aboutsummaryrefslogtreecommitdiff
path: root/src/liblzma/lz/lz_encoder.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/liblzma/lz/lz_encoder.c')
-rw-r--r--src/liblzma/lz/lz_encoder.c780
1 files changed, 388 insertions, 392 deletions
diff --git a/src/liblzma/lz/lz_encoder.c b/src/liblzma/lz/lz_encoder.c
index 82b9103f..d5f84826 100644
--- a/src/liblzma/lz/lz_encoder.c
+++ b/src/liblzma/lz/lz_encoder.c
@@ -3,8 +3,8 @@
/// \file lz_encoder.c
/// \brief LZ in window
//
-// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
+// Copyright (C) 1999-2008 Igor Pavlov
+// Copyright (C) 2007-2008 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@@ -18,496 +18,492 @@
//
///////////////////////////////////////////////////////////////////////////////
-#include "lz_encoder_private.h"
+#include "lz_encoder.h"
+#include "lz_encoder_hash.h"
-// Hash Chains
-#ifdef HAVE_HC3
-# include "hc3.h"
-#endif
-#ifdef HAVE_HC4
-# include "hc4.h"
-#endif
-// Binary Trees
-#ifdef HAVE_BT2
-# include "bt2.h"
-#endif
-#ifdef HAVE_BT3
-# include "bt3.h"
-#endif
-#ifdef HAVE_BT4
-# include "bt4.h"
-#endif
+struct lzma_coder_s {
+ /// LZ-based encoder e.g. LZMA
+ lzma_lz_encoder lz;
+ /// History buffer and match finder
+ lzma_mf mf;
-/// This is needed in two places so provide a macro.
-#define get_cyclic_buffer_size(history_size) ((history_size) + 1)
+ /// Next coder in the chain
+ lzma_next_coder next;
+};
-/// Calculate certain match finder properties and validate the calculated
-/// values. This is as its own function, because *num_items is needed to
-/// calculate memory requirements in common/memory.c.
-extern bool
-lzma_lz_encoder_hash_properties(lzma_match_finder match_finder,
- uint32_t history_size, uint32_t *restrict hash_mask,
- uint32_t *restrict hash_size_sum, uint32_t *restrict num_items)
+/// \brief Moves the data in the input window to free space for new data
+///
+/// mf->buffer is a sliding input window, which keeps mf->keep_size_before
+/// bytes of input history available all the time. Now and then we need to
+/// "slide" the buffer to make space for the new data to the end of the
+/// buffer. At the same time, data older than keep_size_before is dropped.
+///
+static void
+move_window(lzma_mf *mf)
{
- uint32_t fix_hash_size;
- uint32_t sons;
+ // Align the move to a multiple of 16 bytes. Some LZ-based encoders
+ // like LZMA use the lowest bits of mf->read_pos to know the
+ // alignment of the uncompressed data. We also get better speed
+ // for memmove() with aligned buffers.
+ assert(mf->read_pos > mf->keep_size_before);
+ const uint32_t move_offset
+ = (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
- switch (match_finder) {
-#ifdef HAVE_HC3
- case LZMA_MF_HC3:
- fix_hash_size = LZMA_HC3_FIX_HASH_SIZE;
- sons = 1;
- break;
-#endif
-#ifdef HAVE_HC4
- case LZMA_MF_HC4:
- fix_hash_size = LZMA_HC4_FIX_HASH_SIZE;
- sons = 1;
- break;
-#endif
-#ifdef HAVE_BT2
- case LZMA_MF_BT2:
- fix_hash_size = LZMA_BT2_FIX_HASH_SIZE;
- sons = 2;
- break;
-#endif
-#ifdef HAVE_BT3
- case LZMA_MF_BT3:
- fix_hash_size = LZMA_BT3_FIX_HASH_SIZE;
- sons = 2;
- break;
-#endif
-#ifdef HAVE_BT4
- case LZMA_MF_BT4:
- fix_hash_size = LZMA_BT4_FIX_HASH_SIZE;
- sons = 2;
- break;
-#endif
- default:
- return true;
- }
+ assert(mf->write_pos > move_offset);
+ const size_t move_size = mf->write_pos - move_offset;
- uint32_t hs;
+ assert(move_offset + move_size <= mf->size);
-#ifdef HAVE_LZMA_BT2
- if (match_finder == LZMA_BT2) {
- // NOTE: hash_mask is not used by the BT2 match finder,
- // but it is initialized just in case.
