diff options
author | Lasse Collin <lasse.collin@tukaani.org> | 2010-05-26 09:55:47 +0300 |
---|---|---|
committer | Lasse Collin <lasse.collin@tukaani.org> | 2010-05-26 09:55:47 +0300 |
commit | d8a55c48b39703dd83f11089ad01e1ff2ac102e0 (patch) | |
tree | 2fbfba80d6aba4ae0454a9b862f147c3b6a426db /src/liblzma/subblock/subblock_encoder.c | |
parent | Split message_filters(). (diff) | |
download | xz-d8a55c48b39703dd83f11089ad01e1ff2ac102e0.tar.xz |
Remove the Subblock filter code for now.
The spec isn't finished and the code didn't compile anymore.
It won't be included in XZ Utils 5.0.0. It's easy to get it
back once the spec is done.
Diffstat (limited to '')
-rw-r--r-- | src/liblzma/subblock/subblock_encoder.c | 984 |
1 files changed, 0 insertions, 984 deletions
diff --git a/src/liblzma/subblock/subblock_encoder.c b/src/liblzma/subblock/subblock_encoder.c deleted file mode 100644 index 4f71f99c..00000000 --- a/src/liblzma/subblock/subblock_encoder.c +++ /dev/null @@ -1,984 +0,0 @@ -/////////////////////////////////////////////////////////////////////////////// -// -/// \file subblock_encoder.c -/// \brief Encoder of the Subblock filter -// -// Author: Lasse Collin -// -// This file has been put into the public domain. -// You can do whatever you want with this file. -// -/////////////////////////////////////////////////////////////////////////////// - -#include "subblock_encoder.h" -#include "filter_encoder.h" - - -/// Maximum number of repeats that a single Repeating Data can indicate. -/// This is directly from the file format specification. -#define REPEAT_COUNT_MAX (1U << 28) - -/// Number of bytes the data chunk (not including the header part) must be -/// before we care about alignment. This is somewhat arbitrary. It just -/// doesn't make sense to waste bytes for alignment when the data chunk -/// is very small. -#define MIN_CHUNK_SIZE_FOR_ALIGN 4 - -/// Number of bytes of the header part of Subblock Type `Data'. This is -/// used as the `skew' argument for subblock_align(). -#define ALIGN_SKEW_DATA 4 - -/// Like above but for Repeating Data. -#define ALIGN_SKEW_REPEATING_DATA 5 - -/// Writes one byte to output buffer and updates the alignment counter. -#define write_byte(b) \ -do { \ - assert(*out_pos < out_size); \ - out[*out_pos] = b; \ - ++*out_pos; \ - ++coder->alignment.out_pos; \ -} while (0) - - -struct lzma_coder_s { - lzma_next_coder next; - bool next_finished; - - enum { - SEQ_FILL, - SEQ_FLUSH, - SEQ_RLE_COUNT_0, - SEQ_RLE_COUNT_1, - SEQ_RLE_COUNT_2, - SEQ_RLE_COUNT_3, - SEQ_RLE_SIZE, - SEQ_RLE_DATA, - SEQ_DATA_SIZE_0, - SEQ_DATA_SIZE_1, - SEQ_DATA_SIZE_2, - SEQ_DATA_SIZE_3, - SEQ_DATA, - SEQ_SUBFILTER_INIT, - SEQ_SUBFILTER_FLAGS, - } sequence; - - /// Pointer to the options given by the application. This is used - /// for two-way communication with the application. - lzma_options_subblock *options; - - /// Position in various arrays. - size_t pos; - - /// Holds subblock.size - 1 or rle.size - 1 when encoding size - /// of Data or Repeat Count. - uint32_t tmp; - - struct { - /// This is a copy of options->alignment, or - /// LZMA_SUBBLOCK_ALIGNMENT_DEFAULT if options is NULL. - uint32_t multiple; - - /// Number of input bytes which we have processed and started - /// writing out. 32-bit integer is enough since we care only - /// about the lowest bits when fixing alignment. - uint32_t in_pos; - - /// Number of bytes written out. - uint32_t out_pos; - } alignment; - - struct { - /// Pointer to allocated buffer holding the