used,
- coder->lz.temp_size, true);
- assert(temp_used <= coder->lz.temp_size);
-
- // Move the remaining data to the beginning of temp[].
- coder->lz.temp_size -= temp_used;
- memmove(coder->lz.temp, coder->lz.temp + temp_used,
- coder->lz.temp_size);
-
- } else if (coder->lz.temp_size > 0) {
- // Fill temp[] unless it is already full because we aren't
- // the last filter in the chain.
- size_t copy_size = 0;
- if (coder->lz.temp_size < 2 * TEMP_LIMIT) {
- assert(*in_pos < in_size);
- copy_size = 2 * TEMP_LIMIT - coder->lz.temp_size;
- memcpy(coder->lz.temp + coder->lz.temp_size,
- in + *in_pos, copy_size);
- // NOTE: We don't update lz.temp_size or *in_pos yet.
- }
-
- size_t temp_used = 0;
- error = coder->lz.process(coder, coder->lz.temp, &temp_used,
- coder->lz.temp_size + copy_size, false);
-
- if (temp_used < coder->lz.temp_size) {
- // Only very little input data was consumed. Move
- // the unprocessed data to the beginning temp[].
- coder->lz.temp_size += copy_size - temp_used;
- memmove(coder->lz.temp, coder->lz.temp + temp_used,
- coder->lz.temp_size);
- *in_pos += copy_size;
- assert(*in_pos <= in_size);
-
- } else {
- // We were able to decode so much data that next time
- // we can decode directly from in[]. That is, we can
- // consider temp[] to be empty now.
- *in_pos += temp_used - coder->lz.temp_size;
- coder->lz.temp_size = 0;
- assert(*in_pos <= in_size);
- }
-
- } else {
- // Decode directly from in[].
- error = coder->lz.process(coder, in, in_pos, in_size, false);
- assert(*in_pos <= in_size);
- }
-
- assert(coder->lz.pos >= dict_old_pos);
- if (coder->lz.uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) {
- // Update uncompressed size.
- coder->lz.uncompressed_size -= coder->lz.pos - dict_old_pos;
-
- // Check that End of Payload Marker hasn't been detected
- // since it must not be present because uncompressed size
- // is known.
- if (coder->lz.eopm_detected)
- error = true;
- }
-
- return error;
-}
-
-
static lzma_ret
decode_buffer(lzma_coder *coder,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size,
- bool flushing)
+ size_t *restrict out_pos, size_t out_size)
{
- bool stop = false;
-
while (true) {
- // Flush from coder->lz.dict to out[].
- flush(&coder->lz, out, out_pos, out_size);
-
- // All done?
- if (*out_pos == out_size
- || stop
- || coder->lz.eopm_detected
- || coder->lz.uncompressed_size == 0)
- break;
-
- // Set write limit in the dictionary.
- if (set_limit(&coder->lz, out_size - *out_pos, flushing))
- break;
-
- // Decode more data.
- if (call_process(coder, in, in_pos, in_size))
- return LZMA_DATA_ERROR;
-
- // Set stop to true if we must not call call_process() again
- // during this function call.
- // FIXME: Can this make the loop exist too early? It wouldn't
- // cause data corruption so not a critical problem. It can
- // happen if dictionary gets full and lz.temp still contains
- // a few bytes data that we could decode right now.
- if (*in_pos == in_size && coder->lz.temp_size <= TEMP_LIMIT
- && coder->lz.pos < coder->lz.limit)
- stop = true;
+ // Wrap the dictionary if needed.
+ if (coder->dict.pos == coder->dict.size)
+ coder->dict.pos = 0;
+
+ // Store the current dictionary position. It is needed to know
+ // where to start copying to the out[] buffer.
+ const size_t dict_start = coder->dict.pos;
+
+ // Calculate how much we allow the process() function to
+ // decode. It must not decode past the end of the dictionary
+ // buffer, and we don't want it to decode more than is
+ // actually needed to fill the out[] buffer.
+ coder->dict.limit = coder->dict.pos + MIN(out_size - *out_pos,
+ coder->dict.size - coder->dict.pos);
+
+ // Call the process() function to do the actual decoding.
+ const lzma_ret ret = coder->lz.code(
+ coder->lz.coder, &coder->dict,
+ in, in_pos, in_size);
+
+ // Copy the decoded data from the dictionary to the out[]
+ // buffer.
+ const size_t copy_size = coder->dict.pos - dict_start;
+ assert(copy_size <= out_size - *out_pos);
+ memcpy(out + *out_pos, coder->dict.buf + dict_start,
+ copy_size);
+ *out_pos += copy_size;
+
+ // Return if everything got decoded or an error occurred, or
+ // if there's no more data to decode.
+ if (ret != LZMA_OK || *out_pos == out_size
+ || coder->dict.pos < coder->dict.size)
+ return ret;
}
-
- // If we have decoded everything (EOPM detected or uncompressed_size
- // bytes were processed) to the history buffer, and also flushed
- // everything from the history buffer, our job is done.
- if ((coder->lz.eopm_detected
- || coder->lz.uncompressed_size == 0)
- && coder->lz.start == coder->lz.pos)
- return LZMA_STREAM_END;
-
- return LZMA_OK;
}
-extern lzma_ret
-lzma_lz_decode(lzma_coder *coder,
+static lzma_ret
+lz_decode(lzma_coder *coder,
lzma_allocator *allocator lzma_attribute((unused)),
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size,
lzma_action action)
{
- if (coder->next.code == NULL) {
- const lzma_ret ret = decode_buffer(coder, in, in_pos, in_size,
- out, out_pos, out_size,
- action == LZMA_SYNC_FLUSH);
-
- if (*out_pos == out_size || ret == LZMA_STREAM_END) {
- // Unread to make coder->temp[] empty. This is easy,
- // because we know that all the data currently in
- // coder->temp[] has been copied form in[] during this
- // call to the decoder.
- //
- // If we didn't do this, we could have data left in
- // coder->temp[] when end of stream is reached. That
- // data could be left there from *previous* call to
- // the decoder; in that case we wouldn't know where
- // to put that data.
- assert(*in_pos >= coder->lz.temp_size);
- *in_pos -= coder->lz.temp_size;
- coder->lz.temp_size = 0;
- }
-
- return ret;
- }
+ if (coder->next.code == NULL)
+ return decode_buffer(coder, in, in_pos, in_size,
+ out, out_pos, out_size);
// We aren't the last coder in the chain, we need to decode
// our input to a temporary buffer.
- const bool flushing = action == LZMA_SYNC_FLUSH;
while (*out_pos < out_size) {
- if (!coder->lz.next_finished
- && coder->lz.temp_size < LZMA_BUFFER_SIZE) {
+ // Fill the temporary buffer if it is empty.
+ if (!coder->next_finished
+ && coder->temp.pos == coder->temp.size) {
+ coder->temp.pos = 0;
+ coder->temp.size = 0;
+
const lzma_ret ret = coder->next.code(
coder->next.coder,
allocator, in, in_pos, in_size,
- coder->lz.temp, &coder->lz.temp_size,
+ coder->temp.buffer, &coder->temp.size,
LZMA_BUFFER_SIZE, action);
if (ret == LZMA_STREAM_END)
- coder->lz.next_finished = true;
- else if (coder->lz.temp_size < LZMA_BUFFER_SIZE
- || ret != LZMA_OK)
+ coder->next_finished = true;
+ else if (ret != LZMA_OK || coder->temp.size == 0)
return ret;
}
- if (coder->lz.this_finished) {
- if (coder->lz.temp_size != 0)
+ if (coder->this_finished) {
+ if (coder->temp.size != 0)
return LZMA_DATA_ERROR;
- if (coder->lz.next_finished)
+ if (coder->next_finished)
return LZMA_STREAM_END;
return LZMA_OK;
}
- size_t dummy = 0;
- const lzma_ret ret = decode_buffer(coder, NULL, &dummy, 0,
- out, out_pos, out_size, flushing);
+ const lzma_ret ret = decode_buffer(coder, coder->temp.buffer,
+ &coder->temp.pos, coder->temp.size,
+ out, out_pos, out_size);
if (ret == LZMA_STREAM_END)
- coder->lz.this_finished = true;
+ coder->this_finished = true;
else if (ret != LZMA_OK)
return ret;
- else if (coder->lz.next_finished && *out_pos < out_size)
+ else if (coder->next_finished && *out_pos < out_size)
return LZMA_DATA_ERROR;
}
@@ -370,94 +161,104 @@ lzma_lz_decode(lzma_coder *coder,
}
-/// \brief Initializes LZ part of the LZMA decoder or Inflate
-///
-/// \param history_size Number of bytes the LZ out window is
-/// supposed keep available from the output
-/// history.
-/// \param match_max_len Number of bytes a single decoding loop
-/// can advance the write position (lz->pos)
-/// in the history buffer (lz->dict).
-///
-/// \note This function is called by LZMA decoder and Inflate init()s.
-/// It's up to those functions allocate *lz and initialize it
-/// with LZMA_LZ_DECODER_INIT.
+static void
+lz_decoder_end(lzma_coder *coder, lzma_allocator *allocator)
+{
+ lzma_next_end(&coder->next, allocator);
+ lzma_free(coder->dict.buf, allocator);
+
+ if (coder->lz.end != NULL)
+ coder->lz.end(coder->lz.coder, allocator);
+ else
+ lzma_free(coder->lz.coder, allocator);
+
+ lzma_free(coder, allocator);
+ return;
+}
+
+
extern lzma_ret
-lzma_lz_decoder_reset(lzma_lz_decoder *lz, lzma_allocator *allocator,
- bool (*process)(lzma_coder *restrict coder,
- const uint8_t *restrict in, size_t *restrict in_pos,
- size_t in_size, bool has_safe_buffer),
- size_t history_size, size_t match_max_len)
+lzma_lz_decoder_init(lzma_next_coder *next, lzma_allocator *allocator,
+ const lzma_filter_info *filters,
+ lzma_ret (*lz_init)(lzma_lz_decoder *lz,
+ lzma_allocator *allocator, const void *options,
+ size_t *dict_size))
{
- // Known uncompressed size is used only with LZMA_Alone files so we
- // set it always to unknown by default.
- lz->uncompressed_size = LZMA_VLI_VALUE_UNKNOWN;
-
- // Limit the history size to roughly sane values. This is primarily
- // to prevent integer overflows.
- if (history_size > UINT32_MAX / 2)
- return LZMA_HEADER_ERROR;
-
- // Store the value actually requested. We use it for sanity checks
- // when repeating data from the history buffer.
- lz->requested_size = history_size;
-
- // Avoid tiny history buffer sizes for performance reasons.
- // TODO: Test if this actually helps...
- if (history_size < DICT_SIZE_MIN)
- history_size = DICT_SIZE_MIN;
-
- // The real size of the history buffer is a bit bigger than
- // requested by our caller. This allows us to do some optimizations,
- // which help not only speed but simplicity of the code; specifically,
- // we can make sure that there is always at least match_max_len
- // bytes immediatelly available for writing without a need to wrap
- // the history buffer.
- const size_t dict_real_size = history_size + 2 * match_max_len + 1;
-
- // Reallocate memory if needed.
- if (history_size != lz->size || match_max_len != lz->match_max_len) {
- // Destroy the old buffer.
- lzma_lz_decoder_end(lz, allocator);
-
- lz->size = history_size;
- lz->match_max_len = match_max_len;
- lz->must_flush_pos = history_size + match_max_len + 1;
-
- lz->dict = lzma_alloc(dict_real_size, allocator);
- if (lz->dict == NULL)
+ // Allocate the base structure if it isn't already allocated.
+ if (next->coder == NULL) {
+ next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
+ if (next->coder == NULL)
return LZMA_MEM_ERROR;
+
+ next->code = &lz_decode;
+ next->end = &lz_decoder_end;
+
+ next->coder->dict.buf = NULL;
+ next->coder->dict.size = 0;
+ next->coder->lz = LZMA_LZ_DECODER_INIT;
+ next->coder->next = LZMA_NEXT_CODER_INIT;
}
- // Reset the variables so that lz_get_byte(lz, 0) will return '\0'.
- lz->pos = 0;
- lz->start = 0;
- lz->end = dict_real_size;
- lz->dict[dict_real_size - 1] = 0;
- lz->is_full = false;
- lz->eopm_detected = false;
- lz->next_finished = false;
- lz->this_finished = false;
- lz->temp_size = 0;
-
- // Clean up the temporary buffer to make it very sure that there are
- // no information leaks when multiple steams are decoded with the
- // same decoder structures.
- memzero(lz->temp, LZMA_BUFFER_SIZE);
-
- // Set the process function pointer.
- lz->process = process;
+ // Allocate and initialize the LZ-based decoder. It will also give
+ // us the dictionary size.
+ size_t dict_size;
+ return_if_error(lz_init(&next->coder->lz, allocator,
+ filters[0].options, &dict_size));
+
+ // If the dictionary size is very small, increase it to 4096 bytes.
+ // This is to prevent constant wrapping of the dictionary, which
+ // would slow things down. The downside is that since we don't check
+ // separately for the real dictionary size, we may happily accept
+ // corrupt files.
+ if (dict_size < 4096)
+ dict_size = 4096;
+
+ // Make dictionary size a multipe of 16. Some LZ-based decoders like
+ // LZMA use the lowest bits lzma_dict.pos to know the alignment of the
+ // data. Aligned buffer is also good when memcpying from the
+ // dictionary to the output buffer, since applications are
+ // recommended to give aligned buffers to liblzma.
+ //
+ // Avoid integer overflow. FIXME Should the return value be
+ // LZMA_HEADER_ERROR or LZMA_MEM_ERROR?
+ if (dict_size > SIZE_MAX - 15)
+ return LZMA_MEM_ERROR;
+
+ dict_size = (dict_size + 15) & (SIZE_MAX - 15);
+
+ // Allocate and initialize the dictionary.
+ if (next->coder->dict.size != dict_size) {
+ lzma_free(next->coder->dict.buf, allocator);
+ next->coder->dict.buf = lzma_alloc(dict_size, allocator);
+ if (next->coder->dict.buf == NULL)
+ return LZMA_MEM_ERROR;
- return LZMA_OK;
+ next->coder->dict.size = dict_size;
+ }
+
+ dict_reset(&next->coder->dict);
+
+ // Miscellaneous initializations
+ next->coder->next_finished = false;
+ next->coder->this_finished = false;
+ next->coder->temp.pos = 0;
+ next->coder->temp.size = 0;
+
+ // Initialize the next filter in the chain, if any.