- hs = LZMA_BT2_HASH_SIZE;
- *hash_mask = 0;
- } else
-#endif
- {
- hs = history_size - 1;
- hs |= (hs >> 1);
- hs |= (hs >> 2);
- hs |= (hs >> 4);
- hs |= (hs >> 8);
- hs >>= 1;
- hs |= 0xFFFF;
+ memmove(mf->buffer, mf->buffer + move_offset, move_size);
- if (hs > (UINT32_C(1) << 24)) {
- if (match_finder == LZMA_MF_HC4
- || match_finder == LZMA_MF_BT4)
- hs >>= 1;
- else
- hs = (1 << 24) - 1;
- }
+ mf->offset += move_offset;
+ mf->read_pos -= move_offset;
+ mf->read_limit -= move_offset;
+ mf->write_pos -= move_offset;
+
+ return;
+}
- *hash_mask = hs;
- ++hs;
- }
- *hash_size_sum = hs + fix_hash_size;
+/// \brief Tries to fill the input window (mf->buffer)
+///
+/// If we are the last encoder in the chain, our input data is in in[].
+/// Otherwise we call the next filter in the chain to process in[] and
+/// write its output to mf->buffer.
+///
+/// This function must not be called once it has returned LZMA_STREAM_END.
+///
+static lzma_ret
+fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
+ size_t *in_pos, size_t in_size, lzma_action action)
+{
+ assert(coder->mf.read_pos <= coder->mf.write_pos);
- *num_items = *hash_size_sum
- + get_cyclic_buffer_size(history_size) * sons;
+ // Move the sliding window if needed.
+ if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
+ move_window(&coder->mf);
- return false;
-}
+ size_t in_used;
+ lzma_ret ret;
+ if (coder->next.code == NULL) {
+ // Not using a filter, simply memcpy() as much as possible.
+ in_used = lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
+ &coder->mf.write_pos, coder->mf.size);
+ ret = action != LZMA_RUN && *in_pos == in_size
+ ? LZMA_STREAM_END : LZMA_OK;
-extern lzma_ret
-lzma_lz_encoder_reset(lzma_lz_encoder *lz, lzma_allocator *allocator,
- bool (*process)(lzma_coder *coder, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size),
- size_t history_size, size_t additional_buffer_before,
- size_t match_max_len, size_t additional_buffer_after,
- lzma_match_finder match_finder, uint32_t match_finder_cycles,
- const uint8_t *preset_dictionary,
- size_t preset_dictionary_size)
-{
- lz->sequence = SEQ_RUN;
+ } else {
+ const size_t in_start = *in_pos;
+ ret = coder->next.code(coder->next.coder, allocator,
+ in, in_pos, in_size,
+ coder->mf.buffer, &coder->mf.write_pos,
+ coder->mf.size, action);
+ in_used = *in_pos - in_start;
+ }
- ///////////////
- // In Window //
- ///////////////
+ // If end of stream has been reached or flushing completed, we allow
+ // the encoder to process all the input (that is, read_pos is allowed
+ // to reach write_pos). Otherwise we keep keep_size_after bytes
+ // available as prebuffer.
+ if (ret == LZMA_STREAM_END) {
+ assert(*in_pos == in_size);
+ ret = LZMA_OK;
+ coder->mf.action = action;
+ coder->mf.read_limit = coder->mf.write_pos;
- // Validate history size.
- if (history_size < LZMA_DICTIONARY_SIZE_MIN
- || history_size > LZMA_DICTIONARY_SIZE_MAX) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_HEADER_ERROR;
+ } else if (coder->mf.write_pos > coder->mf.keep_size_after) {
+ // This needs to be done conditionally, because if we got
+ // only little new input, there may be too little input
+ // to do any encoding yet.
