aboutsummaryrefslogtreecommitdiff
path: root/src/liblzma/lz/lz_decoder.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/liblzma/lz/lz_decoder.c')
-rw-r--r--src/liblzma/lz/lz_decoder.c547
1 files changed, 174 insertions, 373 deletions
diff --git a/src/liblzma/lz/lz_decoder.c b/src/liblzma/lz/lz_decoder.c
index ae969d62..5c3f1d18 100644
--- a/src/liblzma/lz/lz_decoder.c
+++ b/src/liblzma/lz/lz_decoder.c
@@ -18,351 +18,142 @@
//
///////////////////////////////////////////////////////////////////////////////
-#include "lz_decoder.h"
+// liblzma supports multiple LZ77-based filters. The LZ part is shared
+// between these filters. The LZ code takes care of dictionary handling
+// and passing the data between filters in the chain. The filter-specific
+// part decodes from the input buffer to the dictionary.
-/// Minimum size of allocated dictionary
-#define DICT_SIZE_MIN 8192
+#include "lz_decoder.h"
-/// When there is less than this amount of data available for decoding,
-/// it is moved to the temporary buffer which
-/// - protects from reads past the end of the buffer; and
-/// - stored the incomplete data between lzma_code() calls.
-///
-/// \note TEMP_LIMIT must be at least as much as
-/// REQUIRED_IN_BUFFER_SIZE defined in lzma_decoder.c.
-#define TEMP_LIMIT 32
-// lzma_lz_decoder.dict[] must be three times the size of TEMP_LIMIT.
-// 2 * TEMP_LIMIT is used for the actual data, and the third TEMP_LIMIT
-// bytes is needed for safety to allow decode_dummy() in lzma_decoder.c
-// to read past end of the buffer. This way it should be both fast and simple.
-#if LZMA_BUFFER_SIZE < 3 * TEMP_LIMIT
-# error LZMA_BUFFER_SIZE < 3 * TEMP_LIMIT
-#endif
+struct lzma_coder_s {
+ /// Dictionary (history buffer)
+ lzma_dict dict;
+ /// The actual LZ-based decoder e.g. LZMA
+ lzma_lz_decoder lz;
-struct lzma_coder_s {
+ /// Next filter in the chain, if any. Note that LZMA and LZMA2 are
+ /// only allowed as the last filter, but the long-range filter in
+ /// future can be in the middle of the chain.
lzma_next_coder next;
- lzma_lz_decoder lz;
- // There are more members in this structure but they are not
- // visible in LZ coder.
+ /// True if the next filter in the chain has returned LZMA_STREAM_END.
+ bool next_finished;
+
+ /// True if the LZ decoder (e.g. LZMA) has detected end of payload
+ /// marker. This may become true before next_finished becomes true.
+ bool this_finished;
+
+ /// Temporary buffer needed when the LZ-based filter is not the last
+ /// filter in the chain. The output of the next filter is first
+ /// decoded into buffer[], which is then used as input for the actual
+ /// LZ-based decoder.
+ struct {
+ size_t pos;
+ size_t size;
+ uint8_t buffer[LZMA_BUFFER_SIZE];
+ } temp;
};
-/// - Copy as much data as possible from lz->dict[] to out[].
-/// - Update *out_pos, lz->start, and lz->end accordingly.
-/// - Wrap lz-pos to the beginning of lz->dict[] if there is a danger that
-/// it may go past the end of the buffer (lz->pos >= lz->must_flush_pos).
-static inline bool
-flush(lzma_lz_decoder *restrict lz, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size)
-{
- // Flush uncompressed data from the history buffer to
- // the output buffer. This is done in two phases.
-
- assert(lz->start <= lz->end);
-
- // Flush if pos < start < end.
- if (lz->pos < lz->start && lz->start < lz->end) {
- bufcpy(lz->dict, &lz->start, lz->end, out, out_pos, out_size);
-
- // If we reached end of the data in history buffer,
- // wrap to the beginning.