+ return lzma_next_filter_init(&next->coder->next, allocator,
+ filters + 1);
+}
+
+
+extern uint64_t
+lzma_lz_decoder_memusage(size_t dictionary_size)
+{
+ return sizeof(lzma_coder) + (uint64_t)(dictionary_size);
}
extern void
-lzma_lz_decoder_end(lzma_lz_decoder *lz, lzma_allocator *allocator)
+lzma_lz_decoder_uncompressed(lzma_coder *coder, lzma_vli uncompressed_size)
{
- lzma_free(lz->dict, allocator);
- lz->dict = NULL;
- lz->size = 0;
- lz->match_max_len = 0;
- return;
+ coder->lz.set_uncompressed(coder->lz.coder, uncompressed_size);
}
diff --git a/src/liblzma/lz/lz_decoder.h b/src/liblzma/lz/lz_decoder.h
index 1acf9831..d2a77ba4 100644
--- a/src/liblzma/lz/lz_decoder.h
+++ b/src/liblzma/lz/lz_decoder.h
@@ -18,201 +18,215 @@
//
///////////////////////////////////////////////////////////////////////////////
-#ifndef LZMA_LZ_OUT_H
-#define LZMA_LZ_OUT_H
+#ifndef LZMA_LZ_DECODER_H
+#define LZMA_LZ_DECODER_H
#include "common.h"
-/// Get a byte from the history buffer.
-#define lz_get_byte(lz, distance) \
- ((distance) < (lz).pos \
- ? (lz).dict[(lz).pos - (distance) - 1] \
- : (lz).dict[(lz).pos - (distance) - 1 + (lz).end])
-
-
-/// Test if dictionary is empty.
-#define lz_is_empty(lz) \
- ((lz).pos == 0 && !(lz).is_full)
-
-
-#define LZMA_LZ_DECODER_INIT \
- (lzma_lz_decoder){ .dict = NULL, .size = 0, .match_max_len = 0 }
-
-
typedef struct {
- /// Function to do the actual decoding (LZMA or Inflate)
- bool (*process)(lzma_coder *restrict coder, const uint8_t *restrict in,
- size_t *restrict in_pos, size_t size_in,
- bool has_safe_buffer);
+ /// Pointer to the dictionary buffer. It can be an allocated buffer
+ /// internal to liblzma, or it can a be a buffer given by the
+ /// application when in single-call mode (not implemented yet).
+ uint8_t *buf;
- /// Pointer to dictionary (history) buffer.
- /// \note Not 'restrict' because can alias next_out.
- uint8_t *dict;
-
- /// Next write goes to dict[pos].
+ /// Write position in dictionary. The next byte will be written to
+ /// buf[pos].
size_t pos;
- /// Next byte to flush is buffer[start].
- size_t start;
-
- /// First byte to not flush is buffer[end].
- size_t end;
+ /// Indicates how full the dictionary is. This is used by
+ /// dict_is_distance_valid() to detect corrupt files that would
+ /// read beyond the beginning of the dictionary.
+ size_t full;
- /// First position to which data must not be written.
+ /// Write limit
size_t limit;
- /// True if dictionary has needed wrapping.
- bool is_full;
-
- /// True if process() has detected End of Payload Marker.
- bool eopm_detected;
+ /// Size of the dictionary
+ size_t size;
- /// True if the next coder in the chain has returned LZMA_STREAM_END.
- bool next_finished;
+} lzma_dict;
- /// True if the LZ decoder (e.g. LZMA) has detected End of Payload
- /// Marker. This may become true before next_finished becomes true.
- bool this_finished;
- /// When pos >= must_flush_pos, we must not call process().
- size_t must_flush_pos;
+typedef struct {
+ /// Data specific to the LZ-based decoder
+ lzma_coder *coder;
- /// Maximum number of bytes that a single decoding loop inside
- /// process() can produce data into dict. This amount is kept
- /// always available at dict + pos i.e. it is safe to write a byte
- /// to dict[pos + match_max_len - 1].
- size_t match_max_len;
+ /// Function to decode from in[] to *dict
+ lzma_ret (*code)(lzma_coder *restrict coder,
+ lzma_dict *restrict dict, const uint8_t *restrict in,
+ size_t *restrict in_pos, size_t in_size);
- /// Number of bytes allocated to dict.
- size_t size;
+ void (*reset)(lzma_coder *coder, const void *options);
- /// Requested size of the dictionary. This is needed because we avoid
- /// using extremely tiny history buffers.
- size_t requested_size;
+ /// Set the uncompressed size
+ void (*set_uncompressed)(lzma_coder *coder,
+ lzma_vli uncompressed_size);
- /// Uncompressed Size or LZMA_VLI_VALUE_UNKNOWN if unknown.
- lzma_vli uncompressed_size;
+ /// Free allocated resources
+ void (*end)(lzma_coder *coder, lzma_allocator *allocator);
- /// Number of bytes currently in temp[].
- size_t temp_size;
+} lzma_lz_decoder;
- /// Temporary buffer needed when
- /// 1) we cannot make the input buffer completely empty; or
- /// 2) we are not the last filter in the chain.
- uint8_t temp[LZMA_BUFFER_SIZE];
-} lzma_lz_decoder;
+#define LZMA_LZ_DECODER_INIT \
+ (lzma_lz_decoder){ \
+ .coder = NULL, \
+ .code = NULL, \
+ .reset = NULL, \
+ .set_uncompressed = NULL, \
+ .end = NULL, \
+ }
-/////////////////////////
-// Function prototypes //
-/////////////////////////
+extern lzma_ret lzma_lz_decoder_init(lzma_next_coder *next,
+ lzma_allocator *allocator, const lzma_filter_info *filters,
+ lzma_ret (*lz_init)(lzma_lz_decoder *lz,
+ lzma_allocator *allocator, const void *options,
+ size_t *dict_size));
-extern lzma_ret lzma_lz_decoder_reset(lzma_lz_decoder *lz,
- lzma_allocator *allocator, bool (*process)(
- lzma_coder *restrict coder, const uint8_t *restrict in,
- size_t *restrict in_pos, size_t in_size,
- bool has_safe_buffer),
- size_t history_size, size_t match_max_len);
+extern uint64_t lzma_lz_decoder_memusage(size_t dictionary_size);
-extern lzma_ret lzma_lz_decode(lzma_coder *coder, lzma_allocator *allocator,
- const uint8_t *restrict in, size_t *restrict in_pos,
- size_t in_size, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size,
- lzma_action action);
+extern void lzma_lz_decoder_uncompressed(
+ lzma_coder *coder, lzma_vli uncompressed_size);
-/// Deallocates the history buffer if one exists.
-extern void lzma_lz_decoder_end(
- lzma_lz_decoder *lz, lzma_allocator *allocator);
//////////////////////
// Inline functions //
//////////////////////
-// Repeat a block of data from the history. Because memcpy() is faster
-// than copying byte by byte in a loop, the copying process gets split
-// into three cases:
-// 1. distance < length
-// Source and target areas overlap, thus we can't use memcpy()
-// (nor memmove()) safely.
-// TODO: If this is common enough, it might be worth optimizing this
-// more e.g. by checking if distance > sizeof(uint8_t*) and using
-// memcpy in small chunks.
-// 2. distance < pos
-// This is the easiest and the fastest case. The block being copied
-// is a contiguous piece in the history buffer. The buffer offset
-// doesn't need wrapping.
-// 3. distance >= pos
-// We need to wrap the position, because otherwise we would try copying
-// behind the first byte of the allocated buffer. It is possible that
-// the block is fragmeneted into two pieces, thus we might need to call
-// memcpy() twice.
-// NOTE: The function using this macro must ensure that length is positive
-// and that distance is FIXME
+/// Get a byte from the history buffer.
+static inline uint8_t
+dict_get(const lzma_dict *const dict, const uint32_t distance)
+{
+ return dict->buf[dict->pos - distance - 1
+ + (distance < dict->pos ? 0 : dict->size)];
+}
+
+
+/// Test if dictionary is empty.
+static inline bool
+dict_is_empty(const lzma_dict *const dict)
+{
+ return dict->full == 0;
+}
+
+
+/// Validate the match distance
+static inline bool
+dict_is_distance_valid(const lzma_dict *const dict, const size_t distance)
+{
+ return dict->full >= distance;
+}
+
+
+/// Repeat *len bytes at distance.
static inline bool
-lzma_lz_out_repeat(lzma_lz_decoder *lz, size_t distance, size_t length)
+dict_repeat(lzma_dict *dict, uint32_t distance, uint32_t *len)
{
- // Validate offset of the block to be repeated. It doesn't
- // make sense to copy data behind the beginning of the stream.
- // Leaving this check away would lead to a security problem,
- // in which e.g. the data of the previously decoded file(s)
- // would be leaked (or whatever happens to be in unused
- // part of the dictionary buffer).
- if (unlikely(distance >= lz->pos && !lz->is_full))
- return false;
-
- // It also doesn't make sense to copy data farer than
- // the dictionary size.
- if (unlikely(distance >= lz->requested_size))
- return false;
-
- // The caller must have checked these!
- assert(distance <= lz->size);
- assert(length > 0);
- assert(length <= lz->match_max_len);
-
- // Copy the amount of data requested by the decoder.
- if (distance < length) {
+ // Don't write past the end of the dictionary.
+ const size_t dict_avail = dict->limit - dict->pos;
+ uint32_t left = MIN(dict_avail, *len);
+ *len -= left;
+
+ // Repeat a block of data from the history. Because memcpy() is faster
+ // than copying byte by byte in a loop, the copying process gets split
+ // into three cases.
+ if (distance < left) {
// Source and target areas overlap, thus we can't use
- // memcpy() nor even memmove() safely. :-(
- // TODO: Copying byte by byte is slow. It might be
- // worth optimizing this more if this case is common.
+ // memcpy() nor even memmove() safely.
do {
- lz->dict[lz->pos] = lz_get_byte(*lz, distance);
- ++lz->pos;
- } while (--length > 0);
+ dict->buf[dict->pos] = dict_get(dict, distance);
+ ++dict->pos;
+ } while (--left > 0);
- } else if (distance < lz->pos) {
+ } else if (distance < dict->pos) {
// The easiest and fastest case
- memcpy(lz->dict + lz->pos,
- lz->dict + lz->pos - distance - 1,
- length);
- lz->pos += length;
+ memcpy(dict->buf + dict->pos,
+ dict->buf + dict->pos - distance - 1,
+ left);
+ dict->pos += left;
} else {
// The bigger the dictionary, the more rare this
// case occurs. We need to "wrap" the dict, thus
// we might need two memcpy() to copy all the data.
- assert(lz->is_full);
- const uint32_t copy_pos = lz->pos - distance - 1 + lz->end;
- uint32_t copy_size = lz->end - copy_pos;
+ assert(dict->full == dict->size);
+ const uint32_t copy_pos
+ = dict->pos - distance - 1 + dict->size;
+ uint32_t copy_size = dict->size - copy_pos;
- if (copy_size < length) {
- memcpy(lz->dict + lz->pos, lz->dict + copy_pos,
+ if (copy_size < left) {
+ memcpy(dict->buf + dict->pos, dict->buf + copy_pos,
copy_size);
- lz->pos += copy_size;
- copy_size = length - copy_size;
- memcpy(lz->dict + lz->pos, lz->dict, copy_size);
- lz->pos += copy_size;
+ dict->pos += copy_size;
+ copy_size = left - copy_size;
+ memcpy(dict->buf + dict->pos, dict->buf, copy_size);
+ dict->pos += copy_size;
} else {
- memcpy(lz->dict + lz->pos, lz->dict + copy_pos,
- length);
- lz->pos += length;
+ memcpy(dict->buf + dict->pos, dict->buf + copy_pos,
+ left);
+ dict->pos += left;
}
}
- return true;
+ // Update how full the dictionary is.
+ if (dict->full < dict->pos)
+ dict->full = dict->pos;
+
+ return unlikely(*len != 0);
+}
+
+
+/// Puts one byte into the dictionary. Returns true if the dictionary was
+/// already full and the byte couldn't be added.
+static inline bool
+dict_put(lzma_dict *dict, uint8_t byte)
+{
+ if (unlikely(dict->pos == dict->limit))
+ return true;
+
+ dict->buf[dict->pos++] = byte;
+
+ if (dict->pos > dict->full)
+ dict->full = dict->pos;
+
+ return false;
+}
+
+
+/// Copies arbitrary amount of data into the dictionary.
+static inline void
+dict_write(lzma_dict *restrict dict, const uint8_t *restrict in,
+ size_t *restrict in_pos, size_t in_size,
+ size_t *restrict left)
+{
+ // NOTE: If we are being given more data than the size of the
+ // dictionary, it could be possible to optimize the LZ decoder
+ // so that not everything needs to go through the dictionary.
+ // This shouldn't be very common thing in practice though, and
+ // the slowdown of one extra memcpy() isn't bad compared to how
+ // much time it would have taken if the data were compressed.
+
+ if (in_size - *in_pos > *left)
+ in_size = *in_pos + *left;
+
+ *left -= lzma_bufcpy(in, in_pos, in_size,
+ dict->buf, &dict->pos, dict->limit);
+
+ if (dict->pos > dict->full)
+ dict->full = dict->pos;
+
+ return;
+}
+
+
+static inline void
+dict_reset(lzma_dict *dict)
+{
+ dict->pos = 0;
+ dict->full = 0;
+ dict->buf[dict->size - 1] = '\0';
}
#endif
diff --git a/src/liblzma/lz/lz_encoder.c b/src/liblzma/lz/lz_encoder.c
index 82b9103f..d5f84826 100644
--- a/src/liblzma/lz/lz_encoder.c
+++ b/src/liblzma/lz/lz_encoder.c
@@ -3,8 +3,8 @@
/// \file lz_encoder.c
/// \brief LZ in window
//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
+// Copyright (C) 1999-2008 Igor Pavlov
+// Copyright (C) 2007-2008 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@@ -18,496 +18,492 @@
//
///////////////////////////////////////////////////////////////////////////////
-#include "lz_encoder_private.h"
+#include "lz_encoder.h"
+#include "lz_encoder_hash.h"
-// Hash Chains
-#ifdef HAVE_HC3
-# include "hc3.h"
-#endif
-#ifdef HAVE_HC4
-# include "hc4.h"
-#endif
-// Binary Trees
-#ifdef HAVE_BT2
-# include "bt2.h"
-#endif
-#ifdef HAVE_BT3
-# include "bt3.h"
-#endif
-#ifdef HAVE_BT4
-# include "bt4.h"
-#endif
+struct lzma_coder_s {
+ /// LZ-based encoder e.g. LZMA
+ lzma_lz_encoder lz;
+ /// History buffer and match finder
+ lzma_mf mf;
-/// This is needed in two places so provide a macro.
-#define get_cyclic_buffer_size(history_size) ((history_size) + 1)
+ /// Next coder in the chain
+ lzma_next_coder next;
+};
-/// Calculate certain match finder properties and validate the calculated
-/// values. This is as its own function, because *num_items is needed to
-/// calculate memory requirements in common/memory.c.
-extern bool
-lzma_lz_encoder_hash_properties(lzma_match_finder match_finder,
- uint32_t history_size, uint32_t *restrict hash_mask,
- uint32_t *restrict hash_size_sum, uint32_t *restrict num_items)
+/// \brief Moves the data in the input window to free space for new data
+///
+/// mf->buffer is a sliding input window, which keeps mf->keep_size_before
+/// bytes of input history available all the time. Now and then we need to
+/// "slide" the buffer to make space for the new data to the end of the
+/// buffer. At the same time, data older than keep_size_before is dropped.
