diff options
author | Lasse Collin <lasse.collin@tukaani.org> | 2007-12-09 00:42:33 +0200 |
---|---|---|
committer | Lasse Collin <lasse.collin@tukaani.org> | 2007-12-09 00:42:33 +0200 |
commit | 5d018dc03549c1ee4958364712fb0c94e1bf2741 (patch) | |
tree | 1b211911fb33fddb3f04b77f99e81df23623ffc4 /src/liblzma/subblock/subblock_encoder.c | |
download | xz-5d018dc03549c1ee4958364712fb0c94e1bf2741.tar.xz |
Imported to git.
Diffstat (limited to 'src/liblzma/subblock/subblock_encoder.c')
-rw-r--r-- | src/liblzma/subblock/subblock_encoder.c | 841 |
1 files changed, 841 insertions, 0 deletions
diff --git a/src/liblzma/subblock/subblock_encoder.c b/src/liblzma/subblock/subblock_encoder.c new file mode 100644 index 00000000..9fa95b24 --- /dev/null +++ b/src/liblzma/subblock/subblock_encoder.c @@ -0,0 +1,841 @@ +/////////////////////////////////////////////////////////////////////////////// +// +/// \file subblock_encoder.c +/// \brief Encoder of the Subblock filter +// +// Copyright (C) 2007 Lasse Collin +// +// This library is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 2.1 of the License, or (at your option) any later version. +// +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +// Lesser General Public License for more details. +// +/////////////////////////////////////////////////////////////////////////////// + +#include "subblock_encoder.h" +#include "raw_encoder.h" + + +#define REPEAT_COUNT_MAX (1U << 28) + +/// Number of bytes the data chunk being repeated must be before we care +/// about alignment. This is somewhat arbitrary. It just doesn't make sense +/// to waste bytes for alignment when the data chunk is very small. +/// +/// TODO Rename and use this also for Subblock Data? +#define RLE_MIN_SIZE_FOR_ALIGN 3 + +#define write_byte(b) \ +do { \ + out[*out_pos] = b; \ + ++*out_pos; \ + ++coder->alignment.out_pos; \ +} while (0) + + +struct lzma_coder_s { + lzma_next_coder next; + bool next_finished; + + enum { + SEQ_FILL, + SEQ_FLUSH, + SEQ_RLE_COUNT_0, + SEQ_RLE_COUNT_1, + SEQ_RLE_COUNT_2, + SEQ_RLE_COUNT_3, + SEQ_RLE_SIZE, + SEQ_RLE_DATA, + SEQ_DATA_SIZE_0, + SEQ_DATA_SIZE_1, + SEQ_DATA_SIZE_2, + SEQ_DATA_SIZE_3, + SEQ_DATA, + SEQ_SUBFILTER_INIT, + SEQ_SUBFILTER_FLAGS, + } sequence; + + lzma_options_subblock *options; + + lzma_vli uncompressed_size; + + size_t pos; + uint32_t tmp; + + struct { + uint32_t multiple; + uint32_t in_pending; + uint32_t in_pos; + uint32_t out_pos; + } alignment; + + struct { + uint8_t *data; + size_t size; + size_t limit; + } subblock; + + struct { + uint8_t buffer[LZMA_SUBBLOCK_RLE_MAX]; + size_t size; + lzma_vli count; + } rle; + + struct { + enum { + SUB_NONE, + SUB_SET, + SUB_RUN, + SUB_FINISH, + SUB_END_MARKER, + } mode; + + bool got_input; + + uint8_t *flags; + size_t flags_size; + + lzma_next_coder subcoder; + + } subfilter; + + struct { + size_t pos; + size_t size; + uint8_t buffer[LZMA_BUFFER_SIZE]; + } temp; +}; + + +/// \brief Aligns the output buffer +/// +/// Aligns the output buffer so that after skew bytes the output position is +/// a multiple of coder->alignment.multiple. +static bool +subblock_align(lzma_coder *coder, uint8_t *restrict out, + size_t *restrict out_pos, size_t out_size, uint32_t skew) +{ + assert(*out_pos < out_size); + + const uint32_t target = coder->alignment.in_pos + % coder->alignment.multiple; + + while ((coder->alignment.out_pos + skew) + % coder->alignment.multiple != target) { + // Zero indicates padding. + write_byte(0x00); + + // Check if output buffer got full and indicate it to + // the caller. + if (*out_pos == out_size) + return true; + } + + coder->alignment.in_pos += coder->alignment.in_pending; + coder->alignment.in_pending = 0; + + // Output buffer is not