Data field - /// of Subblock Type "Data". - uint8_t *data; - - /// Number of bytes in the buffer. - size_t size; - - /// Allocated size of the buffer. - size_t limit; - - /// Number of input bytes that we have already read but - /// not yet started writing out. This can be different - /// to `size' when using Subfilter. That's why we track - /// in_pending separately for RLE (see below). - uint32_t in_pending; - } subblock; - - struct { - /// Buffer to hold the data that may be coded with - /// Subblock Type `Repeating Data'. - uint8_t buffer[LZMA_SUBBLOCK_RLE_MAX]; - - /// Number of bytes in buffer[]. - size_t size; - - /// Number of times the first `size' bytes of buffer[] - /// will be repeated. - uint64_t count; - - /// Like subblock.in_pending above, but for RLE. - uint32_t in_pending; - } rle; - - struct { - enum { - SUB_NONE, - SUB_SET, - SUB_RUN, - SUB_FLUSH, - SUB_FINISH, - SUB_END_MARKER, - } mode; - - /// This is a copy of options->allow_subfilters. We use - /// this to verify that the application doesn't change - /// the value of allow_subfilters. - bool allow; - - /// When this is true, application is not allowed to modify - /// options->subblock_mode. We may still modify it here. - bool mode_locked; - - /// True if we have encoded at least one byte of data with - /// the Subfilter. - bool got_input; - - /// Track the amount of input available once - /// LZMA_SUBFILTER_FINISH has been enabled. - /// This is needed for sanity checking (kind - /// of duplicating what common/code.c does). - size_t in_avail; - - /// Buffer for the Filter Flags field written after - /// the `Set Subfilter' indicator. - uint8_t *flags; - - /// Size of Filter Flags field. - uint32_t flags_size; - - /// Pointers to Subfilter. - lzma_next_coder subcoder; - - } subfilter; - - /// Temporary buffer used when we are not the last filter in the chain. - struct { - size_t pos; - size_t size; - uint8_t buffer[LZMA_BUFFER_SIZE]; - } temp; -}; - - -/// \brief Aligns the output buffer -/// -/// Aligns the output buffer so that after skew bytes the output position is -/// a multiple of coder->alignment.multiple. -static bool -subblock_align(lzma_coder *coder, uint8_t *restrict out, - size_t *restrict out_pos, size_t out_size, - size_t chunk_size, uint32_t skew) -{ - assert(*out_pos < out_size); - - // Fix the alignment only if it makes sense at least a little. - if (chunk_size >= MIN_CHUNK_SIZE_FOR_ALIGN) { - const uint32_t target = coder->alignment.in_pos - % coder->alignment.multiple; - - while ((coder->alignment.out_pos + skew) - % coder->alignment.multiple != target) { - // Zero indicates padding. - write_byte(0x00); - - // Check if output buffer got full and indicate it to - // the caller. - if (*out_pos == out_size) - return true; - } - } - - // Output buffer is not full. - return false; -} - - -/// \brief Checks if buffer contains repeated data -/// -/// \param needle Buffer containing a single repeat chunk -/// \param needle_size Size of needle in bytes -/// \param buf Buffer to search for repeated needles -/// \param buf_chunks Buffer size is buf_chunks * needle_size. -/// -/// \return True if the whole buf is filled with repeated needles. -/// -static bool -is_repeating(const uint8_t *restrict needle, size_t needle_size, - const uint8_t *restrict buf, size_t buf_chunks) -{ - while (buf_chunks-- != 0) { - if (memcmp(buf, needle, needle_size) != 0) - return false; - - buf += needle_size; - } - - return true; -} - - -/// \brief Optimizes the repeating