+///
+static void
+move_window(lzma_mf *mf)
{
- uint32_t fix_hash_size;
- uint32_t sons;
+ // Align the move to a multiple of 16 bytes. Some LZ-based encoders
+ // like LZMA use the lowest bits of mf->read_pos to know the
+ // alignment of the uncompressed data. We also get better speed
+ // for memmove() with aligned buffers.
+ assert(mf->read_pos > mf->keep_size_before);
+ const uint32_t move_offset
+ = (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
- switch (match_finder) {
-#ifdef HAVE_HC3
- case LZMA_MF_HC3:
- fix_hash_size = LZMA_HC3_FIX_HASH_SIZE;
- sons = 1;
- break;
-#endif
-#ifdef HAVE_HC4
- case LZMA_MF_HC4:
- fix_hash_size = LZMA_HC4_FIX_HASH_SIZE;
- sons = 1;
- break;
-#endif
-#ifdef HAVE_BT2
- case LZMA_MF_BT2:
- fix_hash_size = LZMA_BT2_FIX_HASH_SIZE;
- sons = 2;
- break;
-#endif
-#ifdef HAVE_BT3
- case LZMA_MF_BT3:
- fix_hash_size = LZMA_BT3_FIX_HASH_SIZE;
- sons = 2;
- break;
-#endif
-#ifdef HAVE_BT4
- case LZMA_MF_BT4:
- fix_hash_size = LZMA_BT4_FIX_HASH_SIZE;
- sons = 2;
- break;
-#endif
- default:
- return true;
- }
+ assert(mf->write_pos > move_offset);
+ const size_t move_size = mf->write_pos - move_offset;
- uint32_t hs;
+ assert(move_offset + move_size <= mf->size);
-#ifdef HAVE_LZMA_BT2
- if (match_finder == LZMA_BT2) {
- // NOTE: hash_mask is not used by the BT2 match finder,
- // but it is initialized just in case.
- hs = LZMA_BT2_HASH_SIZE;
- *hash_mask = 0;
- } else
-#endif
- {
- hs = history_size - 1;
- hs |= (hs >> 1);
- hs |= (hs >> 2);
- hs |= (hs >> 4);
- hs |= (hs >> 8);
- hs >>= 1;
- hs |= 0xFFFF;
+ memmove(mf->buffer, mf->buffer + move_offset, move_size);
- if (hs > (UINT32_C(1) << 24)) {
- if (match_finder == LZMA_MF_HC4
- || match_finder == LZMA_MF_BT4)
- hs >>= 1;
- else
- hs = (1 << 24) - 1;
- }
+ mf->offset += move_offset;
+ mf->read_pos -= move_offset;
+ mf->read_limit -= move_offset;
+ mf->write_pos -= move_offset;
+
+ return;
+}
- *hash_mask = hs;
- ++hs;
- }
- *hash_size_sum = hs + fix_hash_size;
+/// \brief Tries to fill the input window (mf->buffer)
+///
+/// If we are the last encoder in the chain, our input data is in in[].
+/// Otherwise we call the next filter in the chain to process in[] and
+/// write its output to mf->buffer.
+///
+/// This function must not be called once it has returned LZMA_STREAM_END.
+///
+static lzma_ret
+fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
+ size_t *in_pos, size_t in_size, lzma_action action)
+{
+ assert(coder->mf.read_pos <= coder->mf.write_pos);
- *num_items = *hash_size_sum
- + get_cyclic_buffer_size(history_size) * sons;
+ // Move the sliding window if needed.
+ if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
+ move_window(&coder->mf);
- return false;
-}
+ size_t in_used;
+ lzma_ret ret;
+ if (coder->next.code == NULL) {
+ // Not using a filter, simply memcpy() as much as possible.
+ in_used = lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
+ &coder->mf.write_pos, coder->mf.size);
+ ret = action != LZMA_RUN && *in_pos == in_size
+ ? LZMA_STREAM_END : LZMA_OK;
-extern lzma_ret
-lzma_lz_encoder_reset(lzma_lz_encoder *lz, lzma_allocator *allocator,
- bool (*process)(lzma_coder *coder, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size),
- size_t history_size, size_t additional_buffer_before,
- size_t match_max_len, size_t additional_buffer_after,
- lzma_match_finder match_finder, uint32_t match_finder_cycles,
- const uint8_t *preset_dictionary,
- size_t preset_dictionary_size)
-{
- lz->sequence = SEQ_RUN;
+ } else {
+ const size_t in_start = *in_pos;
+ ret = coder->next.code(coder->next.coder, allocator,
+ in, in_pos, in_size,
+ coder->mf.buffer, &coder->mf.write_pos,
+ coder->mf.size, action);
+ in_used = *in_pos - in_start;
+ }
- ///////////////
- // In Window //
- ///////////////
+ // If end of stream has been reached or flushing completed, we allow
+ // the encoder to process all the input (that is, read_pos is allowed
+ // to reach write_pos). Otherwise we keep keep_size_after bytes
+ // available as prebuffer.
+ if (ret == LZMA_STREAM_END) {
+ assert(*in_pos == in_size);
+ ret = LZMA_OK;
+ coder->mf.action = action;
+ coder->mf.read_limit = coder->mf.write_pos;
- // Validate history size.
- if (history_size < LZMA_DICTIONARY_SIZE_MIN
- || history_size > LZMA_DICTIONARY_SIZE_MAX) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_HEADER_ERROR;
+ } else if (coder->mf.write_pos > coder->mf.keep_size_after) {
+ // This needs to be done conditionally, because if we got
+ // only little new input, there may be too little input
+ // to do any encoding yet.
+ coder->mf.read_limit = coder->mf.write_pos
+ - coder->mf.keep_size_after;
}
- assert(history_size <= MAX_VAL_FOR_NORMALIZE - 256);
- assert(LZMA_DICTIONARY_SIZE_MAX <= MAX_VAL_FOR_NORMALIZE - 256);
+ // Restart the match finder after finished LZMA_SYNC_FLUSH.
+ if (coder->mf.pending > 0
+ && coder->mf.read_pos < coder->mf.read_limit) {
+ // Match finder may update coder->pending and expects it to
+ // start from zero, so use a temporary variable.
+ const size_t pending = coder->mf.pending;
+ coder->mf.pending = 0;
- // Calculate the size of the history buffer to allocate.
- // TODO: Get a reason for magic constant of 256.
- const size_t size_reserv = (history_size + additional_buffer_before
- + match_max_len + additional_buffer_after) / 2 + 256;
+ // Rewind read_pos so that the match finder can hash
+ // the pending bytes.
+ assert(coder->mf.read_pos >= pending);
+ coder->mf.read_pos -= pending;
- lz->keep_size_before = history_size + additional_buffer_before;
- lz->keep_size_after = match_max_len + additional_buffer_after;
+ // Call the skip function directly instead of using
+ // lz_dict_skip(), since we don't want to touch
+ // mf->read_ahead.
+ coder->mf.skip(&coder->mf, pending);
+ }
- const size_t buffer_size = lz->keep_size_before + lz->keep_size_after
- + size_reserv;
+ return ret;
+}
- // Allocate history buffer if its size has changed.
- if (buffer_size != lz->size) {
- lzma_free(lz->buffer, allocator);
- lz->buffer = lzma_alloc(buffer_size, allocator);
- if (lz->buffer == NULL) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_MEM_ERROR;
+
+static lzma_ret
+lz_encode(lzma_coder *coder, lzma_allocator *allocator,
+ const uint8_t *restrict in, size_t *restrict in_pos,
+ size_t in_size,
+ uint8_t *restrict out, size_t *restrict out_pos,
+ size_t out_size, lzma_action action)
+{
+ while (*out_pos < out_size
+ && (*in_pos < in_size || action != LZMA_RUN)) {
+ // Read more data to coder->mf.buffer if needed.
+ if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
+ >= coder->mf.read_limit)
+ return_if_error(fill_window(coder, allocator,
+ in, in_pos, in_size, action));
+
+ // Encode
+ const lzma_ret ret = coder->lz.code(coder->lz.coder,
+ &coder->mf, out, out_pos, out_size);
+ if (ret != LZMA_OK) {
+ // Setting this to LZMA_RUN for cases when we are
+ // flushing. It doesn't matter when finishing or if
+ // an error occurred.
+ coder->mf.action = LZMA_RUN;
+ return ret;
}
}
- // Allocation successful. Store the new size.
- lz->size = buffer_size;
+ return LZMA_OK;
+}
+
+
+static bool
+lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator,
+ const lzma_lz_options *lz_options)
+{
+ if (lz_options->dictionary_size < LZMA_DICTIONARY_SIZE_MIN
+ || lz_options->dictionary_size
+ > LZMA_DICTIONARY_SIZE_MAX
+ || lz_options->find_len_max
+ > lz_options->match_len_max)
+ return true;
+
+ mf->keep_size_before = lz_options->before_size
+ + lz_options->dictionary_size;
- // Reset in window variables.
- lz->offset = 0;
- lz->read_pos = 0;
- lz->read_limit = 0;
- lz->write_pos = 0;
- lz->pending = 0;
+ mf->keep_size_after = lz_options->after_size
+ + lz_options->match_len_max;
+ // To avoid constant memmove()s, allocate some extra space. Since
+ // memmove()s become more expensive when the size of the buffer
+ // increases, we reserve more space when a large dictionary is
+ // used to make the memmove() calls rarer.
+ uint32_t reserve = lz_options->dictionary_size / 2;
+ if (reserve > (UINT32_C(1) << 30))
+ reserve /= 2;
- //////////////////
- // Match Finder //
- //////////////////
+ reserve += (lz_options->before_size + lz_options->match_len_max
+ + lz_options->after_size) / 2 + (UINT32_C(1) << 19);
- // Validate match_finder, set function pointers and a few match
- // finder specific variables.
- switch (match_finder) {
-#ifdef HAVE_HC3
+ const uint32_t old_size = mf->size;
+ mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
+
+ // FIXME Integer overflows
+
+ // Deallocate the old history buffer if it exists but has different
+ // size than what is needed now.
+ if (mf->buffer != NULL && old_size != mf->size) {
+ lzma_free(mf->buffer, allocator);
+ mf->buffer = NULL;
+ }
+
+ // Match finder options
+ mf->match_len_max = lz_options->match_len_max;
+ mf->find_len_max = lz_options->find_len_max;
+ mf->cyclic_buffer_size = lz_options->dictionary_size + 1;
+
+ // Validate the match finder ID and setup the function pointers.
+ switch (lz_options->match_finder) {
+#ifdef HAVE_MF_HC3
case LZMA_MF_HC3:
- lz->get_matches = &lzma_hc3_get_matches;
- lz->skip = &lzma_hc3_skip;
- lz->cut_value = 8 + (match_max_len >> 2);
+ mf->find = &lzma_mf_hc3_find;
+ mf->skip = &lzma_mf_hc3_skip;
break;
#endif
-#ifdef HAVE_HC4
+#ifdef HAVE_MF_HC4
case LZMA_MF_HC4:
- lz->get_matches = &lzma_hc4_get_matches;
- lz->skip = &lzma_hc4_skip;
- lz->cut_value = 8 + (match_max_len >> 2);
+ mf->find = &lzma_mf_hc4_find;
+ mf->skip = &lzma_mf_hc4_skip;
break;
#endif
-#ifdef HAVE_BT2
+#ifdef HAVE_MF_BT2
case LZMA_MF_BT2:
- lz->get_matches = &lzma_bt2_get_matches;
- lz->skip = &lzma_bt2_skip;
- lz->cut_value = 16 + (match_max_len >> 1);
+ mf->find = &lzma_mf_bt2_find;
+ mf->skip = &lzma_mf_bt2_skip;
break;
#endif
-#ifdef HAVE_BT3
+#ifdef HAVE_MF_BT3
case LZMA_MF_BT3:
- lz->get_matches = &lzma_bt3_get_matches;
- lz->skip = &lzma_bt3_skip;
- lz->cut_value = 16 + (match_max_len >> 1);
+ mf->find = &lzma_mf_bt3_find;
+ mf->skip = &lzma_mf_bt3_skip;
break;
#endif
-#ifdef HAVE_BT4
+#ifdef HAVE_MF_BT4
case LZMA_MF_BT4:
- lz->get_matches = &lzma_bt4_get_matches;
- lz->skip = &lzma_bt4_skip;
- lz->cut_value = 16 + (match_max_len >> 1);
+ mf->find = &lzma_mf_bt4_find;
+ mf->skip = &lzma_mf_bt4_skip;
break;
#endif
+
default:
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_HEADER_ERROR;
+ return true;
}
- // Check if we have been requested to use a non-default cut_value.
- if (match_finder_cycles > 0)
- lz->cut_value = match_finder_cycles;
-
- lz->match_max_len = match_max_len;
- lz->cyclic_buffer_size = get_cyclic_buffer_size(history_size);
+ // Calculate the sizes of mf->hash and mf->son.
+ const uint32_t hash_bytes = lz_options->match_finder & 0x0F;
+ const bool is_bt = (lz_options->match_finder & 0x10) != 0;
+ uint32_t hs;
- uint32_t hash_size_sum;
- uint32_t num_items;
- if (lzma_lz_encoder_hash_properties(match_finder, history_size,
- &lz->hash_mask, &hash_size_sum, &num_items)) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_HEADER_ERROR;
- }
+ if (hash_bytes == 2) {
+ hs = 0xFFFF;
+ } else {
+ // Round dictionary size up to the next 2^n - 1 so it can
+ // be used as a hash mask.
+ hs = lz_options->dictionary_size - 1;
+ hs |= hs >> 1;
+ hs |= hs >> 2;
+ hs |= hs >> 4;
+ hs |= hs >> 8;
+ hs >>= 1;
+ hs |= 0xFFFF;
- if (num_items != lz->num_items) {
-#if UINT32_MAX >= SIZE_MAX / 4
- // Check for integer overflow. (Huge dictionaries are not
- // possible on 32-bit CPU.)
- if (num_items > SIZE_MAX / sizeof(uint32_t)) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_MEM_ERROR;
+ if (hs > (UINT32_C(1) << 24)) {
+ if (hash_bytes == 3)
+ hs = (UINT32_C(1) << 24) - 1;
+ else
+ hs >>= 1;
}
-#endif
-
- const size_t size_in_bytes
- = (size_t)(num_items) * sizeof(uint32_t);
+ }
- lzma_free(lz->hash, allocator);
- lz->hash = lzma_alloc(size_in_bytes, allocator);
- if (lz->hash == NULL) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_MEM_ERROR;
- }
+ mf->hash_mask = hs;
+
+ ++hs;
+ if (hash_bytes > 2)
+ hs += HASH_2_SIZE;
+ if (hash_bytes > 3)
+ hs += HASH_3_SIZE;
+/*
+ No match finder uses this at the moment.