- if (lz->start == lz->end)
- lz->start = 0;
- }
-
- // Flush if start start < pos <= end. This is not as `else' for
- // previous `if' because the previous one may make this one true.
- if (lz->start < lz->pos) {
- bufcpy(lz->dict, &lz->start,
- lz->pos, out, out_pos, out_size);
-
- if (lz->pos >= lz->must_flush_pos) {
- // Wrap the flushing position if we have
- // flushed the whole history buffer.
- if (lz->pos == lz->start)
- lz->start = 0;
-
- // Wrap the write position and store to lz.end
- // how much there is new data available.
- lz->end = lz->pos;
- lz->pos = 0;
- lz->is_full = true;
- }
- }
-
- assert(lz->pos < lz->must_flush_pos);
-
- return *out_pos == out_size;
-}
-
-
-/// Calculate safe value for lz->limit. If no safe value can be found,
-/// set lz->limit to zero. When flushing, only as little data will be
-/// decoded as is needed to fill the output buffer (lowers both latency
-/// and throughput).
-///
-/// \return true if there is no space for new uncompressed data.
-///
-static inline bool
-set_limit(lzma_lz_decoder *lz, size_t out_avail, bool flushing)
-{
- // Set the limit so that writing to dict[limit + match_max_len - 1]
- // doesn't overwrite any unflushed data and doesn't write past the
- // end of the dict buffer.
- if (lz->start <= lz->pos) {
- // We can fill the buffer from pos till the end
- // of the dict buffer.
- lz->limit = lz->must_flush_pos;
- } else if (lz->pos + lz->match_max_len < lz->start) {
- // There's some unflushed data between pos and end of the
- // buffer. Limit so that we don't overwrite the unflushed data.
- lz->limit = lz->start - lz->match_max_len;
- } else {
- // Buffer is too full.
- lz->limit = 0;
- return true;
- }
-
- // Finetune the limit a bit if it isn't zero.
-
- assert(lz->limit > lz->pos);
- const size_t dict_avail = lz->limit - lz->pos;
-
- if (lz->uncompressed_size < dict_avail) {
- // Finishing a stream that doesn't have
- // an end of stream marker.
- lz->limit = lz->pos + lz->uncompressed_size;
-
- } else if (flushing && out_avail < dict_avail) {
- // Flushing enabled, decoding only as little as needed to
- // fill the out buffer (if there's enough input, of course).
- lz->limit = lz->pos + out_avail;
- }
-
- return lz->limit == lz->pos;
-}
-
-
-/// Takes care of wrapping the data into temporary buffer when needed,
-/// and calls the actual decoder.
-///
-/// \return true if error occurred
-///
-static inline bool
-call_process(lzma_coder *restrict coder, const uint8_t *restrict in,
- size_t *restrict in_pos, size_t in_size)
-{
- // It would be nice and simple if we could just give in[] to the
- // decoder, but the requirement of zlib-like API forces us to be
- // able to make *in_pos == in_size whenever there is enough output
- // space. If needed, we will append a few bytes from in[] to
- // a temporary buffer and decode enough to reach the part that
- // was copied from in[]. Then we can continue with the real in[].
-
- bool error;
- const size_t dict_old_pos = coder->lz.pos;
- const size_t in_avail = in_size - *in_pos;
-
- if (coder->lz.temp_size + in_avail < 2 * TEMP_LIMIT) {
- // Copy all the available input from in[] to temp[].
- memcpy(coder->lz.temp + coder->lz.temp_size,
- in + *in_pos, in_avail);
- coder->lz.temp_size += in_avail;
- *in_pos += in_avail;
- assert(*in_pos == in_size);
-
- // Decode as much as possible.
- size_t temp_used = 0;
- error = coder->lz.process(coder, coder->lz.temp, &temp_used,
- coder->lz.temp_size, true);
- assert(temp_used <= coder->lz.temp_size);
-
- // Move the remaining data to the beginning of temp[].