+ coder->mf.read_limit = coder->mf.write_pos
+ - coder->mf.keep_size_after;
}
- assert(history_size <= MAX_VAL_FOR_NORMALIZE - 256);
- assert(LZMA_DICTIONARY_SIZE_MAX <= MAX_VAL_FOR_NORMALIZE - 256);
+ // Restart the match finder after finished LZMA_SYNC_FLUSH.
+ if (coder->mf.pending > 0
+ && coder->mf.read_pos < coder->mf.read_limit) {
+ // Match finder may update coder->pending and expects it to
+ // start from zero, so use a temporary variable.
+ const size_t pending = coder->mf.pending;
+ coder->mf.pending = 0;
- // Calculate the size of the history buffer to allocate.
- // TODO: Get a reason for magic constant of 256.
- const size_t size_reserv = (history_size + additional_buffer_before
- + match_max_len + additional_buffer_after) / 2 + 256;
+ // Rewind read_pos so that the match finder can hash
+ // the pending bytes.
+ assert(coder->mf.read_pos >= pending);
+ coder->mf.read_pos -= pending;
- lz->keep_size_before = history_size + additional_buffer_before;
- lz->keep_size_after = match_max_len + additional_buffer_after;
+ // Call the skip function directly instead of using
+ // lz_dict_skip(), since we don't want to touch
+ // mf->read_ahead.
+ coder->mf.skip(&coder->mf, pending);
+ }
- const size_t buffer_size = lz->keep_size_before + lz->keep_size_after
- + size_reserv;
+ return ret;
+}
- // Allocate history buffer if its size has changed.
- if (buffer_size != lz->size) {
- lzma_free(lz->buffer, allocator);
- lz->buffer = lzma_alloc(buffer_size, allocator);
- if (lz->buffer == NULL) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_MEM_ERROR;
+
+static lzma_ret
+lz_encode(lzma_coder *coder, lzma_allocator *allocator,
+ const uint8_t *restrict in, size_t *restrict in_pos,
+ size_t in_size,
+ uint8_t *restrict out, size_t *restrict out_pos,
+ size_t out_size, lzma_action action)
+{
+ while (*out_pos < out_size
+ && (*in_pos < in_size || action != LZMA_RUN)) {
+ // Read more data to coder->mf.buffer if needed.
+ if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
+ >= coder->mf.read_limit)
+ return_if_error(fill_window(coder, allocator,
+ in, in_pos, in_size, action));
+
+ // Encode
+ const lzma_ret ret = coder->lz.code(coder->lz.coder,
+ &coder->mf, out, out_pos, out_size);
+ if (ret != LZMA_OK) {
+ // Setting this to LZMA_RUN for cases when we are
+ // flushing. It doesn't matter when finishing or if
+ // an error occurred.
+ coder->mf.action = LZMA_RUN;
+ return ret;
}
}
- // Allocation successful. Store the new size.
- lz->size = buffer_size;
+ return LZMA_OK;
+}
+
+
+static bool
+lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator,
+ const lzma_lz_options *lz_options)
+{
+ if (lz_options->dictionary_size < LZMA_DICTIONARY_SIZE_MIN
+ || lz_options->dictionary_size
+ > LZMA_DICTIONARY_SIZE_MAX
+ || lz_options->find_len_max
+ > lz_options->match_len_max)
+ return true;
+
+ mf->keep_size_before = lz_options->before_size
+ + lz_options->dictionary_size;
- // Reset in window variables.
- lz->offset = 0;
- lz->read_pos = 0;
- lz->read_limit = 0;
- lz->write_pos = 0;
- lz->pending = 0;
+ mf->keep_size_after = lz_options->after_size
+ + lz_options->match_len_max;
+ // To avoid constant memmove()s, allocate some extra space. Since
+ // memmove()s become more expensive when the size of the buffer
+ // increases, we reserve more space when a large dictionary is
+ // used to make the memmove() calls rarer.