+ if (mf->hash_bytes > 4)
+ hs += HASH_4_SIZE;
+*/
+
+ const uint32_t old_count = mf->hash_size_sum + mf->sons_count;
+ mf->hash_size_sum = hs;
+ mf->sons_count = mf->cyclic_buffer_size;
+ if (is_bt)
+ mf->sons_count *= 2;
+
+ const uint32_t new_count = mf->hash_size_sum + mf->sons_count;
+
+ // Deallocate the old hash array if it exists and has different size
+ // than what is needed now.
+ if (mf->hash != NULL && old_count != new_count) {
+ lzma_free(mf->hash, allocator);
+ mf->hash = NULL;
+ }
- lz->num_items = num_items;
+ // Maximum number of match finder cycles
+ mf->loops = lz_options->match_finder_cycles;
+ if (mf->loops == 0) {
+ mf->loops = 16 + (lz_options->find_len_max / 2);
+ if (!is_bt)
+ mf->loops /= 2;
}
- lz->son = lz->hash + hash_size_sum;
+ return false;
+}
- // Reset the hash table to empty hash values.
- {
- uint32_t *restrict items = lz->hash;
- for (uint32_t i = 0; i < hash_size_sum; ++i)
- items[i] = EMPTY_HASH_VALUE;
+static bool
+lz_encoder_init(lzma_mf *mf, lzma_allocator *allocator)
+{
+ // Allocate the history buffer.
+ if (mf->buffer == NULL) {
+ mf->buffer = lzma_alloc(mf->size, allocator);
+ if (mf->buffer == NULL)
+ return true;
}
- lz->cyclic_buffer_pos = 0;
+ // Use cyclic_buffer_size as initial mf->offset. This allows
+ // avoiding a few branches in the match finders. The downside is
+ // that match finder needs to be normalized more often, which may
+ // hurt performance with huge dictionaries.
+ mf->offset = mf->cyclic_buffer_size;
+ mf->read_pos = 0;
+ mf->read_ahead = 0;
+ mf->read_limit = 0;
+ mf->write_pos = 0;
+ mf->pending = 0;
- // Because zero is used as empty hash value, make the first byte
- // appear at buffer[1 - offset].
- ++lz->offset;
+ // Allocate match finder's hash array.
+ const size_t alloc_count = mf->hash_size_sum + mf->sons_count;
- // If we are using a preset dictionary, read it now.
- // TODO: This isn't implemented yet so return LZMA_HEADER_ERROR.
- if (preset_dictionary != NULL && preset_dictionary_size > 0) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_HEADER_ERROR;
+#if UINT32_MAX >= SIZE_MAX / 4
+ // Check for integer overflow. (Huge dictionaries are not
+ // possible on 32-bit CPU.)
+ if (alloc_count > SIZE_MAX / sizeof(uint32_t))
+ return true;
+#endif
+
+ if (mf->hash == NULL) {
+ mf->hash = lzma_alloc(alloc_count * sizeof(uint32_t),
+ allocator);
+ if (mf->hash == NULL)
+ return true;
}
- // Set the process function pointer.
- lz->process = process;
+ mf->son = mf->hash + mf->hash_size_sum;
+ mf->cyclic_buffer_pos = 0;
+
+ // Initialize the hash table. Since EMPTY_HASH_VALUE is zero, we
+ // can use memset().
+/*
+ for (uint32_t i = 0; i < hash_size_sum; ++i)
+ mf->hash[i] = EMPTY_HASH_VALUE;
+*/
+ memzero(mf->hash, (size_t)(mf->hash_size_sum) * sizeof(uint32_t));
+
+ // We don't need to initialize mf->son, but not doing that will
+ // make Valgrind complain in normalization (see normalize() in
+ // lz_encoder_mf.c).
+ //
+ // Skipping this initialization is *very* good when big dictionary is
+ // used but only small amount of data gets actually compressed: most
+ // of the mf->hash won't get actually allocated by the kernel, so
+ // we avoid wasting RAM and improve initialization speed a lot.
+ //memzero(mf->son, (size_t)(mf->sons_count) * sizeof(uint32_t));
+
+ mf->action = LZMA_RUN;
- return LZMA_OK;
+ return false;
}
-extern void
-lzma_lz_encoder_end(lzma_lz_encoder *lz, lzma_allocator *allocator)
+extern uint64_t
+lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
{
- lzma_free(lz->hash, allocator);
- lz->hash = NULL;
- lz->num_items = 0;
-
- lzma_free(lz->buffer, allocator);
- lz->buffer = NULL;
- lz->size = 0;
-
- return;
+ // Old buffers must not exist when calling lz_encoder_prepare().
+ lzma_mf mf = {
+ .buffer = NULL,
+ .hash = NULL,
+ };
+
+ // Setup the size information into mf.
+ if (lz_encoder_prepare(&mf, NULL, lz_options))
+ return UINT64_MAX;
+
+ // Calculate the memory usage.
+ return (uint64_t)(mf.hash_size_sum + mf.sons_count)
+ * sizeof(uint32_t)
+ + (uint64_t)(mf.size) + sizeof(lzma_coder);
}
-/// \brief Moves the data in the input window to free space for new data
-///
-/// lz->buffer is a sliding input window, which keeps lz->keep_size_before
-/// bytes of input history available all the time. Now and then we need to
-/// "slide" the buffer to make space for the new data to the end of the
-/// buffer. At the same time, data older than keep_size_before is dropped.
-///
static void
-move_window(lzma_lz_encoder *lz)
+lz_encoder_end(lzma_coder *coder, lzma_allocator *allocator)
{
- // buffer[move_offset] will become buffer[0].
- assert(lz->read_pos > lz->keep_size_after);
- size_t move_offset = lz->read_pos - lz->keep_size_before;
-
- // We need one additional byte, since move_pos() moves on 1 byte.
- // TODO: Clean up? At least document more.
- if (move_offset > 0)
- --move_offset;
-
- assert(lz->write_pos > move_offset);
- const size_t move_size = lz->write_pos - move_offset;
+ lzma_next_end(&coder->next, allocator);
- assert(move_offset + move_size <= lz->size);
+ lzma_free(coder->mf.hash, allocator);
+ lzma_free(coder->mf.buffer, allocator);
- memmove(lz->buffer, lz->buffer + move_offset, move_size);
-
- lz->offset += move_offset;
- lz->read_pos -= move_offset;
- lz->read_limit -= move_offset;
- lz->write_pos -= move_offset;
+ if (coder->lz.end != NULL)
+ coder->lz.end(coder->lz.coder, allocator);
+ else
+ lzma_free(coder->lz.coder, allocator);
+ lzma_free(coder, allocator);
return;
}
-/// \brief Tries to fill the input window (lz->buffer)
-///
-/// If we are the last encoder in the chain, our input data is in in[].
-/// Otherwise we call the next filter in the chain to process in[] and
-/// write its output to lz->buffer.
-///
-/// This function must not be called once it has returned LZMA_STREAM_END.
-///
-static lzma_ret
-fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
- size_t *in_pos, size_t in_size, lzma_action action)
+extern lzma_ret
+lzma_lz_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
+ const lzma_filter_info *filters,
+ lzma_ret (*lz_init)(lzma_lz_encoder *lz,
+ lzma_allocator *allocator, const void *options,
+ lzma_lz_options *lz_options))
{
- assert(coder->lz.read_pos <= coder->lz.write_pos);
+ // Allocate and initialize the base data structure.
+ if (next->coder == NULL) {
+ next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
+ if (next->coder == NULL)
+ return LZMA_MEM_ERROR;
- // Move the sliding window if needed.
- if (coder->lz.read_pos >= coder->lz.size - coder->lz.keep_size_after)
- move_window(&coder->lz);
+ next->code = &lz_encode;
+ next->end = &lz_encoder_end;
- size_t in_used;
- lzma_ret ret;
- if (coder->next.code == NULL) {
- // Not using a filter, simply memcpy() as much as possible.
- in_used = bufcpy(in, in_pos, in_size, coder->lz.buffer,
- &coder->lz.write_pos, coder->lz.size);
+ next->coder->lz.coder = NULL;
+ next->coder->lz.code = NULL;
+ next->coder->lz.end = NULL;
- if (action != LZMA_RUN && *in_pos == in_size)
- ret = LZMA_STREAM_END;
- else
- ret = LZMA_OK;
+ next->coder->mf.buffer = NULL;
+ next->coder->mf.hash = NULL;
- } else {
- const size_t in_start = *in_pos;
- ret = coder->next.code(coder->next.coder, allocator,
- in, in_pos, in_size,
- coder->lz.buffer, &coder->lz.write_pos,
- coder->lz.size, action);
- in_used = *in_pos - in_start;
+ next->coder->next = LZMA_NEXT_CODER_INIT;
}
- // If end of stream has been reached or flushing completed, we allow
- // the encoder to process all the input (that is, read_pos is allowed
- // to reach write_pos). Otherwise we keep keep_size_after bytes
- // available as prebuffer.
- if (ret == LZMA_STREAM_END) {
- assert(*in_pos == in_size);
- coder->lz.read_limit = coder->lz.write_pos;
- ret = LZMA_OK;
+ // Initialize the LZ-based encoder.
+ lzma_lz_options lz_options;
+ return_if_error(lz_init(&next->coder->lz, allocator,
+ filters[0].options, &lz_options));
- switch (action) {
- case LZMA_SYNC_FLUSH:
- coder->lz.sequence = SEQ_FLUSH;
- break;
-
- case LZMA_FINISH:
- coder->lz.sequence = SEQ_FINISH;
- break;
-
- default:
- assert(0);
- ret = LZMA_PROG_ERROR;
- break;
- }
-
- } else if (coder->lz.write_pos > coder->lz.keep_size_after) {
- // This needs to be done conditionally, because if we got
- // only little new input, there may be too little input
- // to do any encoding yet.
- coder->lz.read_limit = coder->lz.write_pos
- - coder->lz.keep_size_after;
- }
-
- // Restart the match finder after finished LZMA_SYNC_FLUSH.
- if (coder->lz.pending > 0
- && coder->lz.read_pos < coder->lz.read_limit) {
- // Match finder may update coder->pending and expects it to
- // start from zero, so use a temporary variable.
- const size_t pending = coder->lz.pending;
- coder->lz.pending = 0;
+ // Setup the size information into next->coder->mf and deallocate
+ // old buffers if they have wrong size.
+ if (lz_encoder_prepare(&next->coder->mf, allocator, &lz_options))
+ return LZMA_HEADER_ERROR;
- // Rewind read_pos so that the match finder can hash
- // the pending bytes.
- assert(coder->lz.read_pos >= pending);
- coder->lz.read_pos -= pending;
- coder->lz.skip(&coder->lz, pending);
- }
+ // Allocate new buffers if needed, and do the rest of
+ // the initialization.
+ if (lz_encoder_init(&next->coder->mf, allocator))
+ return LZMA_MEM_ERROR;
- return ret;
+ // Initialize the next filter in the chain, if any.
+ return lzma_next_filter_init(&next->coder->next, allocator,
+ filters + 1);
}
-extern lzma_ret
-lzma_lz_encode(lzma_coder *coder, lzma_allocator *allocator,
- const uint8_t *restrict in, size_t *restrict in_pos,
- size_t in_size,
- uint8_t *restrict out, size_t *restrict out_pos,
- size_t out_size, lzma_action action)
+extern LZMA_API lzma_bool
+lzma_mf_is_supported(lzma_match_finder mf)
{
- while (*out_pos < out_size
- && (*in_pos < in_size || action != LZMA_RUN)) {
- // Read more data to coder->lz.buffer if needed.
- if (coder->lz.sequence == SEQ_RUN
- && coder->lz.read_pos >= coder->lz.read_limit)
- return_if_error(fill_window(coder, allocator,
- in, in_pos, in_size, action));
+ bool ret = false;
- // Encode
- if (coder->lz.process(coder, out, out_pos, out_size)) {
- // Setting this to SEQ_RUN for cases when we are
- // flushing. It doesn't matter when finishing.
- coder->lz.sequence = SEQ_RUN;
- return action != LZMA_RUN ? LZMA_STREAM_END : LZMA_OK;
- }
- }
+#ifdef HAVE_MF_HC3
+ if (mf == LZMA_MF_HC3)
+ ret = true;
+#endif
- return LZMA_OK;
-}
+#ifdef HAVE_MF_HC4
+ if (mf == LZMA_MF_HC4)
+ ret = true;
+#endif
+#ifdef HAVE_MF_BT2
+ if (mf == LZMA_MF_BT2)
+ ret = true;
+#endif
-/// \brief Normalizes hash values
-///
-/// lzma_lz_normalize is called when lz->pos hits MAX_VAL_FOR_NORMALIZE,
-/// which currently happens once every 2 GiB of input data (to be exact,
-/// after the first 2 GiB it happens once every 2 GiB minus dictionary_size
-/// bytes). lz->pos is incremented by lzma_lz_move_pos().
-///
-/// lz->hash contains big amount of offsets relative to lz->buffer.
-/// The offsets are stored as uint32_t, which is the only reasonable
-/// datatype for these offsets; uint64_t would waste far too much RAM
-/// and uint16_t would limit the dictionary to 64 KiB (far too small).
-///
-/// When compressing files over 2 GiB, lz->buffer needs to be moved forward
-/// to avoid integer overflows. We scan the lz->hash array and fix every
-/// value to match the updated lz->buffer.
-extern void
-lzma_lz_encoder_normalize(lzma_lz_encoder *lz)
-{
- const uint32_t subvalue = lz->read_pos - lz->cyclic_buffer_size;
- assert(subvalue <= INT32_MAX);
-
- {
- const uint32_t num_items = lz->num_items;
- uint32_t *restrict items = lz->hash;
-
- for (uint32_t i = 0; i < num_items; ++i) {
- // If the distance is greater than the dictionary
- // size, we can simply mark the item as empty.
- if (items[i] <= subvalue)
- items[i] = EMPTY_HASH_VALUE;
- else
- items[i] -= subvalue;
- }
- }
+#ifdef HAVE_MF_BT3
+ if (mf == LZMA_MF_BT3)
+ ret = true;
+#endif
- // Update offset to match the new locations.
- lz->offset -= subvalue;
+#ifdef HAVE_MF_BT4
+ if (mf == LZMA_MF_BT4)
+ ret = true;
+#endif
- return;
+ return ret;
}
diff --git a/src/liblzma/lz/lz_encoder.h b/src/liblzma/lz/lz_encoder.h
index da0e0804..45bb8462 100644
--- a/src/liblzma/lz/lz_encoder.h
+++ b/src/liblzma/lz/lz_encoder.h
@@ -3,8 +3,8 @@
/// \file lz_encoder.h
/// \brief LZ in window and match finder API
//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
+// Copyright (C) 1999-2008 Igor Pavlov
+// Copyright (C) 2008 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@@ -24,19 +24,16 @@
#include "common.h"
-typedef struct lzma_lz_encoder_s lzma_lz_encoder;
-struct lzma_lz_encoder_s {
- enum {
- SEQ_RUN,
- SEQ_FLUSH,
- SEQ_FINISH,
- } sequence;
+/// A table of these is used by the LZ-based encoder to hold
+/// the length-distance pairs found by the match finder.