- coder->lz.temp_size -= temp_used;
- memmove(coder->lz.temp, coder->lz.temp + temp_used,
- coder->lz.temp_size);
-
- } else if (coder->lz.temp_size > 0) {
- // Fill temp[] unless it is already full because we aren't
- // the last filter in the chain.
- size_t copy_size = 0;
- if (coder->lz.temp_size < 2 * TEMP_LIMIT) {
- assert(*in_pos < in_size);
- copy_size = 2 * TEMP_LIMIT - coder->lz.temp_size;
- memcpy(coder->lz.temp + coder->lz.temp_size,
- in + *in_pos, copy_size);
- // NOTE: We don't update lz.temp_size or *in_pos yet.
- }
-
- size_t temp_used = 0;
- error = coder->lz.process(coder, coder->lz.temp, &temp_used,
- coder->lz.temp_size + copy_size, false);
-
- if (temp_used < coder->lz.temp_size) {
- // Only very little input data was consumed. Move
- // the unprocessed data to the beginning temp[].
- coder->lz.temp_size += copy_size - temp_used;
- memmove(coder->lz.temp, coder->lz.temp + temp_used,
- coder->lz.temp_size);
- *in_pos += copy_size;
- assert(*in_pos <= in_size);
-
- } else {
- // We were able to decode so much data that next time
- // we can decode directly from in[]. That is, we can
- // consider temp[] to be empty now.
- *in_pos += temp_used - coder->lz.temp_size;
- coder->lz.temp_size = 0;
- assert(*in_pos <= in_size);
- }
-
- } else {
- // Decode directly from in[].
- error = coder->lz.process(coder, in, in_pos, in_size, false);
- assert(*in_pos <= in_size);
- }
-
- assert(coder->lz.pos >= dict_old_pos);
- if (coder->lz.uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) {
- // Update uncompressed size.
- coder->lz.uncompressed_size -= coder->lz.pos - dict_old_pos;
-
- // Check that End of Payload Marker hasn't been detected
- // since it must not be present because uncompressed size
- // is known.
- if (coder->lz.eopm_detected)
- error = true;
- }
-
- return error;
-}
-
-
static lzma_ret
decode_buffer(lzma_coder *coder,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
- size_t *restrict out_pos, size_t out_size,
- bool flushing)
+ size_t *restrict out_pos, size_t out_size)
{
- bool stop = false;
-
while (true) {
- // Flush from coder->lz.dict to out[].
- flush(&coder->lz, out, out_pos, out_size);
-
- // All done?
- if (*out_pos == out_size
- || stop
- || coder->lz.eopm_detected
- || coder->lz.uncompressed_size == 0)
- break;
-
- // Set write limit in the dictionary.
- if (set_limit(&coder->lz, out_size - *out_pos, flushing))
- break;
-
- // Decode more data.
- if (call_process(coder, in, in_pos, in_size))
- return LZMA_DATA_ERROR;
-
- // Set stop to true if we must not call call_process() again
- // during this function call.
- // FIXME: Can this make the loop exist too early? It wouldn't
- // cause data corruption so not a critical problem. It can
- // happen if dictionary gets full and lz.temp still contains
- // a few bytes data that we could decode right now.
- if (*in_pos == in_size && coder->lz.temp_size <= TEMP_LIMIT
- && coder->lz.pos < coder->lz.limit)
- stop = true;
+ // Wrap the dictionary if needed.
+ if (coder->dict.pos == coder->dict.size)
+ coder->dict.pos = 0;
+
+ // Store the current dictionary position. It is needed to know
+ // where to start copying to the out[] buffer.
+ const size_t dict_start = coder->dict.pos;
+
+ // Calculate how much we allow the process() function to
+ // decode. It must not decode past the end of the dictionary
+ // buffer, and we don't want it to decode more than is
+ // actually needed to fill the out[] buffer.
