aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/liblzma/lz/lz_encoder.c113
-rw-r--r--src/liblzma/lz/lz_encoder.h18
-rw-r--r--src/liblzma/lzma/lzma_encoder.c551
-rw-r--r--src/liblzma/lzma/lzma_encoder_getoptimum.c59
-rw-r--r--src/liblzma/lzma/lzma_encoder_getoptimumfast.c4
-rw-r--r--src/liblzma/lzma/lzma_encoder_init.c9
-rw-r--r--src/liblzma/lzma/lzma_encoder_private.h15
-rw-r--r--src/liblzma/rangecoder/range_encoder.h383
8 files changed, 532 insertions, 620 deletions
diff --git a/src/liblzma/lz/lz_encoder.c b/src/liblzma/lz/lz_encoder.c
index 03f8fa94..82b9103f 100644
--- a/src/liblzma/lz/lz_encoder.c
+++ b/src/liblzma/lz/lz_encoder.c
@@ -134,16 +134,13 @@ extern lzma_ret
lzma_lz_encoder_reset(lzma_lz_encoder *lz, lzma_allocator *allocator,
bool (*process)(lzma_coder *coder, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size),
- lzma_vli uncompressed_size,
size_t history_size, size_t additional_buffer_before,
size_t match_max_len, size_t additional_buffer_after,
lzma_match_finder match_finder, uint32_t match_finder_cycles,
const uint8_t *preset_dictionary,
size_t preset_dictionary_size)
{
- lz->sequence = SEQ_START;
- lz->uncompressed_size = uncompressed_size;
- lz->temp_size = 0;
+ lz->sequence = SEQ_RUN;
///////////////
// In Window //
@@ -395,10 +392,6 @@ fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
in_used = *in_pos - in_start;
}
- assert(coder->lz.uncompressed_size >= in_used);
- if (coder->lz.uncompressed_size != LZMA_VLI_VALUE_UNKNOWN)
- coder->lz.uncompressed_size -= in_used;
-
// If end of stream has been reached or flushing completed, we allow
// the encoder to process all the input (that is, read_pos is allowed
// to reach write_pos). Otherwise we keep keep_size_after bytes
@@ -431,24 +424,6 @@ fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
- coder->lz.keep_size_after;
}
- // Switch to finishing mode if we have got all the input data.
- // lzma_lz_encode() won't return LZMA_STREAM_END until LZMA_FINISH
- // is used.
- //
- // NOTE: When LZMA is used together with other filters, it is possible
- // that coder->lz.sequence gets set to SEQ_FINISH before the next
- // encoder has returned LZMA_STREAM_END. This is somewhat ugly, but
- // works correctly, because the next encoder cannot have any more
- // output left to be produced. If it had, then our known Uncompressed
- // Size would be invalid, which would mean that we have a bad bug.
-// if (ret == LZMA_OK && coder->lz.uncompressed_size == 0)
-// coder->lz.sequence = SEQ_FINISH;
- // The above breaks normal encoding with known uncompressed size
- // if input chunk size is a multiple of uncompressed size. Commenting
- // the above out breaks LZMA_SYNC_FLUSH at end of stream whose
- // uncompressed size is known. Support for encoding with known
- // uncompressed may get dropped completely so I won't fix this now.
-
// Restart the match finder after finished LZMA_SYNC_FLUSH.
if (coder->lz.pending > 0
&& coder->lz.read_pos < coder->lz.read_limit) {
@@ -475,67 +450,6 @@ lzma_lz_encode(lzma_coder *coder, lzma_allocator *allocator,
uint8_t *restrict out, size_t *restrict out_pos,
size_t out_size, lzma_action action)
{
- // Flush the temporary output buffer, which may be used when the
- // encoder runs of out of space in primary output buffer (the out,
- // *out_pos, and out_size variables).
- if (coder->lz.temp_size > 0) {
- const size_t out_avail = out_size - *out_pos;
- if (out_avail < coder->lz.temp_size) {
- // Cannot copy everything. Copy as much as possible
- // and move the data in lz.temp to the beginning of
- // that buffer.
- memcpy(out + *out_pos, coder->lz.temp, out_avail);
- *out_pos += out_avail;
- memmove(coder->lz.temp, coder->lz.temp + out_avail,
- coder->lz.temp_size - out_avail);
- coder->lz.temp_size -= out_avail;
- return LZMA_OK;
- }
-
- // We can copy everything from coder->lz.temp to out.
- memcpy(out + *out_pos, coder->lz.temp, coder->lz.temp_size);
- *out_pos += coder->lz.temp_size;
- coder->lz.temp_size = 0;
- }
-
- switch (coder->lz.sequence) {
- case SEQ_START:
- assert(coder->lz.read_pos == coder->lz.write_pos);
-
- // If there is no new input data and LZMA_SYNC_FLUSH is used
- // immediatelly after previous LZMA_SYNC_FLUSH finished or
- // at the very beginning of the input stream, we return
- // LZMA_STREAM_END immediatelly. Writing a flush marker
- // to the very beginning of the stream or right after previous
- // flush marker is not allowed by the LZMA stream format.
- if (*in_pos == in_size && action == LZMA_SYNC_FLUSH)
- return LZMA_STREAM_END;
-
- coder->lz.sequence = SEQ_RUN;
- break;
-
- case SEQ_FLUSH_END:
- // During an earlier call to this function, flushing was
- // otherwise finished except some data was left pending
- // in coder->lz.buffer. Now we have copied all that data
- // to the output buffer and can return LZMA_STREAM_END.
- coder->lz.sequence = SEQ_START;
- assert(action == LZMA_SYNC_FLUSH);
- return LZMA_STREAM_END;
-
- case SEQ_END:
- // This is like the above flushing case, but for finishing
- // the encoding.
- //
- // NOTE: action is not necesarily LZMA_FINISH; it can
- // be LZMA_RUN or LZMA_SYNC_FLUSH too in case it is used
- // at the end of the stream with known Uncompressed Size.
- return action != LZMA_RUN ? LZMA_STREAM_END : LZMA_OK;
-
- default:
- break;
- }
-
while (*out_pos < out_size
&& (*in_pos < in_size || action != LZMA_RUN)) {
// Read more data to coder->lz.buffer if needed.
@@ -546,27 +460,10 @@ lzma_lz_encode(lzma_coder *coder, lzma_allocator *allocator,
// Encode
if (coder->lz.process(coder, out, out_pos, out_size)) {
- if (coder->lz.sequence == SEQ_FLUSH) {
- assert(action == LZMA_SYNC_FLUSH);
- if (coder->lz.temp_size == 0) {
- // Flushing was finished successfully.
- coder->lz.sequence = SEQ_START;
- } else {
- // Flushing was otherwise finished,
- // except that some data was left
- // into coder->lz.buffer.