+typedef struct {
+ uint32_t len;
+ uint32_t dist;
+} lzma_match;
- /// Function to do the actual encoding from the sliding input window
- /// to the output stream.
- bool (*process)(lzma_coder *coder, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size);
+typedef struct lzma_mf_s lzma_mf;
+struct lzma_mf_s {
///////////////
// In Window //
///////////////
@@ -46,17 +43,33 @@ struct lzma_lz_encoder_s {
/// Total size of the allocated buffer (that is, including all
/// the extra space)
- size_t size;
+ uint32_t size;
+
+ /// Number of bytes that must be kept available in our input history.
+ /// That is, once keep_size_before bytes have been processed,
+ /// buffer[read_pos - keep_size_before] is the oldest byte that
+ /// must be available for reading.
+ uint32_t keep_size_before;
+
+ /// Number of bytes that must be kept in buffer after read_pos.
+ /// That is, read_pos <= write_pos - keep_size_after as long as
+ /// stream_end_was_reached is false (once it is true, read_pos
+ /// is allowed to reach write_pos).
+ uint32_t keep_size_after;
/// Match finders store locations of matches using 32-bit integers.
/// To avoid adjusting several megabytes of integers every time the
/// input window is moved with move_window(), we only adjust the
/// offset of the buffer. Thus, buffer[match_finder_pos - offset]
/// is the byte pointed by match_finder_pos.
- size_t offset;
+ uint32_t offset;
/// buffer[read_pos] is the current byte.
- size_t read_pos;
+ uint32_t read_pos;
+
+ /// Number of bytes that have been ran through the match finder, but
+ /// which haven't been encoded by the LZ-based encoder yet.
+ uint32_t read_ahead;
/// As long as read_pos is less than read_limit, there is enough
/// input available in buffer for at least one encoding loop.
@@ -64,92 +77,253 @@ struct lzma_lz_encoder_s {
/// Because of the stateful API, read_limit may and will get greater
/// than read_pos quite often. This is taken into account when
/// calculating the value for keep_size_after.
- size_t read_limit;
+ uint32_t read_limit;
/// buffer[write_pos] is the first byte that doesn't contain valid
/// uncompressed data; that is, the next input byte will be copied
/// to buffer[write_pos].
- size_t write_pos;
+ uint32_t write_pos;
/// Number of bytes not hashed before read_pos. This is needed to
/// restart the match finder after LZMA_SYNC_FLUSH.
- size_t pending;
-
- /// Number of bytes that must be kept available in our input history.
- /// That is, once keep_size_before bytes have been processed,
- /// buffer[read_pos - keep_size_before] is the oldest byte that
- /// must be available for reading.
- size_t keep_size_before;
-
- /// Number of bytes that must be kept in buffer after read_pos.
- /// That is, read_pos <= write_pos - keep_size_after as long as
- /// stream_end_was_reached is false (once it is true, read_pos
- /// is allowed to reach write_pos).
- size_t keep_size_after;
+ uint32_t pending;
//////////////////
// Match Finder //
//////////////////
- // Pointers to match finder functions
- void (*get_matches)(lzma_lz_encoder *restrict lz,
- uint32_t *restrict distances);
- void (*skip)(lzma_lz_encoder *restrict lz, uint32_t num);
+ /// Find matches. Returns the number of distance-length pairs written
+ /// to the matches array. This is called only via lzma_mf_find.
+ uint32_t (*find)(lzma_mf *mf, lzma_match *matches);
+
+ /// Skips num bytes. This is like find() but doesn't make the
+ /// distance-length pairs available, thus being a little faster.
+ /// This is called only via mf_skip function.
+ void (*skip)(lzma_mf *mf, uint32_t num);
- // Match finder data
- uint32_t *hash; // TODO: Check if hash aliases son
- uint32_t *son; // and add 'restrict' if possible.
+ uint32_t *hash;
+ uint32_t *son;
uint32_t cyclic_buffer_pos;
uint32_t cyclic_buffer_size; // Must be dictionary_size + 1.
uint32_t hash_mask;
- uint32_t cut_value;
+
+ /// Maximum number of loops in the match finder
+ uint32_t loops;
+
+ /// Maximum length of a match that the match finder will try to find.
+ uint32_t find_len_max;
+
+ /// Maximum length of a match supported by the LZ-based encoder.
+ /// If the longest match found by the match finder is find_len_max,
+ /// lz_dict_find() tries to expand it up to match_len_max bytes.
+ uint32_t match_len_max;
+
+ /// When running out of input, binary tree match finders need to know
+ /// if it is due to flushing or finishing. The action is used also
+ /// by the LZ-based encoders themselves.
+ lzma_action action;
+
+ /// Number of elements in hash[]
uint32_t hash_size_sum;
- uint32_t num_items;
- uint32_t match_max_len;
+
+ /// Number of elements in son[]
+ uint32_t sons_count;
};
-#define LZMA_LZ_ENCODER_INIT \
- (lzma_lz_encoder){ \
- .buffer = NULL, \
- .size = 0, \
- .hash = NULL, \
- .num_items = 0, \
+typedef struct {
+ /// Extra amount of data to keep available before the "actual"
+ /// dictionary.
+ size_t before_size;
+
+ /// Size of the history buffer
+ size_t dictionary_size;
+
+ /// Extra amount of data to keep available after the "actual"
+ /// dictionary.
+ size_t after_size;
+
+ /// Maximum length of a match that the LZ-based encoder can accept.
+ /// This is used to extend matches of length find_len_max to the
+ /// maximum possible length.
+ size_t match_len_max;
+
+ /// Match finder will search matches of at maximum of this length.
+ /// This must be less than or equal to match_len_max.
+ size_t find_len_max;
+
+ /// Type of the match finder to use
+ lzma_match_finder match_finder;
+
+ /// TODO: Comment
+ uint32_t match_finder_cycles;
+
+ /// TODO: Comment
+ const uint8_t *preset_dictionary;
+
+ uint32_t preset_dictionary_size;
+
+} lzma_lz_options;
+
+
+// The total usable buffer space at any moment outside the match finder:
+// before_size + dictionary_size + after_size + match_len_max
+//
+// In reality, there's some extra space allocated to prevent the number of
+// memmove() calls reasonable. The bigger the dictionary_size is, the bigger
+// this extra buffer will be since with bigger dictionaries memmove() would
+// also take longer.
+//
+// A single encoder loop in the LZ-based encoder may call the match finder
+// (lz_dict_find() or lz_dict_skip()) at maximum of after_size times.
+// In other words, a single encoder loop may advance lz_dict.read_pos at
+// maximum of after_size times. Since matches are looked up to
+// lz_dict.buffer[lz_dict.read_pos + match_len_max - 1], the total
+// amount of extra buffer needed after dictionary_size becomes
+// after_size + match_len_max.
+//
+// before_size has two uses. The first one is to keep literals available
+// in cases when the LZ-based encoder has made some read ahead.
+// TODO: Maybe this could be changed by making the LZ-based encoders to
+// store the actual literals as they do with length-distance pairs.
+//
+// Alrogithms such as LZMA2 first try to compress a chunk, and then check
+// if the encoded result is smaller than the uncompressed one. If the chunk
+// was uncompressible, it is better to store it in uncompressed form in
+// the output stream. To do this, the whole uncompressed chunk has to be
+// still available in the history buffer. before_size achieves that.
+
+
+typedef struct {
+ /// Data specific to the LZ-based encoder
+ lzma_coder *coder;
+
+ /// Function to encode from *dict to out[]
+ lzma_ret (*code)(lzma_coder *restrict coder,
+ lzma_mf *restrict mf, uint8_t *restrict out,
+ size_t *restrict out_pos, size_t out_size);
+
+ /// Free allocated resources
+ void (*end)(lzma_coder *coder, lzma_allocator *allocator);
+
+} lzma_lz_encoder;
+
+
+// Basic steps:
+// 1. Input gets copied into the dictionary.
+// 2. Data in dictionary gets run through the match finder byte by byte.
+// 3. The literals and matches are encoded using e.g. LZMA.
+//
+// The bytes that have been ran through the match finder, but not encoded yet,
+// are called `read ahead'.
+
+
+/// Get pointer to the first byte not ran through the match finder
+static inline const uint8_t *
+mf_ptr(const lzma_mf *mf)
+{
+ return mf->buffer + mf->read_pos;
+}
+
+
+/// Get the number of bytes that haven't been ran through the match finder yet.
+static inline uint32_t
+mf_avail(const lzma_mf *mf)
+{
+ return mf->write_pos - mf->read_pos;
+}
+
+
+/// Get the number of bytes that haven't been encoded yet (some of these
+/// bytes may have been ran through the match finder though).
+static inline uint32_t
+mf_unencoded(const lzma_mf *mf)
+{
+ return mf->write_pos - mf->read_pos - mf->read_ahead;
+}
+
+
+/// Calculate the absolute offset from the beginning of the most recent
+/// dictionary reset. Only the lowest four bits are important, so there's no
+/// problem that we don't know the 64-bit size of the data encoded so far.
+///
+/// NOTE: When moving the input window, we need to do it so that the lowest
+/// bits of dict->read_pos are not modified to keep this macro working
+/// as intended.
+static inline uint32_t
+mf_position(const lzma_mf *mf)
+{
+ return mf->read_pos - mf->read_ahead;
+}
+
+
+/// Since everything else begins with mf_, use it also for lzma_mf_find().
+#define mf_find lzma_mf_find
+
+
+/// Skip the given number of bytes. This is used when a good match was found.
+/// For example, if mf_find() finds a match of 200 bytes long, the first byte
+/// of that match was already consumed by mf_find(), and the rest 199 bytes
+/// have to be skipped with mf_skip(mf, 199).
+static inline void
+mf_skip(lzma_mf *mf, uint32_t amount)
+{
+ if (amount != 0) {
+ mf->skip(mf, amount);
+ mf->read_ahead += amount;
}
+}
+
+
+/// Copies at maximum of *left amount of bytes from the history buffer
+/// to out[]. This is needed by LZMA2 to encode uncompressed chunks.
+static inline void
+mf_read(lzma_mf *mf, uint8_t *out, size_t *out_pos, size_t out_size,
+ size_t *left)
+{
+ const size_t out_avail = out_size - *out_pos;
+ const size_t copy_size = MIN(out_avail, *left);
+
+ assert(mf->read_ahead == 0);
+ assert(mf->read_pos >= *left);
+
+ memcpy(out + *out_pos, mf->buffer + mf->read_pos - *left,
+ copy_size);
+
+ *out_pos += copy_size;
+ *left -= copy_size;
+ return;
+}
+
+
+extern lzma_ret lzma_lz_encoder_init(
+ lzma_next_coder *next, lzma_allocator *allocator,
+ const lzma_filter_info *filters,
+ lzma_ret (*lz_init)(lzma_lz_encoder *lz,
+ lzma_allocator *allocator, const void *options,
+ lzma_lz_options *lz_options));
+
+
+extern uint64_t lzma_lz_encoder_memusage(const lzma_lz_options *lz_options);
+
+
+// These are only for LZ encoder's internal use.
+extern uint32_t lzma_mf_find(
+ lzma_mf *mf, uint32_t *count, lzma_match *matches);
+
+extern uint32_t lzma_mf_hc3_find(lzma_mf *dict, lzma_match *matches);
+extern void lzma_mf_hc3_skip(lzma_mf *dict, uint32_t amount);
+
+extern uint32_t lzma_mf_hc4_find(lzma_mf *dict, lzma_match *matches);
+extern void lzma_mf_hc4_skip(lzma_mf *dict, uint32_t amount);
+
+extern uint32_t lzma_mf_bt2_find(lzma_mf *dict, lzma_match *matches);
+extern void lzma_mf_bt2_skip(lzma_mf *dict, uint32_t amount);
+extern uint32_t lzma_mf_bt3_find(lzma_mf *dict, lzma_match *matches);
+extern void lzma_mf_bt3_skip(lzma_mf *dict, uint32_t amount);
-/// Calculates
-extern bool lzma_lz_encoder_hash_properties(lzma_match_finder match_finder,
- uint32_t history_size, uint32_t *restrict hash_mask,
- uint32_t *restrict hash_size_sum,
- uint32_t *restrict num_items);
-
-// NOTE: liblzma doesn't use callback API like LZMA SDK does. The caller
-// must make sure that keep_size_after is big enough for single encoding pass
-// i.e. keep_size_after >= maximum number of bytes possibly needed after
-// the current position between calls to lzma_lz_read().
-extern lzma_ret lzma_lz_encoder_reset(lzma_lz_encoder *lz,
- lzma_allocator *allocator,
- bool (*process)(lzma_coder *coder, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size),
- size_t history_size, size_t additional_buffer_before,
- size_t match_max_len, size_t additional_buffer_after,
- lzma_match_finder match_finder, uint32_t match_finder_cycles,
- const uint8_t *preset_dictionary,
- size_t preset_dictionary_size);
-
-/// Frees memory allocated for in window and match finder buffers.
-extern void lzma_lz_encoder_end(
- lzma_lz_encoder *lz, lzma_allocator *allocator);
-
-extern lzma_ret lzma_lz_encode(lzma_coder *coder,
- lzma_allocator *allocator lzma_attribute((unused)),
- const uint8_t *restrict in, size_t *restrict in_pos,
- size_t in_size, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size,
- lzma_action action);
-
-/// This should not be called directly, but only via move_pos() macro.
-extern void lzma_lz_encoder_normalize(lzma_lz_encoder *lz);
+extern uint32_t lzma_mf_bt4_find(lzma_mf *dict, lzma_match *matches);
+extern void lzma_mf_bt4_skip(lzma_mf *dict, uint32_t amount);
#endif
diff --git a/src/liblzma/lz/lz_encoder_hash.h b/src/liblzma/lz/lz_encoder_hash.h
new file mode 100644
index 00000000..0841c38f
--- /dev/null
+++ b/src/liblzma/lz/lz_encoder_hash.h
@@ -0,0 +1,104 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lz_encoder_hash.h
+/// \brief Hash macros for match finders
+//
+// Copyright (C) 1999-2008 Igor Pavlov
+//
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Lesser General Public License for more details.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef LZMA_LZ_ENCODER_HASH_H
+#define LZMA_LZ_ENCODER_HASH_H
+
+#define HASH_2_SIZE (UINT32_C(1) << 10)
+#define HASH_3_SIZE (UINT32_C(1) << 16)
+#define HASH_4_SIZE (UINT32_C(1) << 20)
+
+#define HASH_2_MASK (HASH_2_SIZE - 1)
+#define HASH_3_MASK (HASH_3_SIZE - 1)
+#define HASH_4_MASK (HASH_4_SIZE - 1)
+
+#define FIX_3_HASH_SIZE (HASH_2_SIZE)
+#define FIX_4_HASH_SIZE (HASH_2_SIZE + HASH_3_SIZE)
+#define FIX_5_HASH_SIZE (HASH_2_SIZE + HASH_3_SIZE + HASH_4_SIZE)
+
+// TODO Benchmark, and probably doesn't need to be endian dependent.