full. + return false; +} + + +/// \brief Checks if buffer contains repeated data +/// +/// \param needle Buffer containing a single repeat chunk +/// \param needle_size Size of needle in bytes +/// \param buf Buffer to search for repeated needles +/// \param buf_chunks Buffer size is buf_chunks * needle_size. +/// +/// \return True if the whole buf is filled with repeated needles. +/// +static bool +is_repeating(const uint8_t *restrict needle, size_t needle_size, + const uint8_t *restrict buf, size_t buf_chunks) +{ + while (buf_chunks-- != 0) { + if (memcmp(buf, needle, needle_size) != 0) + return false; + + buf += needle_size; + } + + return true; +} + + +/// \brief Optimizes the repeating style and updates coder->sequence +static void +subblock_rle_flush(lzma_coder *coder) +{ + // The Subblock decoder can use memset() when the size of the data + // being repeated is one byte, so we check if the RLE buffer is + // filled with a single repeating byte. + if (coder->rle.size > 1) { + const uint8_t b = coder->rle.buffer[0]; + size_t i = 0; + while (true) { + if (coder->rle.buffer[i] != b) + break; + + if (++i == coder->rle.size) { + // TODO Integer overflow check maybe, + // although this needs at least 2**63 bytes + // of input until it gets triggered... + coder->rle.count *= coder->rle.size; + coder->rle.size = 1; + break; + } + } + } + + if (coder->rle.count > REPEAT_COUNT_MAX) + coder->tmp = REPEAT_COUNT_MAX - 1; + else + coder->tmp = coder->rle.count - 1; + + coder->sequence = SEQ_RLE_COUNT_0; + + return; +} + + +/// \brief Resizes coder->subblock.data for a new size limit +static lzma_ret +subblock_data_size(lzma_coder *coder, lzma_allocator *allocator, + size_t new_limit) +{ + // Verify that the new limit is valid. + if (new_limit < LZMA_SUBBLOCK_DATA_SIZE_MIN + || new_limit > LZMA_SUBBLOCK_DATA_SIZE_MAX) + return LZMA_HEADER_ERROR; + + // Ff the new limit is different than the previous one, we need + // to reallocate the data buffer. + if (new_limit != coder->subblock.limit) { + lzma_free(coder->subblock.data, allocator); + coder->subblock.data = lzma_alloc(new_limit, allocator); + if (coder->subblock.data == NULL) + return LZMA_MEM_ERROR; + } + + coder->subblock.limit = new_limit; + + return LZMA_OK; +} + + +static lzma_ret +subblock_buffer(lzma_coder *coder, lzma_allocator *allocator, + const uint8_t *restrict in, size_t *restrict in_pos, + size_t in_size, uint8_t *restrict out, + size_t *restrict out_pos, size_t out_size, lzma_action action) +{ + // Verify that there is a sane amount of input. + if (coder->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) { + const lzma_vli in_avail = in_size - *in_pos; + if (action == LZMA_FINISH) { + if (in_avail != coder->uncompressed_size) + return LZMA_DATA_ERROR; + } else { + if (in_avail > coder->uncompressed_size) + return LZMA_DATA_ERROR; + } + } + + // Check if we need to do something special with the Subfilter. + if (coder->options != NULL && coder->options->allow_subfilters) { + switch (coder->options->subfilter_mode) { + case LZMA_SUBFILTER_NONE: + if (coder->subfilter.mode != SUB_NONE) + return LZMA_PROG_ERROR; + break; + + case LZMA_SUBFILTER_SET: + if (coder->subfilter.mode != SUB_NONE) + return LZMA_HEADER_ERROR; + + coder->subfilter.mode = SUB_SET; + coder->subfilter.got_input = false; + + if (coder->sequence == SEQ_FILL) + coder->sequence = SEQ_FLUSH; + + break; + + case LZMA_SUBFILTER_RUN: + if (coder->subfilter.mode != SUB_RUN) + return LZMA_PROG_ERROR; + break; + + case LZMA_SUBFILTER_FINISH: + if (coder->subfilter.mode == SUB_RUN) + coder->subfilter.mode = SUB_FINISH; + else if (coder->subfilter.mode != SUB_FINISH) + return LZMA_PROG_ERROR; + + if (!coder->subfilter.got_input) + return