- coder->lz.sequence = SEQ_FLUSH_END;
- }
- } else {
- // NOTE: action may be LZMA_RUN here in case
- // Uncompressed Size is known and we have
- // processed all the data already.
- assert(coder->lz.sequence == SEQ_FINISH);
- coder->lz.sequence = SEQ_END;
- }
-
- return action != LZMA_RUN && coder->lz.temp_size == 0
- ? LZMA_STREAM_END : LZMA_OK;
+ // Setting this to SEQ_RUN for cases when we are
+ // flushing. It doesn't matter when finishing.
+ coder->lz.sequence = SEQ_RUN;
+ return action != LZMA_RUN ? LZMA_STREAM_END : LZMA_OK;
}
}
diff --git a/src/liblzma/lz/lz_encoder.h b/src/liblzma/lz/lz_encoder.h
index b13e4b83..da0e0804 100644
--- a/src/liblzma/lz/lz_encoder.h
+++ b/src/liblzma/lz/lz_encoder.h
@@ -24,32 +24,19 @@
#include "common.h"
-#define LZMA_LZ_TEMP_SIZE 64
-
-
typedef struct lzma_lz_encoder_s lzma_lz_encoder;
struct lzma_lz_encoder_s {
enum {
- SEQ_START,
SEQ_RUN,
SEQ_FLUSH,
- SEQ_FLUSH_END,
SEQ_FINISH,
- SEQ_END
} sequence;
+ /// Function to do the actual encoding from the sliding input window
+ /// to the output stream.
bool (*process)(lzma_coder *coder, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size);
- /// Uncompressed Size or LZMA_VLI_VALUE_UNKNOWN if using EOPM. We need
- /// to track Uncompressed Size to prevent writing flush marker to the
- /// very end of stream that doesn't use EOPM.
- lzma_vli uncompressed_size;
-
- /// Temporary buffer for range encoder.
- uint8_t temp[LZMA_LZ_TEMP_SIZE];
- size_t temp_size;
-
///////////////
// In Window //
///////////////
@@ -145,7 +132,6 @@ extern lzma_ret lzma_lz_encoder_reset(lzma_lz_encoder *lz,
lzma_allocator *allocator,
bool (*process)(lzma_coder *coder, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size),
- lzma_vli uncompressed_size,
size_t history_size, size_t additional_buffer_before,
size_t match_max_len, size_t additional_buffer_after,
lzma_match_finder match_finder, uint32_t match_finder_cycles,
diff --git a/src/liblzma/lzma/lzma_encoder.c b/src/liblzma/lzma/lzma_encoder.c
index 4eee84f3..b0052182 100644
--- a/src/liblzma/lzma/lzma_encoder.c
+++ b/src/liblzma/lzma/lzma_encoder.c
@@ -26,113 +26,248 @@
#include "fastpos.h"
-////////////
-// Macros //
-////////////
-
-// These are as macros mostly because they use local range encoder variables.
-
-#define literal_encode(subcoder, symbol) \
-do { \
- uint32_t context = 1; \
- int i = 8; \
- do { \
- --i; \
- const uint32_t bit = ((symbol) >> i) & 1; \
- bit_encode(subcoder[context], bit); \
- context = (context << 1) | bit; \
- } while (i != 0); \
-} while (0)
-
-
-#define literal_encode_matched(subcoder, match_byte, symbol) \
-do { \
- uint32_t context = 1; \
- int i = 8; \
- do { \
- --i; \
- uint32_t bit = ((symbol) >> i) & 1; \
- const uint32_t match_bit = ((match_byte) >> i) & 1; \
- const uint32_t subcoder_index = 0x100 + (match_bit << 8) + context; \
- bit_encode(subcoder[subcoder_index], bit); \
- context = (context << 1) | bit; \
- if (match_bit != bit) { \
- while (i != 0) { \
- --i; \
- bit = ((symbol) >> i) & 1; \
- bit_encode(subcoder[context], bit); \
- context = (context << 1) | bit; \
- } \
- break; \
- } \
- } while (i != 0); \
-} while (0)
-
-
-#define length_encode(length_encoder, symbol, pos_state, update_price) \
-do { \
- assert((symbol) <= MATCH_MAX_LEN); \
- if ((symbol) < LEN_LOW_SYMBOLS) { \
- bit_encode_0((length_encoder).choice); \
- bittree_encode((length_encoder).low[pos_state], \
- LEN_LOW_BITS, symbol); \
- } else { \
- bit_encode_1((length_encoder).choice); \
- if ((symbol) < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS) { \
- bit_encode_0((length_encoder).choice2); \
- bittree_encode((length_encoder).mid[pos_state], \
- LEN_MID_BITS, \
- (symbol) - LEN_LOW_SYMBOLS); \
- } else { \
- bit_encode_1((length_encoder).choice2); \
- bittree_encode((length_encoder).high, LEN_HIGH_BITS, \
- (symbol) - LEN_LOW_SYMBOLS \
- - LEN_MID_SYMBOLS); \
- } \
- } \
- if (update_price) \
- if (--(length_encoder).counters[pos_state] == 0) \
- lzma_length_encoder_update_table(&(length_encoder), pos_state); \
-} while (0)
-
-
-///////////////
-// Functions //
-///////////////
-
-/// \brief Updates price table of the length encoder
-///
-/// Like all the other prices in LZMA, these are used by lzma_get_optimum().
-///
-extern void
-lzma_length_encoder_update_table(lzma_length_encoder *lencoder,
- const uint32_t pos_state)
+/////////////
+// Literal //
+/////////////
+
+static inline void
+literal_normal(lzma_range_encoder *rc, probability *subcoder, uint32_t symbol)
+{
+ uint32_t context = 1;
+ uint32_t bit_count = 8; // Bits per byte
+ do {
+ const uint32_t bit = (symbol >> --bit_count) & 1;
+ rc_bit(rc, &subcoder[context], bit);
+ context = (context << 1) | bit;
+ } while (bit_count != 0);
+}
+
+
+static inline void
+literal_matched(lzma_range_encoder *rc, probability *subcoder,
+ uint32_t match_byte, uint32_t symbol)
+{
+ uint32_t context = 1;
+ uint32_t bit_count = 8;
+
+ do {
+ uint32_t bit = (symbol >> --bit_count) & 1;
+ const uint32_t match_bit = (match_byte >> bit_count) & 1;
+ rc_bit(rc, &subcoder[(0x100 << match_bit) + context], bit);
+ context = (context << 1) | bit;
+
+ if (match_bit != bit) {
+ // The bit from the literal being encoded and the bit
+ // from the previous match differ. Finish encoding
+ // as a normal literal.
+ while (bit_count != 0) {
+ bit = (symbol >> --bit_count) & 1;
+ rc_bit(rc, &subcoder[context], bit);
+ context = (context << 1) | bit;
+ }
+
+ break;
+ }
+
+ } while (bit_count != 0);
+}
+
+
+static inline void
+literal(lzma_coder *coder)
+{
+ // Locate the literal byte to be encoded and the subcoder.