style and updates coder->sequence -static void -subblock_rle_flush(lzma_coder *coder) -{ - // The Subblock decoder can use memset() when the size of the data - // being repeated is one byte, so we check if the RLE buffer is - // filled with a single repeating byte. - if (coder->rle.size > 1) { - const uint8_t b = coder->rle.buffer[0]; - size_t i = 0; - while (true) { - if (coder->rle.buffer[i] != b) - break; - - if (++i == coder->rle.size) { - // TODO Integer overflow check maybe, - // although this needs at least 2**63 bytes - // of input until it gets triggered... - coder->rle.count *= coder->rle.size; - coder->rle.size = 1; - break; - } - } - } - - if (coder->rle.count == 1) { - // The buffer should be repeated only once. It is - // waste of space to use Repeating Data. Instead, - // write a regular Data Subblock. See SEQ_RLE_COUNT_0 - // in subblock_buffer() for more info. - coder->tmp = coder->rle.size - 1; - } else if (coder->rle.count > REPEAT_COUNT_MAX) { - // There's so much to repeat that it doesn't fit into - // 28-bit integer. We will write two or more Subblocks - // of type Repeating Data. - coder->tmp = REPEAT_COUNT_MAX - 1; - } else { - coder->tmp = coder->rle.count - 1; - } - - coder->sequence = SEQ_RLE_COUNT_0; - - return; -} - - -/// \brief Resizes coder->subblock.data for a new size limit -static lzma_ret -subblock_data_size(lzma_coder *coder, lzma_allocator *allocator, - size_t new_limit) -{ - // Verify that the new limit is valid. - if (new_limit < LZMA_SUBBLOCK_DATA_SIZE_MIN - || new_limit > LZMA_SUBBLOCK_DATA_SIZE_MAX) - return LZMA_OPTIONS_ERROR; - - // Ff the new limit is different than the previous one, we need - // to reallocate the data buffer. - if (new_limit != coder->subblock.limit) { - lzma_free(coder->subblock.data, allocator); - coder->subblock.data = lzma_alloc(new_limit, allocator); - if (coder->subblock.data == NULL) - return LZMA_MEM_ERROR; - } - - coder->subblock.limit = new_limit; - - return LZMA_OK; -} - - -static lzma_ret -subblock_buffer(lzma_coder *coder, lzma_allocator *allocator, - const uint8_t *restrict in, size_t *restrict in_pos, - size_t in_size, uint8_t *restrict out, - size_t *restrict out_pos, size_t out_size, lzma_action action) -{ - // Changing allow_subfilter is not allowed. - if (coder->options != NULL && coder->subfilter.allow - != coder->options->allow_subfilters) - return LZMA_PROG_ERROR; - - // Check if we need to do something special with the Subfilter. - if (coder->subfilter.allow) { - assert(coder->options != NULL); - - // See if subfilter_mode has been changed. - switch (coder->options->subfilter_mode) { - case LZMA_SUBFILTER_NONE: - if (coder->subfilter.mode != SUB_NONE) - return LZMA_PROG_ERROR; - break; - - case LZMA_SUBFILTER_SET: - if (coder->subfilter.mode_locked - || coder->subfilter.mode != SUB_NONE) - return LZMA_PROG_ERROR; - - coder->subfilter.mode = SUB_SET; - coder->subfilter.got_input = false; - - if (coder->sequence == SEQ_FILL) - coder->sequence = SEQ_FLUSH; - - break; - - case LZMA_SUBFILTER_RUN: - if (coder->subfilter.mode != SUB_RUN) - return LZMA_PROG_ERROR; - - break; - - case LZMA_SUBFILTER_FINISH: { - const size_t in_avail = in_size - *in_pos; - - if (coder->subfilter.mode == SUB_RUN) { - if (coder->subfilter.mode_locked) - return LZMA_PROG_ERROR; - - coder->subfilter.mode = SUB_FINISH; - coder->subfilter.in_avail = in_avail; - - } else if (coder->subfilter.mode != SUB_FINISH - || coder->subfilter.in_avail - != in_avail) { - return