LZMA_PROG_ERROR; + + break; + + default: + return LZMA_HEADER_ERROR; + } + } + + // Main loop + while (*out_pos < out_size) + switch (coder->sequence) { + case SEQ_FILL: { + // Grab the new Subblock Data Size and reallocate the buffer. + if (coder->subblock.size == 0 && coder->options != NULL + && coder->options->subblock_data_size + != coder->subblock.limit) { + const lzma_ret ret = subblock_data_size(coder, + allocator, coder->options + ->subblock_data_size); + if (ret != LZMA_OK) + return ret; + } + + if (coder->subfilter.mode == SUB_NONE) { + assert(coder->subfilter.subcoder.code == NULL); + + // No Subfilter is enabled, just copy the data as is. + // NOTE: uncompressed_size cannot overflow because we + // have checked/ it in the beginning of this function. + const size_t in_used = bufcpy(in, in_pos, in_size, + coder->subblock.data, + &coder->subblock.size, + coder->subblock.limit); + + if (coder->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) + coder->uncompressed_size -= in_used; + + coder->alignment.in_pending += in_used; + + } else { + const size_t in_start = *in_pos; + lzma_ret ret; + + if (coder->subfilter.mode == SUB_FINISH) { + // Let the Subfilter write out pending data, + // but don't give it any new input anymore. + size_t dummy = 0; + ret = coder->subfilter.subcoder.code(coder + ->subfilter.subcoder.coder, + allocator, NULL, &dummy, 0, + coder->subblock.data, + &coder->subblock.size, + coder->subblock.limit, + LZMA_FINISH); + } else { + // Give our input data to the Subfilter. Note + // that action can be LZMA_FINISH. In that + // case, we filter everything until the end + // of the input. The application isn't required + // to separately set LZMA_SUBBLOCK_FINISH. + ret = coder->subfilter.subcoder.code(coder + ->subfilter.subcoder.coder, + allocator, in, in_pos, in_size, + coder->subblock.data, + &coder->subblock.size, + coder->subblock.limit, + action); + } + + const size_t in_used = *in_pos - in_start; + + if (in_used > 0) + coder->subfilter.got_input = true; + + // NOTE: uncompressed_size cannot overflow because we + // have checked it in the beginning of this function. + if (coder->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) + coder->uncompressed_size -= *in_pos - in_start; + + coder->alignment.in_pending += in_used; + + if (ret == LZMA_STREAM_END) { + // We don't strictly need to do this, but + // doing it sounds like a good idea, because + // otherwise the Subfilter's memory could be + // left allocated for long time, and would + // just waste memory. + lzma_next_coder_end(&coder->subfilter.subcoder, + allocator); + + assert(coder->options != NULL); + coder->options->subfilter_mode + = LZMA_SUBFILTER_NONE; + + assert(coder->subfilter.mode == SUB_FINISH + || action == LZMA_FINISH); + coder->subfilter.mode = SUB_END_MARKER; + + // Flush now. Even if coder->subblock.size + // happens to be zero, we still need to go + // to SEQ_FLUSH to write the Subfilter Unset + // indicator. + coder->sequence = SEQ_FLUSH; + break; + } + + // Return if an error occurred. + if (ret != LZMA_OK) + return ret; + } + + // If we ran out of input before the whole buffer + // was filled, return to application. + if (coder->subblock.size < coder->subblock.limit + && action != LZMA_FINISH) + return LZMA_OK; + + coder->sequence = SEQ_FLUSH; + } + + // Fall through + + case SEQ_FLUSH: + if (coder->options != NULL) { + // Update the alignment variable. + coder->alignment.multiple = coder->options->alignment; + if (coder->alignment.multiple + < LZMA_SUBBLOCK_ALIGNMENT_MIN + || coder->alignment.multiple + > LZMA_SUBBLOCK_ALIGNMENT_MAX) + return LZMA_HEADER_ERROR; + + // Run-length encoder + // + // First check if there is some data pending and we + // have