+ const uint8_t cur_byte = coder->lz.buffer[
+ coder->lz.read_pos - coder->additional_offset];
+ probability *subcoder = literal_get_subcoder(coder->literal_coder,
+ coder->now_pos, coder->previous_byte);
+
+ if (is_literal_state(coder->state)) {
+ // Previous LZMA-symbol was a literal. Encode a normal
+ // literal without a match byte.
+ literal_normal(&coder->rc, subcoder, cur_byte);
+ } else {
+ // Previous LZMA-symbol was a match. Use the last byte of
+ // the match as a "match byte". That is, compare the bits
+ // of the current literal and the match byte.
+ const uint8_t match_byte = coder->lz.buffer[
+ coder->lz.read_pos - coder->reps[0] - 1
+ - coder->additional_offset];
+ literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
+ }
+
+ update_literal(coder->state);
+ coder->previous_byte = cur_byte;
+}
+
+
+//////////////////
+// Match length //
+//////////////////
+
+static inline void
+length(lzma_range_encoder *rc, lzma_length_encoder *lc,
+ const uint32_t pos_state, uint32_t len)
+{
+ assert(len <= MATCH_MAX_LEN);
+ len -= MATCH_MIN_LEN;
+
+ if (len < LEN_LOW_SYMBOLS) {
+ rc_bit(rc, &lc->choice, 0);
+ rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
+ } else {
+ rc_bit(rc, &lc->choice, 1);
+ len -= LEN_LOW_SYMBOLS;
+
+ if (len < LEN_MID_SYMBOLS) {
+ rc_bit(rc, &lc->choice2, 0);
+ rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
+ } else {
+ rc_bit(rc, &lc->choice2, 1);
+ len -= LEN_MID_SYMBOLS;
+ rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
+ }
+ }
+}
+
+
+///////////
+// Match //
+///////////
+
+static inline void
+match(lzma_coder *coder, const uint32_t pos_state,
+ const uint32_t distance, const uint32_t len)
+{
+ update_match(coder->state);
+
+ length(&coder->rc, &coder->match_len_encoder, pos_state, len);
+ coder->prev_len_encoder = &coder->match_len_encoder;
+
+ const uint32_t pos_slot = get_pos_slot(distance);
+ const uint32_t len_to_pos_state = get_len_to_pos_state(len);
+ rc_bittree(&coder->rc, coder->pos_slot_encoder[len_to_pos_state],
+ POS_SLOT_BITS, pos_slot);
+
+ if (pos_slot >= START_POS_MODEL_INDEX) {
+ const uint32_t footer_bits = (pos_slot >> 1) - 1;
+ const uint32_t base = (2 | (pos_slot & 1)) << footer_bits;
+ const uint32_t pos_reduced = distance - base;
+
+ if (pos_slot < END_POS_MODEL_INDEX) {
+ rc_bittree_reverse(&coder->rc,
+ &coder->pos_encoders[base - pos_slot - 1],
+ footer_bits, pos_reduced);
+ } else {
+ rc_direct(&coder->rc, pos_reduced >> ALIGN_BITS,
+ footer_bits - ALIGN_BITS);
+ rc_bittree_reverse(
+ &coder->rc, coder->pos_align_encoder,
+ ALIGN_BITS, pos_reduced & ALIGN_MASK);
+ ++coder->align_price_count;
+ }
+ }
+
+ coder->reps[3] = coder->reps[2];
+ coder->reps[2] = coder->reps[1];
+ coder->reps[1] = coder->reps[0];
+ coder->reps[0] = distance;
+ ++coder->match_price_count;
+}
+
+
+////////////////////
+// Repeated match //
+////////////////////
+
+static inline void
+rep_match(lzma_coder *coder, const uint32_t pos_state,
+ const uint32_t rep, const uint32_t len)
{
- const uint32_t num_symbols = lencoder->table_size;
- const uint32_t a0 = bit_get_price_0(lencoder->choice);
- const uint32_t a1 = bit_get_price_1(lencoder->choice);
- const uint32_t b0 = a1 + bit_get_price_0(lencoder->choice2);
- const uint32_t b1 = a1 + bit_get_price_1(lencoder->choice2);
+ if (rep == 0) {
+ rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
+ rc_bit(&coder->rc,
+ &coder->is_rep0_long[coder->state][pos_state],
+ len != 1);
+ } else {
+ const uint32_t distance = coder->reps[rep];
+ rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
+
+ if (rep == 1) {
+ rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
+ } else {
+ rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
+ rc_bit(&coder->rc, &coder->is_rep2[coder->state],
+ rep - 2);
+
+ if (rep == 3)
+ coder->reps[3] = coder->reps[2];
+
+ coder->reps[2] = coder->reps[1];
+ }
+
+ coder->reps[1] = coder->reps[0];
+ coder->reps[0] = distance;
+ }
+
+ if (len == 1) {
+ update_short_rep(coder->state);
+ } else {
+ length(&coder->rc, &coder->rep_len_encoder, pos_state, len);
+ coder->prev_len_encoder = &coder->rep_len_encoder;
+ update_long_rep(coder->state);
+ }
+}
+
- uint32_t *prices = lencoder->prices[pos_state];
- uint32_t i = 0;
+//////////
+// Main //
+//////////
- for (i = 0; i < num_symbols && i < LEN_LOW_SYMBOLS; ++i)
- prices[i] = a0 + bittree_get_price(lencoder->low[pos_state],
- LEN_LOW_BITS, i);
+static void
+encode_symbol(lzma_coder *coder, uint32_t pos, uint32_t len)
+{
+ const uint32_t pos_state = coder->now_pos & coder->pos_mask;
+
+ if (len == 1 && pos == UINT32_MAX) {
+ // Literal i.e. eight-bit byte
+ rc_bit(&coder->rc,
+ &coder->is_match[coder->state][pos_state], 0);
+ literal(coder);
+ } else {
+ // Some type of match
+ rc_bit(&coder->rc,
+ &coder->is_match[coder->state][pos_state], 1);
+
+ if (pos < REP_DISTANCES) {
+ // It's a repeated match i.e. the same distance
+ // has been used earlier.
+ rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
+ rep_match(coder, pos_state, pos, len);
+ } else {
+ // Normal match
+ rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
+ match(coder, pos_state, pos - REP_DISTANCES, len);
+ }
- for (; i < num_symbols && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i)
- prices[i] = b0 + bittree_get_price(lencoder->mid[pos_state],
- LEN_MID_BITS, i - LEN_LOW_SYMBOLS);
+ coder->previous_byte = coder->lz.buffer[
+ coder->lz.read_pos + len - 1
+ - coder->additional_offset];
+ }
- for (; i < num_symbols; ++i)
- prices[i] = b1 + bittree_get_price(
- lencoder->high, LEN_HIGH_BITS,
- i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS);
+ assert(coder->additional_offset >= len);
+ coder->additional_offset -= len;
+ coder->now_pos += len;
+}
- lencoder->counters[pos_state] = num_symbols;
- return;
+static void
+encode_eopm(lzma_coder *coder)
+{
+ const uint32_t pos_state = coder->now_pos & coder->pos_mask;
+ rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
+ rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
+ match(coder, pos_state, UINT32_MAX, MATCH_MIN_LEN);
}
@@ -145,15 +280,6 @@ extern bool
lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size)
{
-#define rc_buffer coder->lz.temp
-#define rc_buffer_size coder->lz.temp_size
-
- // Local copies
- lzma_range_encoder rc = coder->rc;
- size_t out_pos_local = *out_pos;
- const uint32_t pos_mask = coder->pos_mask;
- const bool best_compression = coder->best_compression;
-
// Initialize the stream if no data has been encoded yet.
if (!coder->is_initialized) {
if (coder->lz.read_pos == coder->lz.read_limit) {
@@ -167,20 +293,10 @@ lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
// Do the actual initialization.
uint32_t len;
uint32_t num_distance_pairs;
- lzma_read_match_distances(coder, &len, &num_distance_pairs);
-
- bit_encode_0(coder->is_match[coder->state][0]);
- update_literal(coder->state);
-
- const uint8_t cur_byte = coder->lz.buffer[
- coder->lz.read_pos - coder->additional_offset];
- probability *subcoder = literal_get_subcoder(coder->literal_coder,
- coder->now_pos, coder->previous_byte);
- literal_encode(subcoder, cur_byte);
+ lzma_read_match_distances(coder,
+ &len, &num_distance_pairs);
- coder->previous_byte = cur_byte;
- --coder->additional_offset;
- ++coder->now_pos;
+ encode_symbol(coder, UINT32_MAX, 1);
assert(coder->additional_offset == 0);
}
@@ -191,19 +307,19 @@ lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
// Encoding loop
while (true) {
- // Check that there is free output space.
- if (out_pos_local == out_size)
- break;
-
- assert(rc_buffer_size == 0);
+ // Encode pending bits, if any.
+ if (rc_encode(&coder->rc, out, out_pos, out_size))
+ return false;
// Check that there is some input to process.
if (coder->lz.read_pos >= coder->lz.read_limit) {
// If flushing or finishing, we must keep encoding
// until additional_offset becomes zero to make
// all the input available at output.
- if (coder->lz.sequence == SEQ_RUN
- || coder->additional_offset == 0)
+ if (coder->lz.sequence == SEQ_RUN)
+ return false;
+
+ if (coder->additional_offset == 0)
break;
}
@@ -218,8 +334,6 @@ lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
}
#endif
- const uint32_t pos_state = coder->now_pos & pos_mask;
-
uint32_t pos;
uint32_t len;
@@ -230,175 +344,32 @@ lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
// - UINT32_MAX: not a match but a literal
// Value ranges for len:
// - [MATCH_MIN_LEN, MATCH_MAX_LEN]
- if (best_compression)
+ if (coder->best_compression)
lzma_get_optimum(coder, &pos, &len);
else
lzma_get_optimum_fast(coder, &pos, &len);
- if (len == 1 && pos == UINT32_MAX) {
- // It's a literal.
- bit_encode_0(coder->is_match[coder->state][pos_state]);
-
- const uint8_t cur_byte = coder->lz.buffer[
- coder->lz.read_pos - coder->additional_offset];
- probability *subcoder = literal_get_subcoder(coder->literal_coder,
- coder->now_pos, coder->previous_byte);
-
- if (is_literal_state(coder->state)) {
- literal_encode(subcoder, cur_byte);
- } else {
- const uint8_t match_byte = coder->lz.buffer[
- coder->lz.read_pos
- - coder->rep_distances[0] - 1
- - coder->additional_offset];
- literal_encode_matched(subcoder, match_byte, cur_byte);
- }
-
- update_literal(coder->state);
- coder->previous_byte = cur_byte;
-
- } else {
- // It's a match.
- bit_encode_1(coder->is_match[coder->state][pos_state]);
-
- if (pos < REP_DISTANCES) {
- // It's a repeated match i.e. the same distance
- // has been used earlier.
- bit_encode_1(coder->is_rep[coder->state]);
-
- if (pos == 0) {
- bit_encode_0(coder->is_rep0[coder->state]);
- const uint32_t symbol = (len == 1) ? 0 : 1;
- bit_encode(coder->is_rep0_long[coder->state][pos_state],
- symbol);
- } else {
- const uint32_t distance = coder->rep_distances[pos];
- bit_encode_1(coder->is_rep0[coder->state]);
-
- if (pos == 1) {
- bit_encode_0(coder->is_rep1[coder->state]);
- } else {
- bit_encode_1(coder->is_rep1[coder->state]);
- bit_encode(coder->is_rep2[coder->state], pos - 2);
-
- if (pos == 3)
- coder->rep_distances[3] = coder->rep_distances[2];
-
- coder->rep_distances[2] = coder->rep_distances[1];
- }
-
- coder->rep_distances[1] = coder->rep_distances[0];
- coder->rep_distances[0] = distance;
- }
-
- if (len == 1) {
- update_short_rep(coder->state);
- } else {
- length_encode(coder->rep_len_encoder,
- len - MATCH_MIN_LEN, pos_state,
- best_compression);
- update_long_rep(coder->state);
- }
-
- } else {
- bit_encode_0(coder->is_rep[coder->state]);
- update_match(coder->state);
- length_encode(coder->match_len_encoder, len - MATCH_MIN_LEN,
- pos_state, best_compression);
- pos -= REP_DISTANCES;
-
- const uint32_t pos_slot = get_pos_slot(pos);
- const uint32_t len_to_pos_state = get_len_to_pos_state(len);
- bittree_encode(coder->pos_slot_encoder[len_to_pos_state],
- POS_SLOT_BITS, pos_slot);
-
- if (pos_slot >= START_POS_MODEL_INDEX) {
- const uint32_t footer_bits = (pos_slot >> 1) - 1;
- const uint32_t base = (2 | (pos_slot & 1)) << footer_bits;
- const uint32_t pos_reduced = pos - base;
-
- if (pos_slot < END_POS_MODEL_INDEX) {
- bittree_reverse_encode(
- coder->pos_encoders + base - pos_slot - 1,
- footer_bits, pos_reduced);
- } else {
- rc_encode_direct_bits(pos_reduced >> ALIGN_BITS,
- footer_bits - ALIGN_BITS);
- bittree_reverse_encode(coder->pos_align_encoder,
- ALIGN_BITS, pos_reduced & ALIGN_MASK);
- ++coder->align_price_count;
- }
- }
-
- coder->rep_distances[3] = coder->rep_distances[2];
- coder->rep_distances[2] = coder->rep_distances[1];
- coder->rep_distances[1] = coder->rep_distances[0];
- coder->rep_distances[0] = pos;
- ++coder->match_price_count;
- }
-
- coder->previous_byte = coder->lz.buffer[
- coder->lz.read_pos + len - 1
- - coder->additional_offset];
- }
-
- assert(coder->additional_offset >= len);
- coder->additional_offset -= len;
- coder->now_pos += len;
+ encode_symbol(coder, pos, len);
}
- // Check if everything is done.