LZMA_PROG_ERROR; - } - - break; - } - - default: - return LZMA_OPTIONS_ERROR; - } - - // If we are sync-flushing or finishing, the application may - // no longer change subfilter_mode. Note that this check is - // done after checking the new subfilter_mode above; this - // way the application may e.g. set LZMA_SUBFILTER_SET and - // LZMA_SYNC_FLUSH at the same time, but it cannot modify - // subfilter_mode on the later lzma_code() calls before - // we have returned LZMA_STREAM_END. - if (action != LZMA_RUN) - coder->subfilter.mode_locked = true; - } - - // Main loop - while (*out_pos < out_size) - switch (coder->sequence) { - case SEQ_FILL: - // Grab the new Subblock Data Size and reallocate the buffer. - if (coder->subblock.size == 0 && coder->options != NULL - && coder->options->subblock_data_size - != coder->subblock.limit) - return_if_error(subblock_data_size(coder, - allocator, coder->options - ->subblock_data_size)); - - if (coder->subfilter.mode == SUB_NONE) { - assert(coder->subfilter.subcoder.code == NULL); - - // No Subfilter is enabled, just copy the data as is. - coder->subblock.in_pending += lzma_bufcpy( - in, in_pos, in_size, - coder->subblock.data, - &coder->subblock.size, - coder->subblock.limit); - - // If we ran out of input before the whole buffer - // was filled, return to application. - if (coder->subblock.size < coder->subblock.limit - && action == LZMA_RUN) - return LZMA_OK; - - } else { - assert(coder->options->subfilter_mode - != LZMA_SUBFILTER_SET); - - // Using LZMA_FINISH automatically toggles - // LZMA_SUBFILTER_FINISH. - // - // NOTE: It is possible that application had set - // LZMA_SUBFILTER_SET and LZMA_FINISH at the same - // time. In that case it is possible that we will - // cycle to LZMA_SUBFILTER_RUN, LZMA_SUBFILTER_FINISH, - // and back to LZMA_SUBFILTER_NONE in a single - // Subblock encoder function call. - if (action == LZMA_FINISH) { - coder->options->subfilter_mode - = LZMA_SUBFILTER_FINISH; - coder->subfilter.mode = SUB_FINISH; - } - - const size_t in_start = *in_pos; - - const lzma_ret ret = coder->subfilter.subcoder.code( - coder->subfilter.subcoder.coder, - allocator, in, in_pos, in_size, - coder->subblock.data, - &coder->subblock.size, - coder->subblock.limit, - coder->subfilter.mode == SUB_FINISH - ? LZMA_FINISH : action); - - const size_t in_used = *in_pos - in_start; - coder->subblock.in_pending += in_used; - if (in_used > 0) - coder->subfilter.got_input = true; - - coder->subfilter.in_avail = in_size - *in_pos; - - if (ret == LZMA_STREAM_END) { - // All currently available input must have - // been processed. - assert(*in_pos == in_size); - - // Flush now. Even if coder->subblock.size - // happened to be zero, we still need to go - // to SEQ_FLUSH to possibly finish RLE or - // write the Subfilter Unset indicator. - coder->sequence = SEQ_FLUSH; - - if (coder->subfilter.mode == SUB_RUN) { - // Flushing with Subfilter enabled. - assert(action == LZMA_SYNC_FLUSH); - coder->subfilter.mode = SUB_FLUSH; - break; - } - - // Subfilter finished its job. - assert(coder->subfilter.mode == SUB_FINISH - || action == LZMA_FINISH); - - // At least one byte of input must have been - // encoded with the Subfilter. This is - // required by the file format specification. - if (!coder->subfilter.got_input) - return LZMA_PROG_ERROR; - - // We don't strictly need to do this, but - // doing it sounds like a good idea, because - // otherwise the Subfilter's memory could be - // left allocated for long time, and would - // just