an obvious need to flush it immediatelly. + if (coder->rle.count > 0 + && (coder->rle.size + != coder->options->rle + || coder->subblock.size + % coder->rle.size)) { + subblock_rle_flush(coder); + break; + } + + // Grab the (possibly new) RLE chunk size and + // validate it. + coder->rle.size = coder->options->rle; + if (coder->rle.size > LZMA_SUBBLOCK_RLE_MAX) + return LZMA_HEADER_ERROR; + + if (coder->subblock.size != 0 + && coder->rle.size + != LZMA_SUBBLOCK_RLE_OFF + && coder->subblock.size + % coder->rle.size == 0) { + + // Initialize coder->rle.buffer if we don't + // have RLE already running. + if (coder->rle.count == 0) + memcpy(coder->rle.buffer, + coder->subblock.data, + coder->rle.size); + + // Test if coder->subblock.data is repeating. + const size_t count = coder->subblock.size + / coder->rle.size; + if (is_repeating(coder->rle.buffer, + coder->rle.size, + coder->subblock.data, count)) { + if (LZMA_VLI_VALUE_MAX - count + < coder->rle.count) + return LZMA_PROG_ERROR; + + coder->rle.count += count; + coder->subblock.size = 0; + + } else if (coder->rle.count > 0) { + // It's not repeating or at least not + // with the same byte sequence as the + // earlier Subblock Data buffers. We + // have some data pending in the RLE + // buffer already, so do a flush. + // Once flushed, we will check again + // if the Subblock Data happens to + // contain a different repeating + // sequence. + subblock_rle_flush(coder); + break; + } + } + } + + // If we now have some data left in coder->subblock, the RLE + // buffer is empty and we must write a regular Subblock Data. + if (coder->subblock.size > 0) { + assert(coder->rle.count == 0); + coder->tmp = coder->subblock.size - 1; + coder->sequence = SEQ_DATA_SIZE_0; + break; + } + + // Check if we should enable Subfilter. + if (coder->subfilter.mode == SUB_SET) { + if (coder->rle.count > 0) + subblock_rle_flush(coder); + else + coder->sequence = SEQ_SUBFILTER_INIT; + break; + } + + // Check if we have just finished Subfiltering. + if (coder->subfilter.mode == SUB_END_MARKER) { + if (coder->rle.count > 0) { + subblock_rle_flush(coder); + break; + } + + write_byte(0x50); + coder->subfilter.mode = SUB_NONE; + if (*out_pos == out_size) + return LZMA_OK; + } + + // Check if we have already written everything. + if (action == LZMA_FINISH && *in_pos == in_size + && coder->subfilter.mode == SUB_NONE) { + if (coder->rle.count > 0) { + subblock_rle_flush(coder); + break; + } + + if (coder->uncompressed_size + == LZMA_VLI_VALUE_UNKNOWN) { + // NOTE: No need to use write_byte() here + // since we are finishing. + out[*out_pos] = 0x10; + ++*out_pos; + } else if (coder->uncompressed_size != 0) { + return LZMA_DATA_ERROR; + } + + return LZMA_STREAM_END; + } + + // Otherwise we have more work to do. + coder->sequence = SEQ_FILL; + break; + + case SEQ_RLE_COUNT_0: + // Make the Data field properly aligned, but only if the data + // chunk to be repeated isn't extremely small. We have four + // bytes for Count and one byte for Size, thus the number five. + if (coder->rle.size >= RLE_MIN_SIZE_FOR_ALIGN + && subblock_align( + coder, out, out_pos, out_size, 5)) + return LZMA_OK; + + assert(coder->rle.count > 0); + + write_byte(0x30 | (coder->tmp & 0x0F)); + + coder->sequence = SEQ_RLE_COUNT_1; + break; + + case SEQ_RLE_COUNT_1: + write_byte(coder->tmp >> 4); + coder->sequence = SEQ_RLE_COUNT_2; + break; + + case SEQ_RLE_COUNT_2: + write_byte(coder->tmp >> 12); + coder->sequence = SEQ_RLE_COUNT_3; + break; + + case SEQ_RLE_COUNT_3: + write_byte(coder->tmp >> 20); + + if (coder->rle.count > REPEAT_COUNT_MAX) + coder->rle.count -= REPEAT_COUNT_MAX; + else + coder->rle.count = 0; + + coder->sequence = SEQ_RLE_SIZE; + break; + + case