- bool all_done = false;
- if (coder->lz.sequence != SEQ_RUN
- && coder->lz.read_pos == coder->lz.write_pos
- && coder->additional_offset == 0) {
- assert(coder->longest_match_was_found == false);
-
- if (coder->lz.uncompressed_size == LZMA_VLI_VALUE_UNKNOWN
- || coder->lz.sequence == SEQ_FLUSH) {
- // Write special marker: flush marker or end of payload
- // marker. Both are encoded as a match with distance of
- // UINT32_MAX. The match length codes the type of the marker.
- const uint32_t pos_state = coder->now_pos & pos_mask;
- bit_encode_1(coder->is_match[coder->state][pos_state]);
- bit_encode_0(coder->is_rep[coder->state]);
- update_match(coder->state);
-
- const uint32_t len = coder->lz.sequence == SEQ_FLUSH
- ? LEN_SPECIAL_FLUSH : LEN_SPECIAL_EOPM;
- length_encode(coder->match_len_encoder, len - MATCH_MIN_LEN,
- pos_state, best_compression);
-
- const uint32_t pos_slot = (1 << POS_SLOT_BITS) - 1;
- const uint32_t len_to_pos_state = get_len_to_pos_state(len);
- bittree_encode(coder->pos_slot_encoder[len_to_pos_state],
- POS_SLOT_BITS, pos_slot);
-
- const uint32_t footer_bits = 30;
- const uint32_t pos_reduced
- = (UINT32_C(1) << footer_bits) - 1;
- rc_encode_direct_bits(pos_reduced >> ALIGN_BITS,
- footer_bits - ALIGN_BITS);
+ assert(!coder->longest_match_was_found);
- bittree_reverse_encode(coder->pos_align_encoder, ALIGN_BITS,
- pos_reduced & ALIGN_MASK);
- }
+ if (coder->is_flushed) {
+ coder->is_flushed = false;
+ return true;
+ }
- // Flush the last bytes of compressed data from
- // the range coder to the output buffer.
- rc_flush();
+ // We don't support encoding old LZMA streams without EOPM, and LZMA2
+ // doesn't use EOPM at LZMA level.
+ if (coder->write_eopm)
+ encode_eopm(coder);
- rc_reset(rc);
+ rc_flush(&coder->rc);
- // All done. Note that some output bytes might be
- // pending in coder->lz.temp. lzma_lz_encode() will
- // take care of those bytes.
- all_done = true;
+ if (rc_encode(&coder->rc, out, out_pos, out_size)) {
+ coder->is_flushed = true;
+ return false;
}
- // Store local variables back to *coder.
- coder->rc = rc;
- *out_pos = out_pos_local;
-
- return all_done;
+ return true;
}
diff --git a/src/liblzma/lzma/lzma_encoder_getoptimum.c b/src/liblzma/lzma/lzma_encoder_getoptimum.c
index 535508ee..b175e4cb 100644
--- a/src/liblzma/lzma/lzma_encoder_getoptimum.c
+++ b/src/liblzma/lzma/lzma_encoder_getoptimum.c
@@ -104,6 +104,36 @@ do { \
static void
+fill_length_prices(lzma_length_encoder *lc, uint32_t pos_state)
+{
+ const uint32_t num_symbols = lc->table_size;
+ const uint32_t a0 = bit_get_price_0(lc->choice);
+ const uint32_t a1 = bit_get_price_1(lc->choice);
+ const uint32_t b0 = a1 + bit_get_price_0(lc->choice2);
+ const uint32_t b1 = a1 + bit_get_price_1(lc->choice2);
+
+ uint32_t *prices = lc->prices[pos_state];
+ uint32_t i = 0;
+
+ for (i = 0; i < num_symbols && i < LEN_LOW_SYMBOLS; ++i)
+ prices[i] = a0 + bittree_get_price(lc->low[pos_state],
+ LEN_LOW_BITS, i);
+
+ for (; i < num_symbols && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i)
+ prices[i] = b0 + bittree_get_price(lc->mid[pos_state],
+ LEN_MID_BITS, i - LEN_LOW_SYMBOLS);
+
+ for (; i < num_symbols; ++i)
+ prices[i] = b1 + bittree_get_price(lc->high, LEN_HIGH_BITS,
+ i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS);
+
+ lc->counters[pos_state] = num_symbols;
+
+ return;
+}
+
+
+static void
fill_distances_prices(lzma_coder *coder)
{
uint32_t temp_prices[FULL_DISTANCES];
@@ -254,6 +284,9 @@ extern void
lzma_get_optimum(lzma_coder *restrict coder,
uint32_t *restrict back_res, uint32_t *restrict len_res)
{
+ uint32_t position = coder->now_pos;
+ uint32_t pos_state = position & coder->pos_mask;
+
// Update the price tables. In the C++ LZMA SDK 4.42 this was done in both
// initialization function and in the main loop. In liblzma they were
// moved into this single place.
