aboutsummaryrefslogtreecommitdiff
path: root/src/liblzma/common/index.c
diff options
context:
space:
mode:
authorLasse Collin <lasse.collin@tukaani.org>2009-12-31 22:45:53 +0200
committerLasse Collin <lasse.collin@tukaani.org>2009-12-31 22:45:53 +0200
commit1a7ec87c8ee61dfc2e496d2e1fb7ab0939804691 (patch)
tree3ed5d9cc0c7629c1ca09a5df1d1193b90815cc88 /src/liblzma/common/index.c
parentRemove c-format tag in cs.po. (diff)
downloadxz-1a7ec87c8ee61dfc2e496d2e1fb7ab0939804691.tar.xz
Revised the Index handling code.
This breaks API and ABI but most apps are not affected since most apps don't use this part of the API. You will get a compile error if you are using anything that got broken. Summary of changes: - Ability to store Stream Flags, which are needed for random-access reading in multi-Stream files. - Separate function to set size of Stream Padding. - Iterator structure makes it possible to read the same lzma_index from multiple threads at the same time. - A lot faster code to locate Blocks. - Removed lzma_index_equal() without adding anything to replace it. I don't know what it should do exactly with the new features and what actually needs this function in the first place other than test_index.c, which now has its own code to compare lzma_indexes.
Diffstat (limited to 'src/liblzma/common/index.c')
-rw-r--r--src/liblzma/common/index.c1553
1 files changed, 1005 insertions, 548 deletions
diff --git a/src/liblzma/common/index.c b/src/liblzma/common/index.c
index 014abff1..9907fbab 100644
--- a/src/liblzma/common/index.c
+++ b/src/liblzma/common/index.c
@@ -1,7 +1,7 @@
///////////////////////////////////////////////////////////////////////////////
//
/// \file index.c
-/// \brief Handling of Index
+/// \brief Handling of .xz Indexes and some other Stream information
//
// Author: Lasse Collin
//
@@ -11,149 +11,400 @@
///////////////////////////////////////////////////////////////////////////////
#include "index.h"
+#include "stream_flags_common.h"
-/// Number of Records to allocate at once in the unrolled list.
-#define INDEX_GROUP_SIZE 256
+/// \brief How many Records to allocate at once
+///
+/// This should be big enough to avoid making lots of tiny allocations
+/// but small enough to avoid too much unused memory at once.
+#define INDEX_GROUP_SIZE 500
-typedef struct lzma_index_group_s lzma_index_group;
-struct lzma_index_group_s {
- /// Previous group
- lzma_index_group *prev;
+/// \brief How many Records can be allocated at once at maximum
+#define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
- /// Next group
- lzma_index_group *next;
- /// Index of the last Record in this group
+/// \brief Base structure for index_stream and index_group structures
+typedef struct index_tree_node_s index_tree_node;
+struct index_tree_node_s {
+ /// Uncompressed start offset of this Stream (relative to the
+ /// beginning of the file) or Block (relative to the beginning
+ /// of the Stream)
+ lzma_vli uncompressed_base;
+
+ /// Compressed start offset of this Stream or Block
+ lzma_vli compressed_base;
+
+ index_tree_node *parent;
+ index_tree_node *left;
+ index_tree_node *right;
+};
+
+
+/// \brief AVL tree to hold index_stream or index_group structures
+typedef struct {
+ /// Root node
+ index_tree_node *root;
+
+ /// Leftmost node. Since the tree will be filled sequentially,
+ /// this won't change after the first node has been added to
+ /// the tree.
+ index_tree_node *leftmost;
+
+ /// The rightmost node in the tree. Since the tree is filled
+ /// sequentially, this is always the node where to add the new data.
+ index_tree_node *rightmost;
+
+ /// Number of nodes in the tree
+ uint32_t count;
+
+} index_tree;
+
+
+typedef struct {
+ lzma_vli uncompressed_sum;
+ lzma_vli unpadded_sum;
+} index_record;
+
+
+typedef struct {
+ /// Every Record group is part of index_stream.groups tree.
+ index_tree_node node;
+
+ /// Number of Blocks in this Stream before this group.
+ lzma_vli number_base;
+
+ /// Number of Records that can be put in records[].
+ size_t allocated;
+
+ /// Index of the last Record in use.
size_t last;
- /// Unpadded Size fields as special cumulative sum relative to the
- /// beginning of the group. It's special in sense that the previous
- /// value is rounded up the next multiple of four with before
- /// calculating the new value. The total encoded size of the Blocks
- /// in the group is unpadded_sums[last] rounded up to the next
- /// multiple of four.
+ /// The sizes in this array are stored as cumulative sums relative
+ /// to the beginning of the Stream. This makes it possible to
+ /// use binary search in lzma_index_locate().
+ ///
+ /// Note that the cumulative summing is done specially for
+ /// unpadded_sum: The previous value is rounded up to the next
+ /// multiple of four before adding the Unpadded Size of the new
+ /// Block. The total encoded size of the Blocks in the Stream
+ /// is records[last].unpadded_sum in the last Record group of
+ /// the Stream.