+ uint32_t reserve = lz_options->dictionary_size / 2;
+ if (reserve > (UINT32_C(1) << 30))
+ reserve /= 2;
- //////////////////
- // Match Finder //
- //////////////////
+ reserve += (lz_options->before_size + lz_options->match_len_max
+ + lz_options->after_size) / 2 + (UINT32_C(1) << 19);
- // Validate match_finder, set function pointers and a few match
- // finder specific variables.
- switch (match_finder) {
-#ifdef HAVE_HC3
+ const uint32_t old_size = mf->size;
+ mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
+
+ // FIXME Integer overflows
+
+ // Deallocate the old history buffer if it exists but has different
+ // size than what is needed now.
+ if (mf->buffer != NULL && old_size != mf->size) {
+ lzma_free(mf->buffer, allocator);
+ mf->buffer = NULL;
+ }
+
+ // Match finder options
+ mf->match_len_max = lz_options->match_len_max;
+ mf->find_len_max = lz_options->find_len_max;
+ mf->cyclic_buffer_size = lz_options->dictionary_size + 1;
+
+ // Validate the match finder ID and setup the function pointers.
+ switch (lz_options->match_finder) {
+#ifdef HAVE_MF_HC3
case LZMA_MF_HC3:
- lz->get_matches = &lzma_hc3_get_matches;
- lz->skip = &lzma_hc3_skip;
- lz->cut_value = 8 + (match_max_len >> 2);
+ mf->find = &lzma_mf_hc3_find;
+ mf->skip = &lzma_mf_hc3_skip;
break;
#endif
-#ifdef HAVE_HC4
+#ifdef HAVE_MF_HC4
case LZMA_MF_HC4:
- lz->get_matches = &lzma_hc4_get_matches;
- lz->skip = &lzma_hc4_skip;
- lz->cut_value = 8 + (match_max_len >> 2);
+ mf->find = &lzma_mf_hc4_find;
+ mf->skip = &lzma_mf_hc4_skip;
break;
#endif
-#ifdef HAVE_BT2
+#ifdef HAVE_MF_BT2
case LZMA_MF_BT2:
- lz->get_matches = &lzma_bt2_get_matches;
- lz->skip = &lzma_bt2_skip;
- lz->cut_value = 16 + (match_max_len >> 1);
+ mf->find = &lzma_mf_bt2_find;
+ mf->skip = &lzma_mf_bt2_skip;
break;
#endif
-#ifdef HAVE_BT3
+#ifdef HAVE_MF_BT3
case LZMA_MF_BT3:
- lz->get_matches = &lzma_bt3_get_matches;
- lz->skip = &lzma_bt3_skip;
- lz->cut_value = 16 + (match_max_len >> 1);
+ mf->find = &lzma_mf_bt3_find;
+ mf->skip = &lzma_mf_bt3_skip;
break;
#endif
-#ifdef HAVE_BT4
+#ifdef HAVE_MF_BT4
case LZMA_MF_BT4:
- lz->get_matches = &lzma_bt4_get_matches;
- lz->skip = &lzma_bt4_skip;
- lz->cut_value = 16 + (match_max_len >> 1);
+ mf->find = &lzma_mf_bt4_find;
+ mf->skip = &lzma_mf_bt4_skip;
break;
#endif
+
default:
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_HEADER_ERROR;
+ return true;
}
- // Check if we have been requested to use a non-default cut_value.
- if (match_finder_cycles > 0)
- lz->cut_value = match_finder_cycles;
-
- lz->match_max_len = match_max_len;
- lz->cyclic_buffer_size = get_cyclic_buffer_size(history_size);
+ // Calculate the sizes of mf->hash and mf->son.
+ const uint32_t hash_bytes = lz_options->match_finder & 0x0F;
+ const bool is_bt = (lz_options->match_finder & 0x10) != 0;
+ uint32_t hs;
- uint32_t hash_size_sum;
- uint32_t num_items;
- if (lzma_lz_encoder_hash_properties(match_finder, history_size,
- &lz->hash_mask, &hash_size_sum, &num_items)) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_HEADER_ERROR;
- }
+ if (hash_bytes == 2) {
+ hs = 0xFFFF;
+ } else {
+ // Round dictionary size up to the next 2^n - 1 so it can
+ // be used as a hash mask.