+#if !defined(WORDS_BIGENDIAN) && defined(HAVE_FAST_UNALIGNED_ACCESS)
+# define hash_2_calc() \
+ const uint32_t hash_value = *(const uint16_t *)(cur);
+#else
+# define hash_2_calc() \
+ const uint32_t hash_value \
+ = (uint32_t)(cur[0]) | ((uint32_t)(cur[1]) << 8)
+#endif
+
+#define hash_3_calc() \
+ const uint32_t temp = lzma_crc32_table[0][cur[0]] ^ cur[1]; \
+ const uint32_t hash_2_value = temp & HASH_2_MASK; \
+ const uint32_t hash_value \
+ = (temp ^ ((uint32_t)(cur[2]) << 8)) & mf->hash_mask
+
+#define hash_4_calc() \
+ const uint32_t temp = lzma_crc32_table[0][cur[0]] ^ cur[1]; \
+ const uint32_t hash_2_value = temp & HASH_2_MASK; \
+ const uint32_t hash_3_value \
+ = (temp ^ ((uint32_t)(cur[2]) << 8)) & HASH_3_MASK; \
+ const uint32_t hash_value = (temp ^ ((uint32_t)(cur[2]) << 8) \
+ ^ (lzma_crc32_table[0][cur[3]] << 5)) & mf->hash_mask
+
+
+// The following are not currently used.
+
+#define hash_5_calc() \
+ const uint32_t temp = lzma_crc32_table[0][cur[0]] ^ cur[1]; \
+ const uint32_t hash_2_value = temp & HASH_2_MASK; \
+ const uint32_t hash_3_value \
+ = (temp ^ ((uint32_t)(cur[2]) << 8)) & HASH_3_MASK; \
+ uint32_t hash_4_value = (temp ^ ((uint32_t)(cur[2]) << 8) ^ \
+ ^ lzma_crc32_table[0][cur[3]] << 5); \
+ const uint32_t hash_value \
+ = (hash_4_value ^ (lzma_crc32_table[0][cur[4]] << 3)) \
+ & mf->hash_mask; \
+ hash_4_value &= HASH_4_MASK
+
+/*
+#define hash_zip_calc() \
+ const uint32_t hash_value \
+ = (((uint32_t)(cur[0]) | ((uint32_t)(cur[1]) << 8)) \
+ ^ lzma_crc32_table[0][cur[2]]) & 0xFFFF
+*/
+
+#define hash_zip_calc() \
+ const uint32_t hash_value \
+ = (((uint32_t)(cur[2]) | ((uint32_t)(cur[0]) << 8)) \
+ ^ lzma_crc32_table[0][cur[1]]) & 0xFFFF
+
+#define mt_hash_2_calc() \
+ const uint32_t hash_2_value \
+ = (lzma_crc32_table[0][cur[0]] ^ cur[1]) & HASH_2_MASK
+
+#define mt_hash_3_calc() \
+ const uint32_t temp = lzma_crc32_table[0][cur[0]] ^ cur[1]; \
+ const uint32_t hash_2_value = temp & HASH_2_MASK; \
+ const uint32_t hash_3_value \
+ = (temp ^ ((uint32_t)(cur[2]) << 8)) & HASH_3_MASK
+
+#define mt_hash_4_calc() \
+ const uint32_t temp = lzma_crc32_table[0][cur[0]] ^ cur[1]; \
+ const uint32_t hash_2_value = temp & HASH_2_MASK; \
+ const uint32_t hash_3_value \
+ = (temp ^ ((uint32_t)(cur[2]) << 8)) & HASH_3_MASK; \
+ const uint32_t hash_4_value = (temp ^ ((uint32_t)(cur[2]) << 8) ^ \
+ (lzma_crc32_table[0][cur[3]] << 5)) & HASH_4_MASK
+
+#endif
diff --git a/src/liblzma/lz/lz_encoder_mf.c b/src/liblzma/lz/lz_encoder_mf.c
new file mode 100644
index 00000000..b1c20f50
--- /dev/null
+++ b/src/liblzma/lz/lz_encoder_mf.c
@@ -0,0 +1,780 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lz_encoder_mf.c
+/// \brief Match finders
+//
+// Copyright (C) 1999-2008 Igor Pavlov
+// Copyright (C) 2008 Lasse Collin
+//
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Lesser General Public License for more details.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "lz_encoder.h"
+#include "lz_encoder_hash.h"
+#include "check.h"
+
+
+/// \brief Find matches starting from the current byte
+///
+/// \return The length of the longest match found
+extern uint32_t
+lzma_mf_find(lzma_mf *mf, uint32_t *count_ptr, lzma_match *matches)
+{
+ // Call the match finder. It returns the number of length-distance
+ // pairs found.
+ // FIXME: Minimum count is zero, what _exactly_ is the maximum?
+ const uint32_t count = mf->find(mf, matches);
+
+ // Length of the longest match; assume that no matches were found
+ // and thus the maximum length is zero.
+ uint32_t len_best = 0;
+
+ if (count > 0) {
+#ifndef NDEBUG
+ // Validate the matches.
+ for (uint32_t i = 0; i < count; ++i) {
+ assert(matches[i].len <= mf->find_len_max);
+ assert(matches[i].dist < mf->read_pos);
+ assert(memcmp(mf_ptr(mf) - 1,
+ mf_ptr(mf) - matches[i].dist - 2,
+ matches[i].len) == 0);
+ }
+#endif
+
+ // The last used element in the array contains
+ // the longest match.
+ len_best = matches[count - 1].len;
+
+ // If a match of maximum search length was found, try to
+ // extend the match to maximum possible length.
+ if (len_best == mf->find_len_max) {
+ // The limit for the match length is either the
+ // maximum match length supported by the LZ-based
+ // encoder or the number of bytes left in the
+ // dictionary, whichever is smaller.
+ uint32_t limit = mf_avail(mf) + 1;
+ if (limit > mf->match_len_max)
+ limit = mf->match_len_max;
+
+ // Pointer to the byte we just ran through
+ // the match finder.
+ const uint8_t *p1 = mf_ptr(mf) - 1;
+
+ // Pointer to the beginning of the match. We need -1
+ // here because the match distances are zero based.
+ const uint8_t *p2 = p1 - matches[count - 1].dist - 1;
+
+ while (len_best < limit
+ && p1[len_best] == p2[len_best])
+ ++len_best;
+ }
+ }
+
+ *count_ptr = count;
+
+ // Finally update the read position to indicate that match finder was
+ // run for this dictionary offset.
+ ++mf->read_ahead;
+
+ return len_best;
+}
+
+
+/// Hash value to indicate unused element in the hash. Since we start the
+/// positions from dictionary_size + 1, zero is always too far to qualify
+/// as usable match position.
+#define EMPTY_HASH_VALUE 0
+
+
+/// Normalization must be done when lzma_mf.offset + lzma_mf.read_pos
+/// reaches MUST_NORMALIZE_POS.
+#define MUST_NORMALIZE_POS UINT32_MAX
+
+
+/// \brief Normalizes hash values
+///
+/// The hash arrays store positions of match candidates. The positions are
+/// relative to an arbitrary offset that is not the same as the absolute
+/// offset in the input stream. The relative position of the current byte
+/// is lzma_mf.offset + lzma_mf.read_pos. The distances of the matches are
+/// the differences of the current read position and the position found from
+/// the hash.
+///
+/// To prevent integer overflows of the offsets stored in the hash arrays,
+/// we need to "normalize" the stored values now and then. During the
+/// normalization, we drop values that indicate distance greater than the
+/// dictionary size, thus making space for new values.
+static void
+normalize(lzma_mf *mf)
+{
+ assert(mf->read_pos + mf->offset == MUST_NORMALIZE_POS);
+
+ // In future we may not want to touch the lowest bits, because there
+ // may be match finders that use larger resolution than one byte.
+ const uint32_t subvalue
+ = (MUST_NORMALIZE_POS - mf->cyclic_buffer_size);
+ // & (~(UINT32_C(1) << 10) - 1);
+
+ const uint32_t count = mf->hash_size_sum + mf->sons_count;
+ uint32_t *hash = mf->hash;
+
+ for (uint32_t i = 0; i < count; ++i) {
+ // If the distance is greater than the dictionary size,
+ // we can simply mark the hash element as empty.
+ //
+ // NOTE: Only the first mf->hash_size_sum elements are
+ // initialized for sure. There may be uninitialized elements
+ // in mf->son. Since we go through both mf->hash and
+ // mf->son here in normalization, Valgrind may complain
+ // that the "if" below depends on uninitialized value. In
+ // this case it is safe to ignore the warning. See also the
+ // comments in lz_encoder_init() in lz_encoder.c.
+ if (hash[i] <= subvalue)
+ hash[i] = EMPTY_HASH_VALUE;
+ else
+ hash[i] -= subvalue;
+ }
+
+ // Update offset to match the new locations.
+ mf->offset -= subvalue;
+
+ return;
+}
+
+
+/// Mark the current byte as processed from point of view of the match finder.
+static void
+move_pos(lzma_mf *mf)
+{
+ if (++mf->cyclic_buffer_pos == mf->cyclic_buffer_size)
+ mf->cyclic_buffer_pos = 0;
+
+ ++mf->read_pos;
+ assert(mf->read_pos <= mf->write_pos);
+
+ if (unlikely(mf->read_pos + mf->offset == UINT32_MAX))
+ normalize(mf);
+}
+
+
+/// When flushing, we cannot run the match finder unless there is find_len_max
+/// bytes available in the dictionary. Instead, we skip running the match
+/// finder (indicating that no match was found), and count how many bytes we
+/// have ignored this way.
+///
+/// When new data is given after the flushing was completed, the match finder
+/// is restarted by rewinding mf->read_pos backwards by mf->pending. Then
+/// the missed bytes are added to the hash using the match finder's skip
+/// function (with small amount of input, it may start using mf->pending
+/// again if flushing).
+///
+/// Due to this rewinding, we don't touch cyclic_buffer_pos or test for
+/// normalization. It will be done when the match finder's skip function
+/// catches up after a flush.
+static void
+move_pending(lzma_mf *mf)
+{
+ ++mf->read_pos;
+ assert(mf->read_pos <= mf->write_pos);
+ ++mf->pending;
+}
+
+
+/// Calculate len_limit and determine if there is enough input to run
+/// the actual match finder code. Sets up "cur" and "pos". This macro
+/// is used by all find functions and binary tree skip functions. Hash
+/// chain skip function doesn't need len_limit so a simpler code is used
+/// in them.
+#define header(is_bt, len_min, ret_op) \
+ uint32_t len_limit = mf_avail(mf); \
+ if (mf->find_len_max <= len_limit) { \
+ len_limit = mf->find_len_max; \
+ } else if (len_limit < (len_min) \
+ || (is_bt && mf->action == LZMA_SYNC_FLUSH)) { \
+ assert(mf->action != LZMA_RUN); \
+ move_pending(mf); \
+ ret_op; \
+ } \
+ const uint8_t *cur = mf_ptr(mf); \
+ const uint32_t pos = mf->read_pos + mf->offset
+
+
+/// Header for find functions. "return 0" indicates that zero matches
+/// were found.
+#define header_find(is_bt, len_min) \
+ header(is_bt, len_min, return 0); \
+ uint32_t matches_count = 0
+
+
+/// Header for a loop in a skip function. "continue" tells to skip the rest
+/// of the code in the loop.
+#define header_skip(is_bt, len_min) \
+ header(is_bt, len_min, continue)
+
+
+/// Calls hc_find_func() or bt_find_func() and calculates the total number
+/// of matches found. Updates the dictionary position and returns the number
+/// of matches found.
+#define call_find(func, len_best) \
+do { \
+ matches_count = func(len_limit, pos, cur, cur_match, mf->loops, \
+ mf->son, mf->cyclic_buffer_pos, \
+ mf->cyclic_buffer_size, \
+ matches + matches_count, len_best) \
+ - matches; \
+ move_pos(mf); \
+ return matches_count; \
+} while (0)
+
+
+////////////////
+// Hash Chain //
+////////////////
+
+#if defined(HAVE_MF_HC3) || defined(HAVE_MF_HC4)
+///
+///
+/// \param len_limit Don't look for matches longer than len_limit.
+/// \param pos lzma_mf.read_pos + lzma_mf.offset
+/// \param cur Pointer to current byte (lzma_dict_ptr(mf))
+/// \param cur_match Start position of the current match candidate
+/// \param loops Maximum length of the hash chain
+/// \param son lzma_mf.son (contains the hash chain)
+/// \param cyclic_buffer_pos
+/// \param cyclic_buffer_size
+/// \param matches Array to hold the matches.
+/// \param len_best The length of the longest match found so far.