@@ -265,6 +298,13 @@ lzma_get_optimum(lzma_coder *restrict coder,
fill_align_prices(coder);
}
+ if (coder->prev_len_encoder != NULL) {
+ if (--coder->prev_len_encoder->counters[pos_state] == 0)
+ fill_length_prices(coder->prev_len_encoder, pos_state);
+
+ coder->prev_len_encoder = NULL;
+ }
+
if (coder->optimum_end_index != coder->optimum_current_index) {
*len_res = coder->optimum[coder->optimum_current_index].pos_prev
@@ -312,7 +352,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
uint32_t rep_max_index = 0;
for (uint32_t i = 0; i < REP_DISTANCES; ++i) {
- reps[i] = coder->rep_distances[i];
+ reps[i] = coder->reps[i];
const uint32_t back_offset = reps[i] + 1;
if (buf[0] != *(buf - back_offset)
@@ -356,13 +396,8 @@ lzma_get_optimum(lzma_coder *restrict coder,
return;
}
- const uint32_t pos_mask = coder->pos_mask;
-
coder->optimum[0].state = coder->state;
- uint32_t position = coder->now_pos;
- uint32_t pos_state = (position & pos_mask);
-
coder->optimum[1].price = bit_get_price_0(
coder->is_match[coder->state][pos_state])
+ literal_get_price(
@@ -575,7 +610,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
current_byte = *buf;
match_byte = *(buf - reps[0] - 1);
- pos_state = position & pos_mask;
+ pos_state = position & coder->pos_mask;
const uint32_t cur_and_1_price = cur_price
+ bit_get_price_0(coder->is_match[state][pos_state])
@@ -640,7 +675,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
uint32_t state_2 = state;
update_literal(state_2);
- const uint32_t pos_state_next = (position + 1) & pos_mask;
+ const uint32_t pos_state_next = (position + 1) & coder->pos_mask;
const uint32_t next_rep_match_price = cur_and_1_price
+ bit_get_price_1(coder->is_match[state_2][pos_state_next])
+ bit_get_price_1(coder->is_rep[state_2]);
@@ -719,7 +754,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
uint32_t state_2 = state;
update_long_rep(state_2);
- uint32_t pos_state_next = (position + len_test) & pos_mask;
+ uint32_t pos_state_next = (position + len_test) & coder->pos_mask;
const uint32_t cur_and_len_char_price = price
+ length_get_price(coder->rep_len_encoder,
@@ -732,7 +767,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
update_literal(state_2);
- pos_state_next = (position + len_test + 1) & pos_mask;
+ pos_state_next = (position + len_test + 1) & coder->pos_mask;
const uint32_t next_rep_match_price = cur_and_len_char_price
+ bit_get_price_1(coder->is_match[state_2][pos_state_next])
@@ -829,7 +864,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
uint32_t state_2 = state;
update_match(state_2);
uint32_t pos_state_next
- = (position + len_test) & pos_mask;
+ = (position + len_test) & coder->pos_mask;
const uint32_t cur_and_len_char_price = cur_and_len_price
+ bit_get_price_0(
@@ -844,7 +879,7 @@ lzma_get_optimum(lzma_coder *restrict coder,
buf[len_test]);
update_literal(state_2);
- pos_state_next = (pos_state_next + 1) & pos_mask;
+ pos_state_next = (pos_state_next + 1) & coder->pos_mask;
const uint32_t next_rep_match_price
= cur_and_len_char_price
diff --git a/src/liblzma/lzma/lzma_encoder_getoptimumfast.c b/src/liblzma/lzma/lzma_encoder_getoptimumfast.c
index e6cee19d..fa06be21 100644
--- a/src/liblzma/lzma/lzma_encoder_getoptimumfast.c
+++ b/src/liblzma/lzma/lzma_encoder_getoptimumfast.c
@@ -65,7 +65,7 @@ lzma_get_optimum_fast(lzma_coder *restrict coder,
uint32_t rep_max_index = 0;
for (uint32_t i = 0; i < REP_DISTANCES; ++i) {
- const uint32_t back_offset = coder->rep_distances[i] + 1;
+ const uint32_t back_offset = coder->reps[i] + 1;
// If the first two bytes (2 == MATCH_MIN_LEN) do not match,
// this rep_distance[i] is not useful. This is indicated
@@ -168,7 +168,7 @@ lzma_get_optimum_fast(lzma_coder *restrict coder,
--num_available_bytes;
for (uint32_t i = 0; i < REP_DISTANCES; ++i) {
- const uint32_t back_offset = coder->rep_distances[i] + 1;
+ const uint32_t back_offset = coder->reps[i] + 1;
if (buf[1] != *(buf + 1 - back_offset)
|| buf[2] != *(buf + 2 - back_offset)) {
diff --git a/src/liblzma/lzma/lzma_encoder_init.c b/src/liblzma/lzma/lzma_encoder_init.c
index 0e3fb769..306cea8c 100644
--- a/src/liblzma/lzma/lzma_encoder_init.c
+++ b/src/liblzma/lzma/lzma_encoder_init.c
@@ -42,7 +42,7 @@ length_encoder_reset(lzma_length_encoder *lencoder,
// NLength::CPriceTableEncoder::UpdateTables()
for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state)
- lzma_length_encoder_update_table(lencoder, pos_state);
+ lencoder->counters[pos_state] = 1;
return;
}
@@ -112,7 +112,6 @@ lzma_lzma_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
{
const lzma_ret ret = lzma_lz_encoder_reset(
&next->coder->lz, allocator, &lzma_lzma_encode,
- filters[0].uncompressed_size,
options->dictionary_size, OPTS,
options->fast_bytes, MATCH_MAX_LEN + 1 + OPTS,
options->match_finder,
@@ -143,13 +142,13 @@ lzma_lzma_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
next->coder->fast_bytes = options->fast_bytes;
// Range coder
- rc_reset(next->coder->rc);
+ rc_reset(&next->coder->rc);
// State
next->coder->state = 0;
next->coder->previous_byte = 0;
for (size_t i = 0; i < REP_DISTANCES; ++i)
- next->coder->rep_distances[i] = 0;
+ next->coder->reps[i] = 0;
// Bit encoders
for (size_t i = 0; i < STATES; ++i) {
@@ -190,6 +189,8 @@ lzma_lzma_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
next->coder->now_pos = 0;
next->coder->is_initialized = false;
+ next->coder->is_flushed = false,
+ next->coder->write_eopm = true;
// Initialize the next decoder in the chain, if any.
{
diff --git a/src/liblzma/lzma/lzma_encoder_private.h b/src/liblzma/lzma/lzma_encoder_private.h
index 0feaf26a..4159b468 100644
--- a/src/liblzma/lzma/lzma_encoder_private.h
+++ b/src/liblzma/lzma/lzma_encoder_private.h
@@ -26,14 +26,6 @@
#include "lz_encoder.h"
#include "range_encoder.h"
-// We need space for about two encoding loops, because there is no check
-// for available buffer space before end of payload marker gets written.
-// 2*26 bytes should be enough for this... but Lasse isn't very sure about
-// the exact value. 64 bytes certainly is enough. :-)
-#if LZMA_LZ_TEMP_SIZE < 64
-# error LZMA_LZ_TEMP_SIZE is too small.