+ hs = lz_options->dictionary_size - 1;
+ hs |= hs >> 1;
+ hs |= hs >> 2;
+ hs |= hs >> 4;
+ hs |= hs >> 8;
+ hs >>= 1;
+ hs |= 0xFFFF;
- if (num_items != lz->num_items) {
-#if UINT32_MAX >= SIZE_MAX / 4
- // Check for integer overflow. (Huge dictionaries are not
- // possible on 32-bit CPU.)
- if (num_items > SIZE_MAX / sizeof(uint32_t)) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_MEM_ERROR;
+ if (hs > (UINT32_C(1) << 24)) {
+ if (hash_bytes == 3)
+ hs = (UINT32_C(1) << 24) - 1;
+ else
+ hs >>= 1;
}
-#endif
-
- const size_t size_in_bytes
- = (size_t)(num_items) * sizeof(uint32_t);
+ }
- lzma_free(lz->hash, allocator);
- lz->hash = lzma_alloc(size_in_bytes, allocator);
- if (lz->hash == NULL) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_MEM_ERROR;
- }
+ mf->hash_mask = hs;
+
+ ++hs;
+ if (hash_bytes > 2)
+ hs += HASH_2_SIZE;
+ if (hash_bytes > 3)
+ hs += HASH_3_SIZE;
+/*
+ No match finder uses this at the moment.
+ if (mf->hash_bytes > 4)
+ hs += HASH_4_SIZE;
+*/
+
+ const uint32_t old_count = mf->hash_size_sum + mf->sons_count;
+ mf->hash_size_sum = hs;
+ mf->sons_count = mf->cyclic_buffer_size;
+ if (is_bt)
+ mf->sons_count *= 2;
+
+ const uint32_t new_count = mf->hash_size_sum + mf->sons_count;
+
+ // Deallocate the old hash array if it exists and has different size
+ // than what is needed now.
+ if (mf->hash != NULL && old_count != new_count) {
+ lzma_free(mf->hash, allocator);
+ mf->hash = NULL;
+ }
- lz->num_items = num_items;
+ // Maximum number of match finder cycles
+ mf->loops = lz_options->match_finder_cycles;
+ if (mf->loops == 0) {
+ mf->loops = 16 + (lz_options->find_len_max / 2);
+ if (!is_bt)
+ mf->loops /= 2;
}
- lz->son = lz->hash + hash_size_sum;
+ return false;
+}
- // Reset the hash table to empty hash values.
- {
- uint32_t *restrict items = lz->hash;
- for (uint32_t i = 0; i < hash_size_sum; ++i)
- items[i] = EMPTY_HASH_VALUE;
+static bool
+lz_encoder_init(lzma_mf *mf, lzma_allocator *allocator)
+{
+ // Allocate the history buffer.
+ if (mf->buffer == NULL) {
+ mf->buffer = lzma_alloc(mf->size, allocator);
+ if (mf->buffer == NULL)
+ return true;
}
- lz->cyclic_buffer_pos = 0;
+ // Use cyclic_buffer_size as initial mf->offset. This allows
+ // avoiding a few branches in the match finders. The downside is
+ // that match finder needs to be normalized more often, which may
+ // hurt performance with huge dictionaries.
+ mf->offset = mf->cyclic_buffer_size;
+ mf->read_pos = 0;
+ mf->read_ahead = 0;
+ mf->read_limit = 0;
+ mf->write_pos = 0;
+ mf->pending = 0;
- // Because zero is used as empty hash value, make the first byte
- // appear at buffer[1 - offset].
- ++lz->offset;
+ // Allocate match finder's hash array.
+ const size_t alloc_count = mf->hash_size_sum + mf->sons_count;
- // If we are using a preset dictionary, read it now.
- // TODO: This isn't implemented yet so return LZMA_HEADER_ERROR.