+static lzma_match *
+hc_find_func(
+ const uint32_t len_limit,
+ const uint32_t pos,
+ const uint8_t *const cur,
+ uint32_t cur_match,
+ uint32_t loops,
+ uint32_t *const son,
+ const uint32_t cyclic_buffer_pos,
+ const uint32_t cyclic_buffer_size,
+ lzma_match *matches,
+ uint32_t len_best)
+{
+ son[cyclic_buffer_pos] = cur_match;
+
+ while (true) {
+ const uint32_t delta = pos - cur_match;
+ if (loops-- == 0 || delta >= cyclic_buffer_size)
+ return matches;
+
+ const uint8_t *const pb = cur - delta;
+ cur_match = son[cyclic_buffer_pos - delta
+ + (delta > cyclic_buffer_pos
+ ? cyclic_buffer_size : 0)];
+
+ if (pb[len_best] == cur[len_best] && pb[0] == cur[0]) {
+ uint32_t len = 0;
+ while (++len != len_limit)
+ if (pb[len] != cur[len])
+ break;
+
+ if (len_best < len) {
+ len_best = len;
+ matches->len = len;
+ matches->dist = delta - 1;
+ ++matches;
+
+ if (len == len_limit)
+ return matches;
+ }
+ }
+ }
+}
+
+/*
+#define hc_header_find(len_min, ret_op) \
+ uint32_t len_limit = mf_avail(mf); \
+ if (mf->find_len_max <= len_limit) { \
+ len_limit = mf->find_len_max; \
+ } else if (len_limit < (len_min)) { \
+ move_pending(mf); \
+ ret_op; \
+ } \
+#define header_hc(len_min, ret_op) \
+do { \
+ if (mf_avail(mf) < (len_min)) { \
+ move_pending(mf); \
+ ret_op; \
+ } \
+} while (0)
+*/
+
+#define hc_find(len_best) \
+ call_find(hc_find_func, len_best)
+
+
+#define hc_skip() \
+do { \
+ mf->son[mf->cyclic_buffer_pos] = cur_match; \
+ move_pos(mf); \
+} while (0)
+
+#endif
+
+
+#ifdef HAVE_MF_HC3
+extern uint32_t
+lzma_mf_hc3_find(lzma_mf *mf, lzma_match *matches)
+{
+ header_find(false, 3);
+
+ hash_3_calc();
+
+ const uint32_t delta2 = pos - mf->hash[hash_2_value];
+ const uint32_t cur_match = mf->hash[FIX_3_HASH_SIZE + hash_value];
+
+ mf->hash[hash_2_value] = pos;
+ mf->hash[FIX_3_HASH_SIZE + hash_value] = pos;
+
+ uint32_t len_best = 2;
+
+ if (delta2 < mf->cyclic_buffer_size && *(cur - delta2) == *cur) {
+ for ( ; len_best != len_limit; ++len_best)
+ if (*(cur + len_best - delta2) != cur[len_best])
+ break;
+
+ matches[0].len = len_best;
+ matches[0].dist = delta2 - 1;
+ matches_count = 1;
+
+ if (len_best == len_limit) {
+ hc_skip();
+ return 1; // matches_count
+ }
+ }
+
+ hc_find(len_best);
+}
+
+
+extern void
+lzma_mf_hc3_skip(lzma_mf *mf, uint32_t amount)
+{
+ do {
+ if (mf_avail(mf) < 3) {
+ move_pending(mf);
+ continue;
+ }
+
+ const uint8_t *cur = mf_ptr(mf);
+ const uint32_t pos = mf->read_pos + mf->offset;
+
+ hash_3_calc();
+
+ const uint32_t cur_match
+ = mf->hash[FIX_3_HASH_SIZE + hash_value];
+
+ mf->hash[hash_2_value] = pos;
+ mf->hash[FIX_3_HASH_SIZE + hash_value] = pos;
+
+ hc_skip();
+
+ } while (--amount != 0);
+}
+#endif
+
+
+#ifdef HAVE_MF_HC4
+extern uint32_t
+lzma_mf_hc4_find(lzma_mf *mf, lzma_match *matches)
+{
+ header_find(false, 4);
+
+ hash_4_calc();
+
+ uint32_t delta2 = pos - mf->hash[hash_2_value];
+ const uint32_t delta3
+ = pos - mf->hash[FIX_3_HASH_SIZE + hash_3_value];
+ const uint32_t cur_match = mf->hash[FIX_4_HASH_SIZE + hash_value];
+
+ mf->hash[hash_2_value ] = pos;
+ mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos;
+ mf->hash[FIX_4_HASH_SIZE + hash_value] = pos;
+
+ uint32_t len_best = 1;
+
+ if (delta2 < mf->cyclic_buffer_size && *(cur - delta2) == *cur) {
+ len_best = 2;
+ matches[0].len = 2;
+ matches[0].dist = delta2 - 1;
+ matches_count = 1;
+ }
+
+ if (delta2 != delta3 && delta3 < mf->cyclic_buffer_size
+ && *(cur - delta3) == *cur) {
+ len_best = 3;
+ matches[matches_count++].dist = delta3 - 1;
+ delta2 = delta3;
+ }
+
+ if (matches_count != 0) {
+ for ( ; len_best != len_limit; ++len_best)
+ if (*(cur + len_best - delta2) != cur[len_best])
+ break;
+
+ matches[matches_count - 1].len = len_best;
+
+ if (len_best == len_limit) {
+ hc_skip();
+ return matches_count;
+ }
+ }
+
+ if (len_best < 3)
+ len_best = 3;
+
+ hc_find(len_best);
+}
+
+
+extern void
+lzma_mf_hc4_skip(lzma_mf *mf, uint32_t amount)
+{
+ do {
+ if (mf_avail(mf) < 4) {
+ move_pending(mf);
+ continue;
+ }
+
+ const uint8_t *cur = mf_ptr(mf);
+ const uint32_t pos = mf->read_pos + mf->offset;
+
+ hash_4_calc();
+
+ const uint32_t cur_match
+ = mf->hash[FIX_4_HASH_SIZE + hash_value];
+
+ mf->hash[hash_2_value] = pos;
+ mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos;
+ mf->hash[FIX_4_HASH_SIZE + hash_value] = pos;
+
+ hc_skip();
+
+ } while (--amount != 0);
+}
+#endif
+
+
+/////////////////
+// Binary Tree //
+/////////////////
+
+#if defined(HAVE_MF_BT2) || defined(HAVE_MF_BT3) || defined(HAVE_MF_BT4)
+static lzma_match *
+bt_find_func(
+ const uint32_t len_limit,
+ const uint32_t pos,
+ const uint8_t *const cur,
+ uint32_t cur_match,
+ uint32_t loops,
+ uint32_t *const son,
+ const uint32_t cyclic_buffer_pos,
+ const uint32_t cyclic_buffer_size,
+ lzma_match *matches,
+ uint32_t len_best)
+{
+ uint32_t *ptr0 = son + (cyclic_buffer_pos << 1) + 1;
+ uint32_t *ptr1 = son + (cyclic_buffer_pos << 1);
+
+ uint32_t len0 = 0;
+ uint32_t len1 = 0;
+
+ while (true) {
+ const uint32_t delta = pos - cur_match;
+ if (loops-- == 0 || delta >= cyclic_buffer_size) {
+ *ptr0 = EMPTY_HASH_VALUE;
+ *ptr1 = EMPTY_HASH_VALUE;
+ return matches;
+ }
+
+ uint32_t *const pair = son + ((cyclic_buffer_pos - delta
+ + (delta > cyclic_buffer_pos
+ ? cyclic_buffer_size : 0)) << 1);
+
+ const uint8_t *const pb = cur - delta;
+ uint32_t len = MIN(len0, len1);
+
+ if (pb[len] == cur[len]) {
+ while (++len != len_limit)
+ if (pb[len] != cur[len])
+ break;
+
+ if (len_best < len) {
+ len_best = len;
+ matches->len = len;
+ matches->dist = delta - 1;
+ ++matches;
+
+ if (len == len_limit) {
+ *ptr1 = pair[0];
+ *ptr0 = pair[1];
+ return matches;
+ }
+ }
+ }
+
+ if (pb[len] < cur[len]) {
+ *ptr1 = cur_match;
+ ptr1 = pair + 1;
+ cur_match = *ptr1;
+ len1 = len;
+ } else {
+ *ptr0 = cur_match;
+ ptr0 = pair;
+ cur_match = *ptr0;
+ len0 = len;
+ }
+ }
+}
+
+
+static void
+bt_skip_func(
+ const uint32_t len_limit,
+ const uint32_t pos,
+ const uint8_t *const cur,
+ uint32_t cur_match,
+ uint32_t loops,
+ uint32_t *const son,
+ const uint32_t cyclic_buffer_pos,
+ const uint32_t cyclic_buffer_size)
+{
+ uint32_t *ptr0 = son + (cyclic_buffer_pos << 1) + 1;
+ uint32_t *ptr1 = son + (cyclic_buffer_pos << 1);
+
+ uint32_t len0 = 0;
+ uint32_t len1 = 0;
+
+ while (true) {
+ const uint32_t delta = pos - cur_match;
+ if (loops-- == 0 || delta >= cyclic_buffer_size) {
+ *ptr0 = EMPTY_HASH_VALUE;
+ *ptr1 = EMPTY_HASH_VALUE;
+ return;
+ }
+
+ uint32_t *pair = son + ((cyclic_buffer_pos - delta
+ + (delta > cyclic_buffer_pos
+ ? cyclic_buffer_size : 0)) << 1);
+ const uint8_t *pb = cur - delta;
+ uint32_t len = MIN(len0, len1);
+
+ if (pb[len] == cur[len]) {
+ while (++len != len_limit)
+ if (pb[len] != cur[len])
+ break;
+
+ if (len == len_limit) {
+ *ptr1 = pair[0];
+ *ptr0 = pair[1];
+ return;
+ }
+ }
+
+ if (pb[len] < cur[len]) {
+ *ptr1 = cur_match;
+ ptr1 = pair + 1;
+ cur_match = *ptr1;
+ len1 = len;
+ } else {
+ *ptr0 = cur_match;
+ ptr0 = pair;
+ cur_match = *ptr0;
+ len0 = len;
+ }
+ }
+}
+
+
+#define bt_find(len_best) \
+ call_find(bt_find_func, len_best)
+
+#define bt_skip() \
+do { \
+ bt_skip_func(len_limit, pos, cur, cur_match, mf->loops, \
+ mf->son, mf->cyclic_buffer_pos, \
+ mf->cyclic_buffer_size); \
+ move_pos(mf); \
+} while (0)
+
+#endif
+
+
+#ifdef HAVE_MF_BT2
+extern uint32_t
+lzma_mf_bt2_find(lzma_mf *mf, lzma_match *matches)
+{
+ header_find(true, 2);
+
+ hash_2_calc();
+
+ const uint32_t cur_match = mf->hash[hash_value];
+ mf->hash[hash_value] = pos;
+
+ bt_find(1);
+}
+
+
+extern void
+lzma_mf_bt2_skip(lzma_mf *mf, uint32_t amount)
+{
+ do {
+ header_skip(true, 2);
+
+ hash_2_calc();
+
+ const uint32_t cur_match = mf->hash[hash_value];
+ mf->hash[hash_value] = pos;
+
+ bt_skip();
+
+ } while (--amount != 0);
+}
+#endif
+
+
+#ifdef HAVE_MF_BT3
+extern uint32_t
+lzma_mf_bt3_find(lzma_mf *mf, lzma_match *matches)
+{
+ header_find(true, 3);
+
+ hash_3_calc();
+
+ const uint32_t delta2 = pos - mf->hash[hash_2_value];
+ const uint32_t cur_match = mf->hash[FIX_3_HASH_SIZE + hash_value];
+
+ mf->hash[hash_2_value] = pos;
+ mf->hash[FIX_3_HASH_SIZE + hash_value] = pos;
+
+ uint32_t len_best = 2;
+
+ if (delta2 < mf->cyclic_buffer_size && *(cur - delta2) == *cur) {
+ for ( ; len_best != len_limit; ++len_best)
+ if (*(cur + len_best - delta2) != cur[len_best])
+ break;
+
+ matches[0].len = len_best;
+ matches[0].dist = delta2 - 1;
+ matches_count = 1;
+
+ if (len_best == len_limit) {
+ bt_skip();
+ return 1; // matches_count
+ }
+ }
+
+ bt_find(len_best);
+}
+
+
+extern void
+lzma_mf_bt3_skip(lzma_mf *mf, uint32_t amount)
+{
+ do {
+ header_skip(true, 3);
+
+ hash_3_calc();
+
+ const uint32_t cur_match
+ = mf->hash[FIX_3_HASH_SIZE + hash_value];
+
+ mf->hash[hash_2_value] = pos;
+ mf->hash[FIX_3_HASH_SIZE + hash_value] = pos;
+
+ bt_skip();
+
+ } while (--amount != 0);
+}
+#endif
+
+
+#ifdef HAVE_MF_BT4
+extern uint32_t
+lzma_mf_bt4_find(lzma_mf *mf, lzma_match *matches)
+{
+ header_find(true, 4);
+
+ hash_4_calc();
+
+ uint32_t delta2 = pos - mf->hash[hash_2_value];
+ const uint32_t delta3
+ = pos - mf->hash[FIX_3_HASH_SIZE + hash_3_value];
+ const uint32_t cur_match = mf->hash[FIX_4_HASH_SIZE + hash_value];
+
+ mf->hash[hash_2_value] = pos;
+ mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos;
+ mf->hash[FIX_4_HASH_SIZE + hash_value] = pos;
+
+ uint32_t len_best = 1;
+
+ if (delta2 < mf->cyclic_buffer_size && *(cur - delta2) == *cur) {
+ len_best = 2;
+ matches[0].len = 2;
+ matches[0].dist = delta2 - 1;
+ matches_count = 1;
+ }
+
+ if (delta2 != delta3 && delta3 < mf->cyclic_buffer_size
+ && *(cur - delta3) == *cur) {
+ len_best = 3;
+ matches[matches_count++].dist = delta3 - 1;
+ delta2 = delta3;
+ }
+
+ if (matches_count != 0) {
+ for ( ; len_best != len_limit; ++len_best)
+ if (*(cur + len_best - delta2) != cur[len_best])
+ break;
+
+ matches[matches_count - 1].len = len_best;
+
+ if (len_best == len_limit) {
+ bt_skip();
+ return matches_count;
+ }
+ }
+
+ if (len_best < 3)
+ len_best = 3;
+
+ bt_find(len_best);
+}
+
+
+extern void
+lzma_mf_bt4_skip(lzma_mf *mf, uint32_t amount)
+{
+ do {
+ header_skip(true, 4);
+
+ hash_4_calc();
+
+ const uint32_t cur_match
+ = mf->hash[FIX_4_HASH_SIZE + hash_value];
+
+ mf->hash[hash_2_value] = pos;
+ mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos;
+ mf->hash[FIX_4_HASH_SIZE + hash_value] = pos;
+
+ bt_skip();
+
+ } while (--amount != 0);
+}
+#endif
diff --git a/src/liblzma/lz/lz_encoder_private.h b/src/liblzma/lz/lz_encoder_private.h
deleted file mode 100644
index 638fcb2d..00000000
--- a/src/liblzma/lz/lz_encoder_private.h
+++ /dev/null
@@ -1,40 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file lz_encoder_private.h
-/// \brief Private definitions for LZ encoder
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#ifndef LZMA_LZ_ENCODER_PRIVATE_H
-#define LZMA_LZ_ENCODER_PRIVATE_H
-
-#include "lz_encoder.h"
-
-/// Value used to indicate unused slot
-#define EMPTY_HASH_VALUE 0
-
-/// When the dictionary and hash variables need to be adjusted to prevent
-/// integer overflows. Since we use uint32_t to store the offsets, half
-/// of it is the biggest safe limit.
-#define MAX_VAL_FOR_NORMALIZE (UINT32_MAX / 2)
-
-
-struct lzma_coder_s {
- lzma_next_coder next;
- lzma_lz_encoder lz;
-};
-
-#endif
diff --git a/src/liblzma/lz/match_c.h b/src/liblzma/lz/match_c.h
deleted file mode 100644
index 664db290..00000000
--- a/src/liblzma/lz/match_c.h
+++ /dev/null
@@ -1,412 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file match_c.h
-/// \brief Template for different match finders
-///
-/// This file is included by hc3.c, hc4, bt2.c, bt3.c and bt4.c. Each file
-/// sets slighly different #defines, resulting the different match finders.