SEQ_RLE_SIZE: + assert(coder->rle.size >= LZMA_SUBBLOCK_RLE_MIN); + assert(coder->rle.size <= LZMA_SUBBLOCK_RLE_MAX); + write_byte(coder->rle.size - 1); + coder->sequence = SEQ_RLE_DATA; + break; + + case SEQ_RLE_DATA: + bufcpy(coder->rle.buffer, &coder->pos, coder->rle.size, + out, out_pos, out_size); + if (coder->pos < coder->rle.size) + return LZMA_OK; + + coder->alignment.out_pos += coder->rle.size; + + coder->pos = 0; + coder->sequence = SEQ_FLUSH; + break; + + case SEQ_DATA_SIZE_0: + // We need four bytes for the Size field. + if (subblock_align(coder, out, out_pos, out_size, 4)) + return LZMA_OK; + + write_byte(0x20 | (coder->tmp & 0x0F)); + coder->sequence = SEQ_DATA_SIZE_1; + break; + + case SEQ_DATA_SIZE_1: + write_byte(coder->tmp >> 4); + coder->sequence = SEQ_DATA_SIZE_2; + break; + + case SEQ_DATA_SIZE_2: + write_byte(coder->tmp >> 12); + coder->sequence = SEQ_DATA_SIZE_3; + break; + + case SEQ_DATA_SIZE_3: + write_byte(coder->tmp >> 20); + coder->sequence = SEQ_DATA; + break; + + case SEQ_DATA: + bufcpy(coder->subblock.data, &coder->pos, + coder->subblock.size, out, out_pos, out_size); + if (coder->pos < coder->subblock.size) + return LZMA_OK; + + coder->alignment.out_pos += coder->subblock.size; + + coder->subblock.size = 0; + coder->pos = 0; + coder->sequence = SEQ_FLUSH; + break; + + case SEQ_SUBFILTER_INIT: { + assert(coder->subblock.size == 0); + assert(coder->rle.count == 0); + assert(coder->subfilter.mode == SUB_SET); + assert(coder->options != NULL); + + // There must be a filter specified. + if (coder->options->subfilter_options.id + == LZMA_VLI_VALUE_UNKNOWN) + return LZMA_HEADER_ERROR; + + // Initialize a raw encoder to work as a Subfilter. + lzma_options_filter options[2]; + options[0] = coder->options->subfilter_options; + options[1].id = LZMA_VLI_VALUE_UNKNOWN; + + lzma_ret ret = lzma_raw_encoder_init( + &coder->subfilter.subcoder, allocator, + options, LZMA_VLI_VALUE_UNKNOWN, false); + if (ret != LZMA_OK) + return ret; + + // Encode the Filter Flags field into a buffer. This should + // never fail since we have already successfully initialized + // the Subfilter itself. Check it still, and return + // LZMA_PROG_ERROR instead of whatever the ret would say. + ret = lzma_filter_flags_size( + &coder->subfilter.flags_size, options); + assert(ret == LZMA_OK); + if (ret != LZMA_OK) + return LZMA_PROG_ERROR; + + coder->subfilter.flags = lzma_alloc( + coder->subfilter.flags_size, allocator); + if (coder->subfilter.flags == NULL) + return LZMA_MEM_ERROR; + + // Now we have a big-enough buffer. Encode the Filter Flags. + // Like above, this should never fail. + size_t dummy = 0; + ret = lzma_filter_flags_encode(coder->subfilter.flags, + &dummy, coder->subfilter.flags_size, options); + assert(ret == LZMA_OK); + assert(dummy == coder->subfilter.flags_size); + if (ret != LZMA_OK || dummy != coder->subfilter.flags_size) + return LZMA_PROG_ERROR; + + // Write a Subblock indicating a new Subfilter. + write_byte(0x40); + + coder->options->subfilter_mode = LZMA_SUBFILTER_RUN; + coder->subfilter.mode = SUB_RUN; + coder->sequence = SEQ_SUBFILTER_FLAGS; + } + + // Fall through + + case SEQ_SUBFILTER_FLAGS: + // Copy the Filter Flags to the output stream. + bufcpy(coder->subfilter.flags, &coder->pos, + coder->subfilter.flags_size, + out, out_pos, out_size); + if (coder->pos < coder->subfilter.flags_size) + return LZMA_OK; + + lzma_free(coder->subfilter.flags, allocator); + coder->subfilter.flags = NULL; + + coder->pos = 0; + coder->sequence = SEQ_FILL; + break; + + default: + return LZMA_PROG_ERROR; + } + + return LZMA_OK; +} + + +static lzma_ret +subblock_encode(lzma_coder *coder, lzma_allocator *allocator, + const uint8_t *restrict in, size_t *restrict