- if (preset_dictionary != NULL && preset_dictionary_size > 0) {
- lzma_lz_encoder_end(lz, allocator);
- return LZMA_HEADER_ERROR;
+#if UINT32_MAX >= SIZE_MAX / 4
+ // Check for integer overflow. (Huge dictionaries are not
+ // possible on 32-bit CPU.)
+ if (alloc_count > SIZE_MAX / sizeof(uint32_t))
+ return true;
+#endif
+
+ if (mf->hash == NULL) {
+ mf->hash = lzma_alloc(alloc_count * sizeof(uint32_t),
+ allocator);
+ if (mf->hash == NULL)
+ return true;
}
- // Set the process function pointer.
- lz->process = process;
+ mf->son = mf->hash + mf->hash_size_sum;
+ mf->cyclic_buffer_pos = 0;
+
+ // Initialize the hash table. Since EMPTY_HASH_VALUE is zero, we
+ // can use memset().
+/*
+ for (uint32_t i = 0; i < hash_size_sum; ++i)
+ mf->hash[i] = EMPTY_HASH_VALUE;
+*/
+ memzero(mf->hash, (size_t)(mf->hash_size_sum) * sizeof(uint32_t));
+
+ // We don't need to initialize mf->son, but not doing that will
+ // make Valgrind complain in normalization (see normalize() in
+ // lz_encoder_mf.c).
+ //
+ // Skipping this initialization is *very* good when big dictionary is
+ // used but only small amount of data gets actually compressed: most
+ // of the mf->hash won't get actually allocated by the kernel, so
+ // we avoid wasting RAM and improve initialization speed a lot.
+ //memzero(mf->son, (size_t)(mf->sons_count) * sizeof(uint32_t));
+
+ mf->action = LZMA_RUN;
- return LZMA_OK;
+ return false;
}
-extern void
-lzma_lz_encoder_end(lzma_lz_encoder *lz, lzma_allocator *allocator)
+extern uint64_t
+lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
{
- lzma_free(lz->hash, allocator);
- lz->hash = NULL;
- lz->num_items = 0;
-
- lzma_free(lz->buffer, allocator);
- lz->buffer = NULL;
- lz->size = 0;
-
- return;
+ // Old buffers must not exist when calling lz_encoder_prepare().
+ lzma_mf mf = {
+ .buffer = NULL,
+ .hash = NULL,
+ };
+
+ // Setup the size information into mf.
+ if (lz_encoder_prepare(&mf, NULL, lz_options))
+ return UINT64_MAX;
+
+ // Calculate the memory usage.
+ return (uint64_t)(mf.hash_size_sum + mf.sons_count)
+ * sizeof(uint32_t)
+ + (uint64_t)(mf.size) + sizeof(lzma_coder);
}
-/// \brief Moves the data in the input window to free space for new data
-///
-/// lz->buffer is a sliding input window, which keeps lz->keep_size_before
-/// bytes of input history available all the time. Now and then we need to
-/// "slide" the buffer to make space for the new data to the end of the
-/// buffer. At the same time, data older than keep_size_before is dropped.
-///
static void
-move_window(lzma_lz_encoder *lz)
+lz_encoder_end(lzma_coder *coder, lzma_allocator *allocator)
{
- // buffer[move_offset] will become buffer[0].
- assert(lz->read_pos > lz->keep_size_after);
- size_t move_offset = lz->read_pos - lz->keep_size_before;
-
- // We need one additional byte, since move_pos() moves on 1 byte.
- // TODO: Clean up? At least document more.
- if (move_offset > 0)
- --move_offset;
-
- assert(lz->write_pos > move_offset);
- const size_t move_size = lz->write_pos - move_offset;
+ lzma_next_end(&coder->next, allocator);
- assert(move_offset + move_size <= lz->size);
+ lzma_free(coder->mf.hash, allocator);
+ lzma_free(coder->mf.buffer, allocator);
- memmove(lz->buffer, lz->buffer + move_offset, move_size);
-
- lz->offset += move_offset;
- lz->read_pos -= move_offset;
- lz->read_limit -= move_offset;
- lz->write_pos -= move_offset;
+ if (coder->lz.end != NULL)
+ coder->lz.end(coder->lz.coder, allocator);
+ else
+ lzma_free(coder->lz.coder, allocator);
+ lzma_free(coder, allocator);
return;
}
-/// \brief Tries to fill the input window (lz->buffer)
-///
-/// If we are the last encoder in the chain, our input data is in in[].