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-//////////////
-// Includes //
-//////////////
-
-#include "check.h"
-
-
-///////////////
-// Constants //
-///////////////
-
-#define START_MAX_LEN 1
-
-#ifdef HASH_ARRAY_2
-# define NUM_HASH_DIRECT_BYTES 0
-# define HASH_2_SIZE (1 << 10)
-# ifdef HASH_ARRAY_3
-# define NUM_HASH_BYTES 4
-# define HASH_3_SIZE (1 << 16)
-# define HASH_3_OFFSET HASH_2_SIZE
-# define FIX_HASH_SIZE (HASH_2_SIZE + HASH_3_SIZE)
-# else
-# define NUM_HASH_BYTES 3
-# define FIX_HASH_SIZE HASH_2_SIZE
-# endif
-# define HASH_SIZE 0
-# define MIN_MATCH_CHECK NUM_HASH_BYTES
-#else
-# define NUM_HASH_DIRECT_BYTES 2
-# define NUM_HASH_BYTES 2
-# define HASH_SIZE (1 << (8 * NUM_HASH_BYTES))
-# define MIN_MATCH_CHECK (NUM_HASH_BYTES + 1)
-# define FIX_HASH_SIZE 0
-#endif
-
-
-////////////
-// Macros //
-////////////
-
-#ifdef HASH_ARRAY_2
-# ifdef HASH_ARRAY_3
-# define HASH_CALC() \
- do { \
- const uint32_t temp = lzma_crc32_table[0][ \
- cur[0]] ^ cur[1]; \
- hash_2_value = temp & (HASH_2_SIZE - 1); \
- hash_3_value = (temp ^ ((uint32_t)(cur[2]) << 8)) \
- & (HASH_3_SIZE - 1); \
- hash_value = (temp ^ ((uint32_t)(cur[2]) << 8) \
- ^ (lzma_crc32_table[0][cur[3]] << 5)) \
- & lz->hash_mask; \
- } while (0)
-# else
-# define HASH_CALC() \
- do { \
- const uint32_t temp = lzma_crc32_table[0][ \
- cur[0]] ^ cur[1]; \
- hash_2_value = temp & (HASH_2_SIZE - 1); \
- hash_value = (temp ^ ((uint32_t)(cur[2]) << 8)) \
- & lz->hash_mask; \
- } while (0)
-# endif
-#else
-# define HASH_CALC() hash_value = cur[0] ^ ((uint32_t)(cur[1]) << 8)
-#endif
-
-
-// Moves the current read position forward by one byte. In LZMA SDK,
-// CLZInWindow::MovePos() can read more input data if needed, because of
-// the callback style API. In liblzma we must have ensured earlier, that
-// there is enough data available in lz->buffer.
-#define move_pos() \
-do { \
- if (++lz->cyclic_buffer_pos == lz->cyclic_buffer_size) \
- lz->cyclic_buffer_pos = 0; \
- ++lz->read_pos; \
- assert(lz->read_pos <= lz->write_pos); \
- if (lz->read_pos == MAX_VAL_FOR_NORMALIZE) \
- lzma_lz_encoder_normalize(lz); \
-} while (0)
-
-
-#define move_pending() \
-do { \
- ++lz->read_pos; \
- assert(lz->read_pos <= lz->write_pos); \
- ++lz->pending; \
-} while (0)
-
-
-//////////////////////
-// Global constants //
-//////////////////////
-
-LZMA_HASH_SIZE(LZMA_MATCH_FINDER_NAME_UPPER) = HASH_SIZE;
-LZMA_FIX_HASH_SIZE(LZMA_MATCH_FINDER_NAME_UPPER) = FIX_HASH_SIZE;
-
-
-///////////////////
-// API functions //
-///////////////////
-
-LZMA_GET_MATCHES(LZMA_MATCH_FINDER_NAME_LOWER)
-{
- uint32_t len_limit;
- if (lz->read_pos + lz->match_max_len <= lz->write_pos) {
- len_limit = lz->match_max_len;
- } else {
- len_limit = lz->write_pos - lz->read_pos;
- if (len_limit < MIN_MATCH_CHECK || lz->sequence == SEQ_FLUSH) {
- distances[0] = 0;
- move_pending();
- return;
- }
- }
-
- assert(lz->pending == 0);
-
- int32_t offset = 1;
- const uint32_t match_min_pos
- = lz->read_pos + lz->offset > lz->cyclic_buffer_size
- ? lz->read_pos + lz->offset - lz->cyclic_buffer_size
- : 0;
- const uint8_t *cur = lz->buffer + lz->read_pos;
- uint32_t max_len = START_MAX_LEN; // to avoid items for len < hash_size
-
-#ifdef HASH_ARRAY_2
- uint32_t hash_2_value;
-# ifdef HASH_ARRAY_3
- uint32_t hash_3_value;
-# endif
-#endif
- uint32_t hash_value;
- HASH_CALC();
-
- uint32_t cur_match = lz->hash[FIX_HASH_SIZE + hash_value];
-#ifdef HASH_ARRAY_2
- uint32_t cur_match2 = lz->hash[hash_2_value];
-# ifdef HASH_ARRAY_3
- uint32_t cur_match3 = lz->hash[HASH_3_OFFSET + hash_3_value];
-# endif
- lz->hash[hash_2_value] = lz->read_pos + lz->offset;
-
- if (cur_match2 > match_min_pos) {
- if (lz->buffer[cur_match2 - lz->offset] == cur[0]) {
- max_len = 2;
- distances[offset++] = 2;
- distances[offset++] = lz->read_pos + lz->offset
- - cur_match2 - 1;
- }
- }
-
-# ifdef HASH_ARRAY_3
- lz->hash[HASH_3_OFFSET + hash_3_value] = lz->read_pos + lz->offset;
- if (cur_match3 > match_min_pos) {
- if (lz->buffer[cur_match3 - lz->offset] == cur[0]) {
- if (cur_match3 == cur_match2)
- offset -= 2;
-
- max_len = 3;
- distances[offset++] = 3;
- distances[offset++] = lz->read_pos + lz->offset
- - cur_match3 - 1;
- cur_match2 = cur_match3;
- }
- }
-# endif
-
- if (offset != 1 && cur_match2 == cur_match) {
- offset -= 2;
- max_len = START_MAX_LEN;
- }
-#endif
-
- lz->hash[FIX_HASH_SIZE + hash_value] = lz->read_pos + lz->offset;
-
-#ifdef IS_HASH_CHAIN
- lz->son[lz->cyclic_buffer_pos] = cur_match;
-#else
- uint32_t *ptr0 = lz->son + (lz->cyclic_buffer_pos << 1) + 1;
- uint32_t *ptr1 = lz->son + (lz->cyclic_buffer_pos << 1);
-
- uint32_t len0 = NUM_HASH_DIRECT_BYTES;
- uint32_t len1 = NUM_HASH_DIRECT_BYTES;
-#endif
-
-#if NUM_HASH_DIRECT_BYTES != 0
- if (cur_match > match_min_pos) {
- if (lz->buffer[cur_match + NUM_HASH_DIRECT_BYTES - lz->offset]
- != cur[NUM_HASH_DIRECT_BYTES]) {
- max_len = NUM_HASH_DIRECT_BYTES;
- distances[offset++] = NUM_HASH_DIRECT_BYTES;
- distances[offset++] = lz->read_pos + lz->offset
- - cur_match - 1;
- }
- }
-#endif
-
- uint32_t count = lz->cut_value;
-
- while (true) {
- if (cur_match <= match_min_pos || count-- == 0) {
-#ifndef IS_HASH_CHAIN
- *ptr0 = EMPTY_HASH_VALUE;
- *ptr1 = EMPTY_HASH_VALUE;
-#endif
- break;
- }
-
- const uint32_t delta = lz->read_pos + lz->offset - cur_match;
- const uint32_t cyclic_pos = delta <= lz->cyclic_buffer_pos
- ? lz->cyclic_buffer_pos - delta
- : lz->cyclic_buffer_pos - delta
- + lz->cyclic_buffer_size;
- uint32_t *pair = lz->son +
-#ifdef IS_HASH_CHAIN
- cyclic_pos;
-#else
- (cyclic_pos << 1);
-#endif
-
- const uint8_t *pb = lz->buffer + cur_match - lz->offset;
- uint32_t len =
-#ifdef IS_HASH_CHAIN
- NUM_HASH_DIRECT_BYTES;
- if (pb[max_len] == cur[max_len])
-#else
- MIN(len0, len1);
-#endif
-
- if (pb[len] == cur[len]) {
- while (++len != len_limit)
- if (pb[len] != cur[len])
- break;
-
- if (max_len < len) {
- max_len = len;
- distances[offset++] = len;
- distances[offset++] = delta - 1;
- if (len == len_limit) {
-#ifndef IS_HASH_CHAIN
- *ptr1 = pair[0];
- *ptr0 = pair[1];
-#endif
- break;
- }
- }
- }
-
-#ifdef IS_HASH_CHAIN
- cur_match = *pair;
-#else
- if (pb[len] < cur[len]) {
- *ptr1 = cur_match;
- ptr1 = pair + 1;
- cur_match = *ptr1;
- len1 = len;
- } else {
- *ptr0 = cur_match;
- ptr0 = pair;
- cur_match = *ptr0;
- len0 = len;
- }
-#endif
- }
-
- distances[0] = offset - 1;
-
- move_pos();
-
- return;
-}
-
-
-LZMA_SKIP(LZMA_MATCH_FINDER_NAME_LOWER)
-{
- do {
-#ifdef IS_HASH_CHAIN
- if (lz->write_pos - lz->read_pos < NUM_HASH_BYTES) {
- move_pending();
- continue;
- }
-#else
- uint32_t len_limit;
- if (lz->read_pos + lz->match_max_len <= lz->write_pos) {
- len_limit = lz->match_max_len;
- } else {
- len_limit = lz->write_pos - lz->read_pos;
- if (len_limit < MIN_MATCH_CHECK
- || lz->sequence == SEQ_FLUSH) {
- move_pending();
- continue;
- }
- }
- const uint32_t match_min_pos
- = lz->read_pos + lz->offset > lz->cyclic_buffer_size
- ? lz->read_pos + lz->offset - lz->cyclic_buffer_size
- : 0;
-#endif
-
- assert(lz->pending == 0);
-
- const uint8_t *cur = lz->buffer + lz->read_pos;
-
-#ifdef HASH_ARRAY_2
- uint32_t hash_2_value;
-# ifdef HASH_ARRAY_3
- uint32_t hash_3_value;
- uint32_t hash_value;
- HASH_CALC();
- lz->hash[HASH_3_OFFSET + hash_3_value]
- = lz->read_pos + lz->offset;
-# else
- uint32_t hash_value;
- HASH_CALC();
-# endif
- lz->hash[hash_2_value] = lz->read_pos + lz->offset;
-#else
- uint32_t hash_value;
- HASH_CALC();
-#endif
-
- uint32_t cur_match = lz->hash[FIX_HASH_SIZE + hash_value];
- lz->hash[FIX_HASH_SIZE + hash_value]
- = lz->read_pos + lz->offset;
-
-#ifdef IS_HASH_CHAIN
- lz->son[lz->cyclic_buffer_pos] = cur_match;
-#else
- uint32_t *ptr0 = lz->son + (lz->cyclic_buffer_pos << 1) + 1;
- uint32_t *ptr1 = lz->son + (lz->cyclic_buffer_pos << 1);
-
- uint32_t len0 = NUM_HASH_DIRECT_BYTES;
- uint32_t len1 = NUM_HASH_DIRECT_BYTES;
- uint32_t count = lz->cut_value;
-
- while (true) {
- if (cur_match <= match_min_pos || count-- == 0) {
- *ptr0 = EMPTY_HASH_VALUE;
- *ptr1 = EMPTY_HASH_VALUE;
- break;
- }
-
- const uint32_t delta = lz->read_pos
- + lz->offset - cur_match;
- const uint32_t cyclic_pos
- = delta <= lz->cyclic_buffer_pos
- ? lz->cyclic_buffer_pos - delta
- : lz->cyclic_buffer_pos - delta
- + lz->cyclic_buffer_size;
- uint32_t *pair = lz->son + (cyclic_pos << 1);
-
- const uint8_t *pb = lz->buffer + cur_match
- - lz->offset;
- uint32_t len = MIN(len0, len1);
-
- if (pb[len] == cur[len]) {
- while (++len != len_limit)
- if (pb[len] != cur[len])
- break;
-
- if (len == len_limit) {
- *ptr1 = pair[0];
- *ptr0 = pair[1];
- break;
- }
- }
-
- if (pb[len] < cur[len]) {
- *ptr1 = cur_match;
- ptr1 = pair + 1;
- cur_match = *ptr1;
- len1 = len;
- } else {
- *ptr0 = cur_match;
- ptr0 = pair;
- cur_match = *ptr0;
- len0 = len;
- }
- }
-#endif
-
- move_pos();
-
- } while (--num != 0);
-
- return;
-}
diff --git a/src/liblzma/lz/match_h.h b/src/liblzma/lz/match_h.h
deleted file mode 100644
index 2eae90ba..00000000
--- a/src/liblzma/lz/match_h.h
+++ /dev/null
@@ -1,69 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-//
-/// \file match_h.h
-/// \brief Header template for different match finders
-//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 2.1 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Lesser General Public License for more details.
-//
-///////////////////////////////////////////////////////////////////////////////
-
-#include "lz_encoder_private.h"
-
-
-//////////////////////
-// Global constants //
-//////////////////////
-
-#undef LZMA_HASH_SIZE
-#undef LZMA_FIX_HASH_SIZE
-#undef LZMA_HASH_SIZE_C
-#undef LZMA_FIX_HASH_SIZE_C
-
-#define LZMA_HASH_SIZE(mf_name) LZMA_HASH_SIZE_C(mf_name)
-#define LZMA_FIX_HASH_SIZE(mf_name) LZMA_FIX_HASH_SIZE_C(mf_name)
-
-#define LZMA_HASH_SIZE_C(mf_name) \
- const uint32_t LZMA_ ## mf_name ## _HASH_SIZE
-
-#define LZMA_FIX_HASH_SIZE_C(mf_name) \
- const uint32_t LZMA_ ## mf_name ## _FIX_HASH_SIZE
-
-extern LZMA_HASH_SIZE(LZMA_MATCH_FINDER_NAME_UPPER);
-extern LZMA_FIX_HASH_SIZE(LZMA_MATCH_FINDER_NAME_UPPER);
-
-
-///////////////
-// Functions //
-///////////////
-
-#undef LZMA_GET_MATCHES
-#undef LZMA_SKIP
-#undef LZMA_GET_MATCHES_C
-#undef LZMA_SKIP_C
-
-#define LZMA_GET_MATCHES(mf_name) LZMA_GET_MATCHES_C(mf_name)
-#define LZMA_SKIP(mf_name) LZMA_SKIP_C(mf_name)
-
-#define LZMA_GET_MATCHES_C(mf_name) \
- extern void lzma_ ## mf_name ## _get_matches( \
- lzma_lz_encoder *restrict lz, \
- uint32_t *restrict distances)
-
-#define LZMA_SKIP_C(mf_name) \
- extern void lzma_ ## mf_name ## _skip( \
- lzma_lz_encoder *lz, uint32_t num)
-
-LZMA_GET_MATCHES(LZMA_MATCH_FINDER_NAME_LOWER);
-
-LZMA_SKIP(LZMA_MATCH_FINDER_NAME_LOWER);