///
- /// For example, if the Unpadded Sizes are 39, 57, and 81, the stored
- /// values are 39, 97 (40 + 57), and 181 (100 + 181). The total
- /// encoded size of these Blocks is 184.
+ /// For example, if the Unpadded Sizes are 39, 57, and 81, the
+ /// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
+ /// The total encoded size of these Blocks is 184.
///
- /// This encoding is nice from point of view of lzma_index_locate().
- lzma_vli unpadded_sums[INDEX_GROUP_SIZE];
+ /// This is a flexible array, because it makes easy to optimize
+ /// memory usage in case someone concatenates many Streams that
+ /// have only one or few Blocks.
+ index_record records[];
- /// Uncompressed Size fields as cumulative sum relative to the
- /// beginning of the group. The uncompressed size of the group is
- /// uncompressed_sums[last].
- lzma_vli uncompressed_sums[INDEX_GROUP_SIZE];
+} index_group;
- /// True if the Record is padding
- bool paddings[INDEX_GROUP_SIZE];
-};
+
+typedef struct {
+ /// Every index_stream is a node in the tree of Sreams.
+ index_tree_node node;
+
+ /// Number of this Stream (first one is 1)
+ uint32_t number;
+
+ /// Total number of Blocks before this Stream
+ lzma_vli block_number_base;
+
+ /// Record groups of this Stream are stored in a tree.
+ /// It's a T-tree with AVL-tree balancing. There are
+ /// INDEX_GROUP_SIZE Records per node by default.
+ /// This keeps the number of memory allocations reasonable
+ /// and finding a Record is fast.
+ index_tree groups;
+
+ /// Number of Records in this Stream
+ lzma_vli record_count;
+
+ /// Size of the List of Records field in this Stream. This is used
+ /// together with record_count to calculate the size of the Index
+ /// field and thus the total size of the Stream.
+ lzma_vli index_list_size;
+
+ /// Stream Flags of this Stream. This is meaningful only if
+ /// the Stream Flags have been told us with lzma_index_stream_flags().
+ /// Initially stream_flags.version is set to UINT32_MAX to indicate
+ /// that the Stream Flags are unknown.
+ lzma_stream_flags stream_flags;
+
+ /// Amount of Stream Padding after this Stream. This defaults to
+ /// zero and can be set with lzma_index_stream_padding().
+ lzma_vli stream_padding;
+
+} index_stream;
struct lzma_index_s {
- /// Total size of the Blocks and padding
- lzma_vli total_size;
+ /// AVL-tree containing the Stream(s). Often there is just one
+ /// Stream, but using a tree keeps lookups fast even when there
+ /// are many concatenated Streams.
+ index_tree streams;
- /// Uncompressed size of the Stream
+ /// Uncompressed size of all the Blocks in the Stream(s)
lzma_vli uncompressed_size;
- /// Number of non-padding records. This is needed for Index encoder.
- lzma_vli count;
+ /// Total size of all the Blocks in the Stream(s)
+ lzma_vli total_size;
- /// Size of the List of Records field; this is updated every time
- /// a new non-padding Record is added.
+ /// Total number of Records in all Streams in this lzma_index
+ lzma_vli record_count;
+
+ /// Size of the List of Records field if all the Streams in this
+ /// lzma_index were packed into a single Stream (makes it simpler to
+ /// take many .xz files and combine them into a single Stream).
+ ///
+ /// This value together with record_count is needed to calculate
+ /// Backward Size that is stored into Stream Footer.
lzma_vli index_list_size;
- /// First group of Records
- lzma_index_group *head;
+ /// How many Records to allocate at once in lzma_index_append().
+ /// This defaults to INDEX_GROUP_SIZE but can be overriden with
+ /// lzma_index_prealloc().
+ size_t prealloc;
- /// Last group of Records
- lzma_index_group *tail;
+ /// Bitmask indicating what integrity check types have been used
+ /// as set by lzma_index_stream_flags(). The bit of the last Stream
+ /// is not included here, since it is possible to change it by
+ /// calling lzma_index_stream_flags() again.
+ uint32_t checks;
+};
- /// Tracking the read position
- struct {
- /// Group where the current read position is.
- lzma_index_group *group;
- /// The most recently read Record in *group
- size_t record;
+static void
+index_tree_init(index_tree *tree)
+{
+ tree->root = NULL;
+ tree->leftmost = NULL;
+ tree->rightmost = NULL;
+ tree->count = 0;
+ return;
+}
- /// Uncompressed offset of the beginning of *group relative
- /// to the beginning of the Stream
- lzma_vli uncompressed_offset;
- /// Compressed offset of the beginning of *group relative
- /// to the beginning of the Stream
- lzma_vli stream_offset;
- } current;
+/// Helper for index_tree_end()
+static void
+index_tree_node_end(index_tree_node *node, lzma_allocator *allocator,
+ void (*free_func)(void *node, lzma_allocator *allocator))
+{
+ // The tree won't ever be very huge, so recursion should be fine.
+ // 20 levels in the tree is likely quite a lot already in practice.