waste memory. - lzma_next_end(&coder->subfilter.subcoder, - allocator); - - // We need to flush the currently buffered - // data and write Unset Subfilter marker. - // Note that we cannot set - // coder->options->subfilter_mode to - // LZMA_SUBFILTER_NONE yet, because we - // haven't written the Unset Subfilter - // marker yet. - coder->subfilter.mode = SUB_END_MARKER; - coder->sequence = SEQ_FLUSH; - break; - } - - // Return if we couldn't fill the buffer or - // if an error occurred. - if (coder->subblock.size < coder->subblock.limit - || ret != LZMA_OK) - return ret; - } - - coder->sequence = SEQ_FLUSH; - - // SEQ_FILL doesn't produce any output so falling through - // to SEQ_FLUSH is safe. - assert(*out_pos < out_size); - - // Fall through - - case SEQ_FLUSH: - if (coder->options != NULL) { - // Update the alignment variable. - coder->alignment.multiple = coder->options->alignment; - if (coder->alignment.multiple - < LZMA_SUBBLOCK_ALIGNMENT_MIN - || coder->alignment.multiple - > LZMA_SUBBLOCK_ALIGNMENT_MAX) - return LZMA_OPTIONS_ERROR; - - // Run-length encoder - // - // First check if there is some data pending and we - // have an obvious need to flush it immediately. - if (coder->rle.count > 0 - && (coder->rle.size - != coder->options->rle - || coder->subblock.size - % coder->rle.size)) { - subblock_rle_flush(coder); - break; - } - - // Grab the (possibly new) RLE chunk size and - // validate it. - coder->rle.size = coder->options->rle; - if (coder->rle.size > LZMA_SUBBLOCK_RLE_MAX) - return LZMA_OPTIONS_ERROR; - - if (coder->subblock.size != 0 - && coder->rle.size - != LZMA_SUBBLOCK_RLE_OFF - && coder->subblock.size - % coder->rle.size == 0) { - - // Initialize coder->rle.buffer if we don't - // have RLE already running. - if (coder->rle.count == 0) - memcpy(coder->rle.buffer, - coder->subblock.data, - coder->rle.size); - - // Test if coder->subblock.data is repeating. - // If coder->rle.count would overflow, we - // force flushing. Forced flushing shouldn't - // really happen in real-world situations. - const size_t count = coder->subblock.size - / coder->rle.size; - if (UINT64_MAX - count > coder->rle.count - && is_repeating( - coder->rle.buffer, - coder->rle.size, - coder->subblock.data, - count)) { - coder->rle.count += count; - coder->rle.in_pending += coder - ->subblock.in_pending; - coder->subblock.in_pending = 0; - coder->subblock.size = 0; - - } else if (coder->rle.count > 0) { - // It's not repeating or at least not - // with the same byte sequence as the - // earlier Subblock Data buffers. We - // have some data pending in the RLE - // buffer already, so do a flush. - // Once flushed, we will check again - // if the Subblock Data happens to - // contain a different repeating - // sequence. - subblock_rle_flush(coder); - break; - } - } - } - - // If we now have some data left in coder->subblock, the RLE - // buffer is empty and we must write a regular Subblock Data. - if (coder->subblock.size > 0) { - assert(coder->rle.count == 0); - coder->tmp = coder->subblock.size - 1; - coder->sequence = SEQ_DATA_SIZE_0; - break; - } - - // Check if we should enable Subfilter. - if (coder->subfilter.mode == SUB_SET) { - if (coder->rle.count > 0) - subblock_rle_flush(coder); - else - coder->sequence = SEQ_SUBFILTER_INIT; - break; - } - - // Check if we have just finished Subfiltering. - if (coder->subfilter.mode == SUB_END_MARKER) { - if (coder->rle.count > 0) { - subblock_rle_flush(coder); - break; - } - - coder->options->subfilter_mode = LZMA_SUBFILTER_NONE; - coder->subfilter.mode = SUB_NONE; - - write_byte(0x50); - if (*out_pos == out_size) - return LZMA_OK; - } - - // Check if we have already written everything. - if (action != LZMA_RUN && *in_pos == in_size - && (coder->subfilter.mode == SUB_NONE - || coder->subfilter.mode == SUB_FLUSH)) { - if (coder->rle.count > 0) { - subblock_rle_flush(coder); - break; - } - - if (action == LZMA_SYNC_FLUSH) { - if (coder->subfilter.mode == SUB_FLUSH) - coder->subfilter.mode = SUB_RUN; - - coder->subfilter.mode_locked = false; - coder->sequence = SEQ_FILL; - - } else { - assert(action == LZMA_FINISH); - - // Write EOPM. - // NOTE: No need to use write_byte() here - // since we are finishing. - out[*out_pos] = 0x10; - ++*out_pos; - } - - return LZMA_STREAM_END; - } - - // Otherwise we have more work to do. - coder->sequence = SEQ_FILL; - break; - - case SEQ_RLE_COUNT_0: - assert(coder->rle.count > 0); - - if (coder->rle.count == 1) { - // The buffer should be repeated only once. Fix - // the alignment and write the first byte of - // Subblock Type `Data'. - if (subblock_align(coder, out, out_pos, out_size, - coder->rle.size, ALIGN_SKEW_DATA)) - return LZMA_OK; - - write_byte(0x20 | (coder->tmp & 0x0F)); - - } else { - // We have something to actually repeat, which should - // mean that it takes less space with run-length - // encoding. - if (subblock_align(coder, out, out_pos, out_size, - coder->rle.size, - ALIGN_SKEW_REPEATING_DATA)) - return LZMA_OK; - - write_byte(0x30 | (coder->tmp & 0x0F)); - } - - // NOTE: If we have to write more than one Repeating Data - // due to rle.count > REPEAT_COUNT_MAX, the subsequent - // Repeating Data Subblocks may get wrong alignment, because - // we add rle.in_pending to alignment.in_pos at once instead - // of adding only as much as this particular Repeating Data - // consumed input data. Correct alignment is always restored - // after all the required Repeating Data Subblocks have been - // written. This problem occurs in such a weird cases that - // it's not worth fixing. - coder->alignment.out_pos += coder->rle.size; - coder->alignment.in_pos += coder->rle.in_pending; - coder->rle.in_pending = 0; - - coder->sequence = SEQ_RLE_COUNT_1; - break; - - case SEQ_RLE_COUNT_1: - write_byte(coder->tmp >> 4); - coder->sequence = SEQ_RLE_COUNT_2; - break; - - case SEQ_RLE_COUNT_2: - write_byte(coder->tmp >> 12); - coder->sequence = SEQ_RLE_COUNT_3; - break; - - case SEQ_RLE_COUNT_3: - write_byte(coder->tmp >> 20); - - // Again, see if we are writing regular Data or Repeating Data. - // In the former case, we skip SEQ_RLE_SIZE. - if (coder->rle.count == 1) - coder->sequence = SEQ_RLE_DATA; - else - coder->sequence = SEQ_RLE_SIZE; - - if (coder->rle.count > REPEAT_COUNT_MAX) - coder->rle.count -= REPEAT_COUNT_MAX; - else - coder->rle.count = 0; - - break; - - case SEQ_RLE_SIZE: - assert(coder->rle.size >= LZMA_SUBBLOCK_RLE_MIN); - assert(coder->rle.size <= LZMA_SUBBLOCK_RLE_MAX); - write_byte(coder->rle.size - 1); - coder->sequence = SEQ_RLE_DATA; - break; - - case SEQ_RLE_DATA: - lzma_bufcpy(coder->rle.buffer, &coder->pos, coder->rle.size, - out, out_pos, out_size); - if (coder->pos < coder->rle.size) - return LZMA_OK; - - coder->pos = 0; - coder->sequence = SEQ_FLUSH; - break; - - case SEQ_DATA_SIZE_0: - // We need four bytes for the Size field. - if (subblock_align(coder, out, out_pos, out_size, - coder->subblock.size, ALIGN_SKEW_DATA)) - return LZMA_OK; - - coder->alignment.out_pos += coder->subblock.size; - coder->alignment.in_pos += coder->subblock.in_pending; - coder->subblock.in_pending = 0; - - write_byte(0x20 | (coder->tmp & 0x0F)); - coder->sequence = SEQ_DATA_SIZE_1; - break; - - case SEQ_DATA_SIZE_1: - write_byte(coder->tmp >> 4); - coder->sequence = SEQ_DATA_SIZE_2; - break; - - case SEQ_DATA_SIZE_2: - write_byte(coder->tmp >> 12); - coder->sequence = SEQ_DATA_SIZE_3; - break; - - case SEQ_DATA_SIZE_3: - write_byte(coder->tmp >> 20); - coder->sequence = SEQ_DATA; - break; - - case SEQ_DATA: - lzma_bufcpy(coder->subblock.data, &coder->pos, - coder->subblock.size, out, out_pos, out_size); - if (coder->pos < coder->subblock.size) - return LZMA_OK; - - coder->subblock.size = 0; - coder->pos = 0; - coder->sequence = SEQ_FLUSH; - break; - - case SEQ_SUBFILTER_INIT: { - assert(coder->subblock.size == 0); - assert(coder->subblock.in_pending == 0); - assert(coder->rle.count == 0); - assert(coder->rle.in_pending == 0); - assert(coder->subfilter.mode == SUB_SET); - assert(coder->options != NULL); - - // There must be a filter specified. - if (coder->options->subfilter_options.id == LZMA_VLI_UNKNOWN) - return LZMA_OPTIONS_ERROR; - - // Initialize a raw encoder to work as a Subfilter. - lzma_filter options[2]; - options[0] = coder->options->subfilter_options; - options[1].id = LZMA_VLI_UNKNOWN; - - return_if_error(lzma_raw_encoder_init( - &coder->subfilter.subcoder, allocator, - options)); - - // Encode the Filter Flags field into a buffer. This should - // never fail since we have already successfully initialized - // the Subfilter itself. Check it still, and return - // LZMA_PROG_ERROR instead of whatever the ret would say. - lzma_ret ret = lzma_filter_flags_size( - &coder->subfilter.flags_size, options); - assert(ret == LZMA_OK); - if (ret != LZMA_OK) - return LZMA_PROG_ERROR; - - coder->subfilter.flags = lzma_alloc( - coder->subfilter.flags_size, allocator); - if (coder->subfilter.flags == NULL) - return LZMA_MEM_ERROR; - - // Now we have a big-enough buffer. Encode the Filter Flags. - // Like above, this should never fail. - size_t dummy = 0; - ret = lzma_filter_flags_encode(options, coder->subfilter.flags, - &dummy, coder->subfilter.flags_size); - assert(ret == LZMA_OK); - assert(dummy == coder->subfilter.flags_size); - if (ret != LZMA_OK || dummy != coder->subfilter.flags_size) - return LZMA_PROG_ERROR; - - // Write a Subblock indicating a new Subfilter. - write_byte(0x40); - - coder->options->subfilter_mode = LZMA_SUBFILTER_RUN; - coder->subfilter.mode = SUB_RUN; - coder->alignment.out_pos += coder->subfilter.flags_size; - coder->sequence = SEQ_SUBFILTER_FLAGS; - - // It is safe to fall through because SEQ_SUBFILTER_FLAGS - // uses lzma_bufcpy() which doesn't write unless there is - // output space. - } - - // Fall through - - case SEQ_SUBFILTER_FLAGS: - // Copy the Filter Flags to the output stream. - lzma_bufcpy(coder->subfilter.flags, &coder->pos, - coder->subfilter.flags_size, - out, out_pos, out_size); - if (coder->pos < coder->subfilter.flags_size) - return LZMA_OK; - - lzma_free(coder->subfilter.flags, allocator); - coder->subfilter.flags = NULL; - - coder->pos = 0; - coder->sequence = SEQ_FILL; - break; - - default: - return LZMA_PROG_ERROR; - } - - return LZMA_OK; -} - - -static lzma_ret -subblock_encode(lzma_coder *coder, lzma_allocator *allocator, - const uint8_t *restrict in, size_t *restrict in_pos, - size_t in_size, uint8_t *restrict out, - size_t *restrict out_pos, size_t out_size, lzma_action action) -{ - if (coder->next.code == NULL) - return subblock_buffer(coder, allocator, in, in_pos, in_size, - out, out_pos, out_size, action); - - while (*out_pos < out_size - && (*in_pos < in_size || action != LZMA_RUN)) { - if (!coder->next_finished - && coder->temp.pos == coder->temp.size) { - coder->temp.pos = 0; - coder->temp.size = 0; - - const lzma_ret ret = coder->next.code(coder->next.coder, - allocator, in, in_pos, in_size, - coder->temp.buffer, &coder->temp.size, - LZMA_BUFFER_SIZE, action); - if (ret == LZMA_STREAM_END) { - assert(action != LZMA_RUN); - coder->next_finished = true; - } else if (coder->temp.size == 0 || ret != LZMA_OK) { - return ret; - } - } - - const lzma_ret ret = subblock_buffer(coder, allocator, - coder->temp.buffer, &coder->temp.pos, - coder->temp.size, out, out_pos, out_size, - coder->next_finished ? LZMA_FINISH : LZMA_RUN); - if (ret == LZMA_STREAM_END) { - assert(action != LZMA_RUN); - assert(coder->next_finished); - return LZMA_STREAM_END; - } - - if (ret != LZMA_OK) - return ret; - } - - return LZMA_OK; -} - - -static void -subblock_encoder_end(lzma_coder *coder, lzma_allocator *allocator) -{ - lzma_next_end(&coder->next, allocator); - lzma_next_end(&coder->subfilter.subcoder, allocator); - lzma_free(coder->subblock.data, allocator); - lzma_free(coder->subfilter.flags, allocator); - lzma_free(coder, allocator); - return; -} - - -extern lzma_ret -lzma_subblock_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, - const lzma_filter_info *filters) -{ - if (next->coder == NULL) { - next->coder = lzma_alloc(sizeof(lzma_coder), allocator); - if (next->coder == NULL) - return LZMA_MEM_ERROR; - - next->code = &subblock_encode; - next->end = &subblock_encoder_end; - - next->coder->next = LZMA_NEXT_CODER_INIT; - next->coder->subblock.data = NULL; - next->coder->subblock.limit = 0; - next->coder->subfilter.subcoder = LZMA_NEXT_CODER_INIT; - } else { - lzma_next_end(&next->coder->subfilter.subcoder, - allocator); - lzma_free(next->coder->subfilter.flags, allocator); - } - - next->coder->subfilter.flags = NULL; - - next->coder->next_finished = false; - next->coder->sequence = SEQ_FILL; - next->coder->options = filters[0].options; - next->coder->pos = 0; - - next->coder->alignment.in_pos = 0; - next->coder->alignment.out_pos = 0; - next->coder->subblock.size = 0; - next->coder->subblock.in_pending = 0; - next->coder->rle.count = 0; - next->coder->rle.in_pending = 0; - next->coder->subfilter.mode = SUB_NONE; - next->coder->subfilter.mode_locked = false; - - next->coder->temp.pos = 0; - next->coder->temp.size = 0; - - // Grab some values from the options structure if it is available. - size_t subblock_size_limit; - if (next->coder->options != NULL) { - if (next->coder->options->alignment - < LZMA_SUBBLOCK_ALIGNMENT_MIN - || next->coder->options->alignment - > LZMA_SUBBLOCK_ALIGNMENT_MAX) { - subblock_encoder_end(next->coder, allocator); - return LZMA_OPTIONS_ERROR; - } - next->coder->alignment.multiple - = next->coder->options->alignment; - next->coder->subfilter.allow - = next->coder->options->allow_subfilters; - subblock_size_limit = next->coder->options->subblock_data_size; - } else { - next->coder->alignment.multiple - = LZMA_SUBBLOCK_ALIGNMENT_DEFAULT; - next->coder->subfilter.allow = false; - subblock_size_limit = LZMA_SUBBLOCK_DATA_SIZE_DEFAULT; - } - - return_if_error(subblock_data_size(next->coder, allocator, - subblock_size_limit)); - - return lzma_next_filter_init( - &next->coder->next, allocator, filters + 1); -} |