-#endif
-
#define move_pos(num) \
do { \
@@ -72,7 +64,7 @@ typedef struct {
uint32_t pos_prev; // pos_next;
uint32_t back_prev;
- uint32_t backs[4];
+ uint32_t backs[REP_DISTANCES];
} lzma_optimal;
@@ -90,7 +82,7 @@ struct lzma_coder_s {
// State
lzma_lzma_state state;
uint8_t previous_byte;
- uint32_t rep_distances[REP_DISTANCES];
+ uint32_t reps[REP_DISTANCES];
// Misc
uint32_t match_distances[MATCH_MAX_LEN * 2 + 2 + 1];
@@ -99,6 +91,8 @@ struct lzma_coder_s {
uint32_t now_pos; // Lowest 32 bits are enough here.
bool best_compression; ///< True when LZMA_MODE_BEST is used
bool is_initialized;
+ bool is_flushed;
+ bool write_eopm;
// Literal encoder
lzma_literal_coder *literal_coder;
@@ -119,6 +113,7 @@ struct lzma_coder_s {
// Length encoders
lzma_length_encoder match_len_encoder;
lzma_length_encoder rep_len_encoder;
+ lzma_length_encoder *prev_len_encoder;
// Optimal
lzma_optimal optimum[OPTS];
diff --git a/src/liblzma/rangecoder/range_encoder.h b/src/liblzma/rangecoder/range_encoder.h
index b216e648..b156ee7f 100644
--- a/src/liblzma/rangecoder/range_encoder.h
+++ b/src/liblzma/rangecoder/range_encoder.h
@@ -4,7 +4,7 @@
/// \brief Range Encoder
//
// Copyright (C) 1999-2006 Igor Pavlov
-// Copyright (C) 2007 Lasse Collin
+// Copyright (C) 2007-2008 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@@ -24,14 +24,218 @@
#include "range_common.h"
+/// Maximum number of symbols that can be put pending into lzma_range_encoder
+/// structure between calls to lzma_rc_encode(). For LZMA, 52+5 is enough
+/// (match with big distance and length followed by range encoder flush).
+#define RC_SYMBOLS_MAX 58
+
+
typedef struct {
uint64_t low;
uint64_t cache_size;
uint32_t range;
uint8_t cache;
+
+ /// Number of symbols in the tables
+ size_t count;
+
+ /// rc_encode()'s position in the tables
+ size_t pos;
+
+ /// Symbols to encode
+ enum {
+ RC_BIT_0,
+ RC_BIT_1,
+ RC_DIRECT_0,
+ RC_DIRECT_1,
+ RC_FLUSH,
+ } symbols[RC_SYMBOLS_MAX];
+
+ /// Probabilities associated with RC_BIT_0 or RC_BIT_1
+ probability *probs[RC_SYMBOLS_MAX];
+
} lzma_range_encoder;
+static inline void
+rc_reset(lzma_range_encoder *rc)
+{
+ rc->low = 0;
+ rc->cache_size = 1;
+ rc->range = UINT32_MAX;
+ rc->cache = 0;
+ rc->count = 0;
+ rc->pos = 0;
+}
+
+
+static inline void
+rc_bit(lzma_range_encoder *rc, probability *prob, uint32_t bit)
+{
+ rc->symbols[rc->count] = bit;
+ rc->probs[rc->count] = prob;
+ ++rc->count;
+}
+
+
+static inline void
+rc_bittree(lzma_range_encoder *rc, probability *probs,
+ uint32_t bit_count, uint32_t symbol)
+{
+ uint32_t model_index = 1;
+
+ do {
+ const uint32_t bit = (symbol >> --bit_count) & 1;
+ rc_bit(rc, &probs[model_index], bit);
+ model_index = (model_index << 1) | bit;
+ } while (bit_count != 0);
+}
+
+
+static inline void
+rc_bittree_reverse(lzma_range_encoder *rc, probability *probs,
+ uint32_t bit_count, uint32_t symbol)
+{
+ uint32_t model_index = 1;
+
+ do {
+ const uint32_t bit = symbol & 1;
+ symbol >>= 1;
+ rc_bit(rc, &probs[model_index], bit);
+ model_index = (model_index << 1) | bit;
+ } while (--bit_count != 0);
+}
+
+
+static inline void
+rc_direct(lzma_range_encoder *rc,
+ uint32_t value, uint32_t bit_count)
+{
+ do {
+ rc->symbols[rc->count++]
+ = RC_DIRECT_0 + ((value >> --bit_count) & 1);
+ } while (bit_count != 0);
+}
+
+
+static inline void
+rc_flush(lzma_range_encoder *rc)
+{
+ for (size_t i = 0; i < 5; ++i)
+ rc->symbols[rc->count++] = RC_FLUSH;
+}
+
+
+static inline bool
+rc_shift_low(lzma_range_encoder *rc,
+ uint8_t *out, size_t *out_pos, size_t out_size)
+{
+ if ((uint32_t)(rc->low) < (uint32_t)(0xFF000000)
+ || (uint32_t)(rc->low >> 32) != 0) {
+ do {
+ if (*out_pos == out_size)
+ return true;
+
+ out[*out_pos] = rc->cache + (uint8_t)(rc->low >> 32);
+ ++*out_pos;
+ rc->cache = 0xFF;
+
+ } while (--rc->cache_size != 0);
+
+ rc->cache = (rc->low >> 24) & 0xFF;
+ }
+
+ ++rc->cache_size;
+ rc->low = (rc->low & 0x00FFFFFF) << SHIFT_BITS;
+
+ return false;
+}
+
+
+static inline bool
+rc_encode(lzma_range_encoder *rc,
+ uint8_t *out, size_t *out_pos, size_t out_size)
+{
+ while (rc->pos < rc->count) {
+ // Normalize
+ if (rc->range < TOP_VALUE) {
+ if (rc_shift_low(rc, out, out_pos, out_size))
+ return true;
+
+ rc->range <<= SHIFT_BITS;
+ }
+
+ // Encode a bit
+ switch (rc->symbols[rc->pos]) {
+ case RC_BIT_0: {
+ probability prob = *rc->probs[rc->pos];
+ rc->range = (rc->range >> BIT_MODEL_TOTAL_BITS) * prob;
+ prob += (BIT_MODEL_TOTAL - prob) >> MOVE_BITS;
+ *rc->probs[rc->pos] = prob;
+ break;
+ }
+
+ case RC_BIT_1: {
+ probability prob = *rc->probs[rc->pos];
+ const uint32_t bound = prob
+ * (rc->range >> BIT_MODEL_TOTAL_BITS);
+ rc->low += bound;
+ rc->range -= bound;
+ prob -= prob >> MOVE_BITS;
+ *rc->probs[rc->pos] = prob;
+ break;
+ }
+
+ case RC_DIRECT_0:
+ rc->range >>= 1;
+ break;
+
+ case RC_DIRECT_1:
+ rc->range >>= 1;
+ rc->low += rc->range;
+ break;
+
+ case RC_FLUSH:
+ // Prevent further normalizations.
+ rc->range = UINT32_MAX;
+
+ // Flush the last five bytes (see rc_flush()).
+ do {
+ if (rc_shift_low(rc, out, out_pos, out_size))
+ return true;
+ } while (++rc->pos < rc->count);
+
+ // Reset the range encoder so we are ready to continue
+ // encoding if we weren't finishing the stream.