+ coder->dict.limit = coder->dict.pos + MIN(out_size - *out_pos,
+ coder->dict.size - coder->dict.pos);
+
+ // Call the process() function to do the actual decoding.
+ const lzma_ret ret = coder->lz.code(
+ coder->lz.coder, &coder->dict,
+ in, in_pos, in_size);
+
+ // Copy the decoded data from the dictionary to the out[]
+ // buffer.
+ const size_t copy_size = coder->dict.pos - dict_start;
+ assert(copy_size <= out_size - *out_pos);
+ memcpy(out + *out_pos, coder->dict.buf + dict_start,
+ copy_size);
+ *out_pos += copy_size;
+
+ // Return if everything got decoded or an error occurred, or
+ // if there's no more data to decode.
+ if (ret != LZMA_OK || *out_pos == out_size
+ || coder->dict.pos < coder->dict.size)
+ return ret;
}
-
- // If we have decoded everything (EOPM detected or uncompressed_size
- // bytes were processed) to the history buffer, and also flushed
- // everything from the history buffer, our job is done.
- if ((coder->lz.eopm_detected
- || coder->lz.uncompressed_size == 0)
- && coder->lz.start == coder->lz.pos)
- return LZMA_STREAM_END;
-
- return LZMA_OK;
}
-extern lzma_ret
-lzma_lz_decode(lzma_coder *coder,
+static lzma_ret
+lz_decode(lzma_coder *coder,
lzma_allocator *allocator lzma_attribute((unused)),
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size,
lzma_action action)
{
- if (coder->next.code == NULL) {
- const lzma_ret ret = decode_buffer(coder, in, in_pos, in_size,
- out, out_pos, out_size,
- action == LZMA_SYNC_FLUSH);
-
- if (*out_pos == out_size || ret == LZMA_STREAM_END) {
- // Unread to make coder->temp[] empty. This is easy,
- // because we know that all the data currently in
- // coder->temp[] has been copied form in[] during this
- // call to the decoder.
- //
- // If we didn't do this, we could have data left in
- // coder->temp[] when end of stream is reached. That
- // data could be left there from *previous* call to
- // the decoder; in that case we wouldn't know where
- // to put that data.
- assert(*in_pos >= coder->lz.temp_size);
- *in_pos -= coder->lz.temp_size;
- coder->lz.temp_size = 0;
- }
-
- return ret;
- }
+ if (coder->next.code == NULL)
+ return decode_buffer(coder, in, in_pos, in_size,
+ out, out_pos, out_size);
// We aren't the last coder in the chain, we need to decode
// our input to a temporary buffer.
- const bool flushing = action == LZMA_SYNC_FLUSH;
while (*out_pos < out_size) {
- if (!coder->lz.next_finished
- && coder->lz.temp_size < LZMA_BUFFER_SIZE) {
+ // Fill the temporary buffer if it is empty.
+ if (!coder->next_finished
+ && coder->temp.pos == coder->temp.size) {
+ coder->temp.pos = 0;
+ coder->temp.size = 0;
+
const lzma_ret ret = coder->next.code(
coder->next.coder,
allocator, in, in_pos, in_size,
- coder->lz.temp, &coder->lz.temp_size,
+ coder->temp.buffer, &coder->temp.size,
LZMA_BUFFER_SIZE, action);
if (ret == LZMA_STREAM_END)
- coder->lz.next_finished = true;
- else if (coder->lz.temp_size < LZMA_BUFFER_SIZE
- || ret != LZMA_OK)
+ coder->next_finished = true;
+ else if (ret != LZMA_OK || coder->temp.size == 0)
return ret;
}
- if (coder->lz.this_finished) {
- if (coder->lz.temp_size != 0)
+ if (coder->this_finished) {
+ if (coder->temp.size != 0)
return LZMA_DATA_ERROR;
- if (coder->lz.next_finished)
+ if (coder->next_finished)
return LZMA_STREAM_END;
return LZMA_OK;
}
- size_t dummy = 0;
- const lzma_ret ret = decode_buffer(coder, NULL, &dummy, 0,
- out, out_pos, out_size, flushing);
+ const lzma_ret ret = decode_buffer(coder, coder->temp.buffer,
+ &coder->temp.pos, coder->temp.size,
+ out, out_pos, out_size);
if (ret == LZMA_STREAM_END)
- coder->lz.this_finished = true;
+ coder->this_finished = true;
else if (ret != LZMA_OK)
return ret;
- else if (coder->lz.next_finished && *out_pos < out_size)
+ else if (coder->next_finished && *out_pos < out_size)
return LZMA_DATA_ERROR;
}
@@ -370,94 +161,104 @@ lzma_lz_decode(lzma_coder *coder,
}
-/// \brief Initializes LZ part of the LZMA decoder or Inflate
-///
-/// \param history_size Number of bytes the LZ out window is
-/// supposed keep available from the output
-/// history.