in_pos, + size_t in_size, uint8_t *restrict out, + size_t *restrict out_pos, size_t out_size, lzma_action action) +{ + if (coder->next.code == NULL) + return subblock_buffer(coder, allocator, in, in_pos, in_size, + out, out_pos, out_size, action); + + while (*out_pos < out_size + && (*in_pos < in_size || action == LZMA_FINISH)) { + if (!coder->next_finished + && coder->temp.pos == coder->temp.size) { + coder->temp.pos = 0; + coder->temp.size = 0; + + const lzma_ret ret = coder->next.code(coder->next.coder, + allocator, in, in_pos, in_size, + coder->temp.buffer, &coder->temp.size, + LZMA_BUFFER_SIZE, action); + if (ret == LZMA_STREAM_END) { + assert(action == LZMA_FINISH); + coder->next_finished = true; + } else if (coder->temp.size == 0 || ret != LZMA_OK) { + return ret; + } + } + + const lzma_ret ret = subblock_buffer(coder, allocator, + coder->temp.buffer, &coder->temp.pos, + coder->temp.size, out, out_pos, out_size, + coder->next_finished ? LZMA_FINISH : LZMA_RUN); + if (ret == LZMA_STREAM_END) { + assert(action == LZMA_FINISH); + assert(coder->next_finished); + return LZMA_STREAM_END; + } + + if (ret != LZMA_OK) + return ret; + } + + return LZMA_OK; +} + + +static void +subblock_encoder_end(lzma_coder *coder, lzma_allocator *allocator) +{ + lzma_next_coder_end(&coder->next, allocator); + lzma_next_coder_end(&coder->subfilter.subcoder, allocator); + lzma_free(coder->subblock.data, allocator); + lzma_free(coder->subfilter.flags, allocator); + return; +} + + +extern lzma_ret +lzma_subblock_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, + const lzma_filter_info *filters) +{ + if (next->coder == NULL) { + next->coder = lzma_alloc(sizeof(lzma_coder), allocator); + if (next->coder == NULL) + return LZMA_MEM_ERROR; + + next->coder->next = LZMA_NEXT_CODER_INIT; + next->coder->subblock.data = NULL; + next->coder->subblock.limit = 0; + next->coder->subfilter.subcoder = LZMA_NEXT_CODER_INIT; + } else { + lzma_next_coder_end(&next->coder->subfilter.subcoder, + allocator); + lzma_free(next->coder->subfilter.flags, allocator); + } + + next->coder->subfilter.flags = NULL; + + next->coder->next_finished = false; + next->coder->sequence = SEQ_FILL; + next->coder->options = filters[0].options; + next->coder->uncompressed_size = filters[0].uncompressed_size; + next->coder->pos = 0; + + next->coder->alignment.in_pending = 0; + next->coder->alignment.in_pos = 0; + next->coder->alignment.out_pos = 0; + next->coder->subblock.size = 0; + next->coder->rle.count = 0; + next->coder->subfilter.mode = SUB_NONE; + + next->coder->temp.pos = 0; + next->coder->temp.size = 0; + + // Grab some values from the options structure if it is available. + size_t subblock_size_limit; + if (next->coder->options != NULL) { + if (next->coder->options->alignment + < LZMA_SUBBLOCK_ALIGNMENT_MIN + || next->coder->options->alignment + > LZMA_SUBBLOCK_ALIGNMENT_MAX) { + subblock_encoder_end(next->coder, allocator); + return LZMA_HEADER_ERROR; + } + next->coder->alignment.multiple + = next->coder->options->alignment; + subblock_size_limit = next->coder->options->subblock_data_size; + } else { + next->coder->alignment.multiple + = LZMA_SUBBLOCK_ALIGNMENT_DEFAULT; + subblock_size_limit = LZMA_SUBBLOCK_DATA_SIZE_DEFAULT; + } + + { + const lzma_ret ret = subblock_data_size(next->coder, allocator, + subblock_size_limit); + if (ret != LZMA_OK) { + subblock_encoder_end(next->coder, allocator); + return ret; + } + } + + { + const lzma_ret ret = lzma_next_filter_init(&next->coder->next, + allocator, filters + 1); + if (ret != LZMA_OK) { + subblock_encoder_end(next->coder, allocator); + return ret; + } + } + + next->code = &subblock_encode; + next->end = &subblock_encoder_end; + + return LZMA_OK; +} |