+ rc_reset(rc);
+ return false;
+
+ default:
+ assert(0);
+ break;
+ }
+
+ ++rc->pos;
+ }
+
+ rc->count = 0;
+ rc->pos = 0;
+
+ return false;
+}
+
+
+static inline uint64_t
+rc_pending(const lzma_range_encoder *rc)
+{
+ return rc->cache_size + 5 - 1;
+}
+
+
+////////////
+// Prices //
+////////////
+
#ifdef HAVE_SMALL
/// Probability prices used by *_get_price() macros. This is initialized
/// by lzma_rc_init() and is not modified later.
@@ -49,183 +253,6 @@ lzma_rc_prob_prices[BIT_MODEL_TOTAL >> MOVE_REDUCING_BITS];
#endif
-/// Resets the range encoder structure.
-#define rc_reset(rc) \
-do { \
- (rc).low = 0; \
- (rc).range = UINT32_MAX; \
- (rc).cache_size = 1; \
- (rc).cache = 0; \
-} while (0)
-
-
-//////////////////
-// Bit encoding //
-//////////////////
-
-// These macros expect that the following variables are defined:
-// - lzma_range_encoder rc;
-// - uint8_t *out;
-// - size_t out_pos_local; // Local copy of *out_pos
-// - size_t size_out;
-//
-// Macros pointing to these variables are also needed:
-// - uint8_t rc_buffer[]; // Don't use a pointer, must be real array!
-// - size_t rc_buffer_size;
-
-
-// Combined from NRangeCoder::CEncoder::Encode()
-// and NRangeCoder::CEncoder::UpdateModel().
-#define bit_encode(prob, symbol) \
-do { \
- probability rc_prob = prob; \
- const uint32_t rc_bound \
- = (rc.range >> BIT_MODEL_TOTAL_BITS) * rc_prob; \
- if ((symbol) == 0) { \
- rc.range = rc_bound; \
- rc_prob += (BIT_MODEL_TOTAL - rc_prob) >> MOVE_BITS; \
- } else { \
- rc.low += rc_bound; \
- rc.range -= rc_bound; \
- rc_prob -= rc_prob >> MOVE_BITS; \
- } \
- prob = rc_prob; \
- rc_normalize(); \
-} while (0)
-
-
-// Optimized version of bit_encode(prob, 0)
-#define bit_encode_0(prob) \
-do { \
- probability rc_prob = prob; \
- rc.range = (rc.range >> BIT_MODEL_TOTAL_BITS) * rc_prob; \
- rc_prob += (BIT_MODEL_TOTAL - rc_prob) >> MOVE_BITS; \
- prob = rc_prob; \
- rc_normalize(); \
-} while (0)
-
-
-// Optimized version of bit_encode(prob, 1)
-#define bit_encode_1(prob) \
-do { \
- probability rc_prob = prob; \
- const uint32_t rc_bound = (rc.range >> BIT_MODEL_TOTAL_BITS) \
- * rc_prob; \
- rc.low += rc_bound; \
- rc.range -= rc_bound; \
- rc_prob -= rc_prob >> MOVE_BITS; \
- prob = rc_prob; \
- rc_normalize(); \
-} while (0)
-
-
-///////////////////////
-// Bit tree encoding //
-///////////////////////
-
-#define bittree_encode(probs, bit_levels, symbol) \
-do { \
- uint32_t model_index = 1; \
- for (int32_t bit_index = bit_levels - 1; \
- bit_index >= 0; --bit_index) { \
- const uint32_t bit = ((symbol) >> bit_index) & 1; \
- bit_encode((probs)[model_index], bit); \
- model_index = (model_index << 1) | bit; \
- } \
-} while (0)
-
-
-#define bittree_reverse_encode(probs, bit_levels, symbol) \
-do { \
- uint32_t model_index = 1; \
- for (uint32_t bit_index = 0; bit_index < bit_levels; ++bit_index) { \
- const uint32_t bit = ((symbol) >> bit_index) & 1; \
- bit_encode((probs)[model_index], bit); \
- model_index = (model_index << 1) | bit; \
- } \
-} while (0)
-
-
-/////////////////
-// Direct bits //
-/////////////////
-
-#define rc_encode_direct_bits(value, num_total_bits) \
-do { \
- for (int32_t rc_i = (num_total_bits) - 1; rc_i >= 0; --rc_i) { \
- rc.range >>= 1; \
- if ((((value) >> rc_i) & 1) == 1) \
- rc.low += rc.range; \
- rc_normalize(); \
- } \
-} while (0)
-
-
-//////////////////
-// Buffer "I/O" //
-//////////////////
-
-// Calls rc_shift_low() to write out a byte if needed.
-#define rc_normalize() \
-do { \
- if (rc.range < TOP_VALUE) { \
- rc.range <<= SHIFT_BITS; \
- rc_shift_low(); \
- } \
-} while (0)
-
-
-// Flushes all the pending output.
-#define rc_flush() \
- for (int32_t rc_i = 0; rc_i < 5; ++rc_i) \
- rc_shift_low()
-
-
-// Writes the compressed data to next_out.
-// TODO: Notation change?
-// (uint32_t)(0xFF000000) => ((uint32_t)(0xFF) << TOP_BITS)
-// TODO: Another notation change?
-// rc.low = (uint32_t)(rc.low) << SHIFT_BITS;
-// =>
-// rc.low &= TOP_VALUE - 1;
-// rc.low <<= SHIFT_BITS;
-#define rc_shift_low() \
-do { \
- if ((uint32_t)(rc.low) < (uint32_t)(0xFF000000) \
- || (uint32_t)(rc.low >> 32) != 0) { \
- uint8_t rc_temp = rc.cache; \
- do { \
- rc_write_byte(rc_temp + (uint8_t)(rc.low >> 32)); \
- rc_temp = 0xFF; \
- } while(--rc.cache_size != 0); \
- rc.cache = (uint8_t)((uint32_t)(rc.low) >> 24); \
- } \
- ++rc.cache_size; \
- rc.low = (uint32_t)(rc.low) << SHIFT_BITS; \
-} while (0)
-
-
-// Write one byte of compressed data to *next_out. Updates out_pos_local.
-// If out_pos_local == out_size, the byte is appended to rc_buffer.
-#define rc_write_byte(b) \
-do { \
- if (out_pos_local == out_size) { \
- rc_buffer[rc_buffer_size++] = (uint8_t)(b); \
- assert(rc_buffer_size < sizeof(rc_buffer)); \
- } else { \
- assert(rc_buffer_size == 0); \
- out[out_pos_local++] = (uint8_t)(b); \
- } \
-} while (0)
-
-
-//////////////////
-// Price macros //
-//////////////////
-
-// These macros expect that the following variables are defined:
-// - uint32_t lzma_rc_prob_prices;
-
#define bit_get_price(prob, symbol) \
lzma_rc_prob_prices[((((prob) - (symbol)) ^ (-(symbol))) \
& (BIT_MODEL_TOTAL - 1)) >> MOVE_REDUCING_BITS]