-/// \param match_max_len Number of bytes a single decoding loop
-/// can advance the write position (lz->pos)
-/// in the history buffer (lz->dict).
-///
-/// \note This function is called by LZMA decoder and Inflate init()s.
-/// It's up to those functions allocate *lz and initialize it
-/// with LZMA_LZ_DECODER_INIT.
+static void
+lz_decoder_end(lzma_coder *coder, lzma_allocator *allocator)
+{
+ lzma_next_end(&coder->next, allocator);
+ lzma_free(coder->dict.buf, allocator);
+
+ if (coder->lz.end != NULL)
+ coder->lz.end(coder->lz.coder, allocator);
+ else
+ lzma_free(coder->lz.coder, allocator);
+
+ lzma_free(coder, allocator);
+ return;
+}
+
+
extern lzma_ret
-lzma_lz_decoder_reset(lzma_lz_decoder *lz, lzma_allocator *allocator,
- bool (*process)(lzma_coder *restrict coder,
- const uint8_t *restrict in, size_t *restrict in_pos,
- size_t in_size, bool has_safe_buffer),
- size_t history_size, size_t match_max_len)
+lzma_lz_decoder_init(lzma_next_coder *next, lzma_allocator *allocator,
+ const lzma_filter_info *filters,
+ lzma_ret (*lz_init)(lzma_lz_decoder *lz,
+ lzma_allocator *allocator, const void *options,
+ size_t *dict_size))
{
- // Known uncompressed size is used only with LZMA_Alone files so we
- // set it always to unknown by default.
- lz->uncompressed_size = LZMA_VLI_VALUE_UNKNOWN;
-
- // Limit the history size to roughly sane values. This is primarily
- // to prevent integer overflows.
- if (history_size > UINT32_MAX / 2)
- return LZMA_HEADER_ERROR;
-
- // Store the value actually requested. We use it for sanity checks
- // when repeating data from the history buffer.
- lz->requested_size = history_size;
-
- // Avoid tiny history buffer sizes for performance reasons.
- // TODO: Test if this actually helps...
- if (history_size < DICT_SIZE_MIN)
- history_size = DICT_SIZE_MIN;
-
- // The real size of the history buffer is a bit bigger than
- // requested by our caller. This allows us to do some optimizations,
- // which help not only speed but simplicity of the code; specifically,
- // we can make sure that there is always at least match_max_len
- // bytes immediatelly available for writing without a need to wrap
- // the history buffer.
- const size_t dict_real_size = history_size + 2 * match_max_len + 1;
-
- // Reallocate memory if needed.
- if (history_size != lz->size || match_max_len != lz->match_max_len) {
- // Destroy the old buffer.
- lzma_lz_decoder_end(lz, allocator);
-
- lz->size = history_size;
- lz->match_max_len = match_max_len;
- lz->must_flush_pos = history_size + match_max_len + 1;
-
- lz->dict = lzma_alloc(dict_real_size, allocator);
- if (lz->dict == NULL)
+ // Allocate the base structure if it isn't already allocated.