-/// Otherwise we call the next filter in the chain to process in[] and
-/// write its output to lz->buffer.
-///
-/// This function must not be called once it has returned LZMA_STREAM_END.
-///
-static lzma_ret
-fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
- size_t *in_pos, size_t in_size, lzma_action action)
+extern lzma_ret
+lzma_lz_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
+ const lzma_filter_info *filters,
+ lzma_ret (*lz_init)(lzma_lz_encoder *lz,
+ lzma_allocator *allocator, const void *options,
+ lzma_lz_options *lz_options))
{
- assert(coder->lz.read_pos <= coder->lz.write_pos);
+ // Allocate and initialize the base data structure.
+ if (next->coder == NULL) {
+ next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
+ if (next->coder == NULL)
+ return LZMA_MEM_ERROR;
- // Move the sliding window if needed.
- if (coder->lz.read_pos >= coder->lz.size - coder->lz.keep_size_after)
- move_window(&coder->lz);
+ next->code = &lz_encode;
+ next->end = &lz_encoder_end;
- size_t in_used;
- lzma_ret ret;
- if (coder->next.code == NULL) {
- // Not using a filter, simply memcpy() as much as possible.
- in_used = bufcpy(in, in_pos, in_size, coder->lz.buffer,
- &coder->lz.write_pos, coder->lz.size);
+ next->coder->lz.coder = NULL;
+ next->coder->lz.code = NULL;
+ next->coder->lz.end = NULL;
- if (action != LZMA_RUN && *in_pos == in_size)
- ret = LZMA_STREAM_END;
- else
- ret = LZMA_OK;
+ next->coder->mf.buffer = NULL;
+ next->coder->mf.hash = NULL;
- } else {
- const size_t in_start = *in_pos;
- ret = coder->next.code(coder->next.coder, allocator,
- in, in_pos, in_size,
- coder->lz.buffer, &coder->lz.write_pos,
- coder->lz.size, action);
- in_used = *in_pos - in_start;
+ next->coder->next = LZMA_NEXT_CODER_INIT;
}
- // If end of stream has been reached or flushing completed, we allow
- // the encoder to process all the input (that is, read_pos is allowed
- // to reach write_pos). Otherwise we keep keep_size_after bytes
- // available as prebuffer.
- if (ret == LZMA_STREAM_END) {
- assert(*in_pos == in_size);
- coder->lz.read_limit = coder->lz.write_pos;
- ret = LZMA_OK;
+ // Initialize the LZ-based encoder.
+ lzma_lz_options lz_options;
+ return_if_error(lz_init(&next->coder->lz, allocator,
+ filters[0].options, &lz_options));
- switch (action) {
- case LZMA_SYNC_FLUSH:
- coder->lz.sequence = SEQ_FLUSH;
- break;
-
- case LZMA_FINISH:
- coder->lz.sequence = SEQ_FINISH;
- break;
-
- default:
- assert(0);
- ret = LZMA_PROG_ERROR;
- break;
- }
-
- } else if (coder->lz.write_pos > coder->lz.keep_size_after) {
- // This needs to be done conditionally, because if we got
- // only little new input, there may be too little input
- // to do any encoding yet.
- coder->lz.read_limit = coder->lz.write_pos
- - coder->lz.keep_size_after;
- }
-
- // Restart the match finder after finished LZMA_SYNC_FLUSH.
- if (coder->lz.pending > 0
- && coder->lz.read_pos < coder->lz.read_limit) {
- // Match finder may update coder->pending and expects it to
- // start from zero, so use a temporary variable.
- const size_t pending = coder->lz.pending;
- coder->lz.pending = 0;
+ // Setup the size information into next->coder->mf and deallocate
+ // old buffers if they have wrong size.