+ if (next->coder == NULL) {
+ next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
+ if (next->coder == NULL)
return LZMA_MEM_ERROR;
+
+ next->code = &lz_decode;
+ next->end = &lz_decoder_end;
+
+ next->coder->dict.buf = NULL;
+ next->coder->dict.size = 0;
+ next->coder->lz = LZMA_LZ_DECODER_INIT;
+ next->coder->next = LZMA_NEXT_CODER_INIT;
}
- // Reset the variables so that lz_get_byte(lz, 0) will return '\0'.
- lz->pos = 0;
- lz->start = 0;
- lz->end = dict_real_size;
- lz->dict[dict_real_size - 1] = 0;
- lz->is_full = false;
- lz->eopm_detected = false;
- lz->next_finished = false;
- lz->this_finished = false;
- lz->temp_size = 0;
-
- // Clean up the temporary buffer to make it very sure that there are
- // no information leaks when multiple steams are decoded with the
- // same decoder structures.
- memzero(lz->temp, LZMA_BUFFER_SIZE);
-
- // Set the process function pointer.
- lz->process = process;
+ // Allocate and initialize the LZ-based decoder. It will also give
+ // us the dictionary size.
+ size_t dict_size;
+ return_if_error(lz_init(&next->coder->lz, allocator,
+ filters[0].options, &dict_size));
+
+ // If the dictionary size is very small, increase it to 4096 bytes.
+ // This is to prevent constant wrapping of the dictionary, which
+ // would slow things down. The downside is that since we don't check
+ // separately for the real dictionary size, we may happily accept
+ // corrupt files.
+ if (dict_size < 4096)
+ dict_size = 4096;
+
+ // Make dictionary size a multipe of 16. Some LZ-based decoders like
+ // LZMA use the lowest bits lzma_dict.pos to know the alignment of the
+ // data. Aligned buffer is also good when memcpying from the
+ // dictionary to the output buffer, since applications are
+ // recommended to give aligned buffers to liblzma.
+ //
+ // Avoid integer overflow. FIXME Should the return value be
+ // LZMA_HEADER_ERROR or LZMA_MEM_ERROR?
+ if (dict_size > SIZE_MAX - 15)
+ return LZMA_MEM_ERROR;
+
+ dict_size = (dict_size + 15) & (SIZE_MAX - 15);
+
+ // Allocate and initialize the dictionary.
+ if (next->coder->dict.size != dict_size) {
+ lzma_free(next->coder->dict.buf, allocator);
+ next->coder->dict.buf = lzma_alloc(dict_size, allocator);
+ if (next->coder->dict.buf == NULL)
+ return LZMA_MEM_ERROR;
- return LZMA_OK;
+ next->coder->dict.size = dict_size;
+ }
+
+ dict_reset(&next->coder->dict);
+
+ // Miscellaneous initializations
+ next->coder->next_finished = false;
+ next->coder->this_finished = false;
+ next->coder->temp.pos = 0;
+ next->coder->temp.size = 0;
+
+ // Initialize the next filter in the chain, if any.
+ return lzma_next_filter_init(&next->coder->next, allocator,
+ filters + 1);
+}
+
+
+extern uint64_t
+lzma_lz_decoder_memusage(size_t dictionary_size)
+{
+ return sizeof(lzma_coder) + (uint64_t)(dictionary_size);
}
extern void
-lzma_lz_decoder_end(lzma_lz_decoder *lz, lzma_allocator *allocator)
+lzma_lz_decoder_uncompressed(lzma_coder *coder, lzma_vli uncompressed_size)
{
- lzma_free(lz->dict, allocator);
- lz->dict = NULL;
- lz->size = 0;
- lz->match_max_len = 0;
- return;
+ coder->lz.set_uncompressed(coder->lz.coder, uncompressed_size);
}