+ if (lz_encoder_prepare(&next->coder->mf, allocator, &lz_options))
+ return LZMA_HEADER_ERROR;
- // Rewind read_pos so that the match finder can hash
- // the pending bytes.
- assert(coder->lz.read_pos >= pending);
- coder->lz.read_pos -= pending;
- coder->lz.skip(&coder->lz, pending);
- }
+ // Allocate new buffers if needed, and do the rest of
+ // the initialization.
+ if (lz_encoder_init(&next->coder->mf, allocator))
+ return LZMA_MEM_ERROR;
- return ret;
+ // Initialize the next filter in the chain, if any.
+ return lzma_next_filter_init(&next->coder->next, allocator,
+ filters + 1);
}
-extern lzma_ret
-lzma_lz_encode(lzma_coder *coder, lzma_allocator *allocator,
- const uint8_t *restrict in, size_t *restrict in_pos,
- size_t in_size,
- uint8_t *restrict out, size_t *restrict out_pos,
- size_t out_size, lzma_action action)
+extern LZMA_API lzma_bool
+lzma_mf_is_supported(lzma_match_finder mf)
{
- while (*out_pos < out_size
- && (*in_pos < in_size || action != LZMA_RUN)) {
- // Read more data to coder->lz.buffer if needed.
- if (coder->lz.sequence == SEQ_RUN
- && coder->lz.read_pos >= coder->lz.read_limit)
- return_if_error(fill_window(coder, allocator,
- in, in_pos, in_size, action));
+ bool ret = false;
- // Encode
- if (coder->lz.process(coder, out, out_pos, out_size)) {
- // Setting this to SEQ_RUN for cases when we are
- // flushing. It doesn't matter when finishing.
- coder->lz.sequence = SEQ_RUN;
- return action != LZMA_RUN ? LZMA_STREAM_END : LZMA_OK;
- }
- }
+#ifdef HAVE_MF_HC3
+ if (mf == LZMA_MF_HC3)
+ ret = true;
+#endif
- return LZMA_OK;
-}
+#ifdef HAVE_MF_HC4
+ if (mf == LZMA_MF_HC4)
+ ret = true;
+#endif
+#ifdef HAVE_MF_BT2
+ if (mf == LZMA_MF_BT2)
+ ret = true;
+#endif
-/// \brief Normalizes hash values
-///
-/// lzma_lz_normalize is called when lz->pos hits MAX_VAL_FOR_NORMALIZE,
-/// which currently happens once every 2 GiB of input data (to be exact,
-/// after the first 2 GiB it happens once every 2 GiB minus dictionary_size
-/// bytes). lz->pos is incremented by lzma_lz_move_pos().
-///
-/// lz->hash contains big amount of offsets relative to lz->buffer.
-/// The offsets are stored as uint32_t, which is the only reasonable
-/// datatype for these offsets; uint64_t would waste far too much RAM
-/// and uint16_t would limit the dictionary to 64 KiB (far too small).
-///
-/// When compressing files over 2 GiB, lz->buffer needs to be moved forward
-/// to avoid integer overflows. We scan the lz->hash array and fix every
-/// value to match the updated lz->buffer.
-extern void
-lzma_lz_encoder_normalize(lzma_lz_encoder *lz)
-{
- const uint32_t subvalue = lz->read_pos - lz->cyclic_buffer_size;
- assert(subvalue <= INT32_MAX);
-
- {
- const uint32_t num_items = lz->num_items;
- uint32_t *restrict items = lz->hash;
-
- for (uint32_t i = 0; i < num_items; ++i) {
- // If the distance is greater than the dictionary
- // size, we can simply mark the item as empty.
- if (items[i] <= subvalue)
- items[i] = EMPTY_HASH_VALUE;
- else
- items[i] -= subvalue;
- }
- }
+#ifdef HAVE_MF_BT3
+ if (mf == LZMA_MF_BT3)
+ ret = true;
+#endif
- // Update offset to match the new locations.
- lz->offset -= subvalue;
+#ifdef HAVE_MF_BT4
+ if (mf == LZMA_MF_BT4)
+ ret = true;
+#endif
- return;
+ return ret;
}