+ if (node->left != NULL)
+ index_tree_node_end(node->left, allocator, free_func);
- /// Information about earlier Indexes when multiple Indexes have
- /// been combined.
- struct {
- /// Sum of the Record counts of the all but the last Stream.
- lzma_vli count;
+ if (node->right != NULL)
+ index_tree_node_end(node->right, allocator, free_func);
- /// Sum of the List of Records fields of all but the last
- /// Stream. This is needed when a new Index is concatenated
- /// to this lzma_index structure.
- lzma_vli index_list_size;
+ if (free_func != NULL)
+ free_func(node, allocator);
- /// Total size of all but the last Stream and all Stream
- /// Padding fields.
- lzma_vli streams_size;
- } old;
-};
+ lzma_free(node, allocator);
+ return;
+}
-extern LZMA_API(lzma_vli)
-lzma_index_memusage(lzma_vli count)
+/// Free the meory allocated for a tree. If free_func is not NULL,
+/// it is called on each node before freeing the node. This is used
+/// to free the Record groups from each index_stream before freeing
+/// the index_stream itself.
+static void
+index_tree_end(index_tree *tree, lzma_allocator *allocator,
+ void (*free_func)(void *node, lzma_allocator *allocator))
{
- if (count > LZMA_VLI_MAX)
- return UINT64_MAX;
+ if (tree->root != NULL)
+ index_tree_node_end(tree->root, allocator, free_func);
- return sizeof(lzma_index) + (count + INDEX_GROUP_SIZE - 1)
- / INDEX_GROUP_SIZE * sizeof(lzma_index_group);
+ return;
}
+/// Add a new node to the tree. node->uncompressed_base and
+/// node->compressed_base must have been set by the caller already.
static void
-free_index_list(lzma_index *i, lzma_allocator *allocator)
+index_tree_append(index_tree *tree, index_tree_node *node)
+{
+ node->parent = tree->rightmost;
+ node->left = NULL;
+ node->right = NULL;
+
+ ++tree->count;
+
+ // Handle the special case of adding the first node.
+ if (tree->root == NULL) {
+ tree->root = node;
+ tree->leftmost = node;
+ tree->rightmost = node;
+ return;
+ }
+
+ // The tree is always filled sequentially.
+ assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
+ assert(tree->rightmost->compressed_base < node->compressed_base);
+
+ // Add the new node after the rightmost node. It's the correct
+ // place due to the reason above.
+ tree->rightmost->right = node;
+ tree->rightmost = node;
+
+ // Balance the AVL-tree if needed. We don't need to keep the balance
+ // factors in nodes, because we always fill the tree sequentially,
+ // and thus know the state of the tree just by looking at the node
+ // count. From the node count we can calculate how many steps to go
+ // up in the tree to find the rotation root.
+ uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
+ if (up != 0) {
+ // Locate the root node for the rotation.
+ up = ctz32(tree->count) + 2;
+ do {
+ node = node->parent;
+ } while (--up > 0);
+
+ // Rotate left using node as the rotation root.
+ index_tree_node *pivot = node->right;
+
+ if (node->parent == NULL) {
+ tree->root = pivot;
+ } else {
+ assert(node->parent->right == node);
+ node->parent->right = pivot;
+ }
+
+ pivot->parent = node->parent;
+
+ node->right = pivot->left;
+ if (node->right != NULL)
+ node->right->parent = node;
+
+ pivot->left = node;
+ node->parent = pivot;
+ }
+
+ return;
+}
+
+
+/// Get the next node in the tree. Return NULL if there are no more nodes.
+static void *
+index_tree_next(const index_tree_node *node)
{
- lzma_index_group *g = i->head;
+ if (node->right != NULL) {
+ node = node->right;
+ while (node->left != NULL)
+ node = node->left;
- while (g != NULL) {
- lzma_index_group *tmp = g->next;
- lzma_free(g, allocator);
- g = tmp;
+ return (void *)(node);
}
+ while (node->parent != NULL && node->parent->right == node)
+ node = node->parent;
+
+ return (void *)(node->parent);
+}
+
+
+/// Locate a node that contains the given uncompressed offset. It is
+/// caller's job to check that target is not bigger than the uncompressed
+/// size of the tree (the last node would be returned in that case still).
+static void *
+index_tree_locate(const index_tree *tree, lzma_vli target)
+{
+ const index_tree_node *result = NULL;
+ const index_tree_node *node = tree->root;
+
+ assert(tree->leftmost == NULL
+ || tree->leftmost->uncompressed_base == 0);
+
+ // Consecutive nodes may have the same uncompressed_base.
+ // We must pick the rightmost one.
+ while (node != NULL) {
+ if (node->uncompressed_base > target) {
+ node = node->left;
+ } else {
+ result = node;
+ node = node->right;
+ }
+ }
+
+ return (void *)(result);
+}
+
+
+/// Allocate and initialize a new Stream using the given base offsets.
+static index_stream *
+index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
+ lzma_vli stream_number, lzma_vli block_number_base,
+ lzma_allocator *allocator)
+{
+ index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
+ if (s == NULL)
+ return NULL;
+
+ s->node.uncompressed_base = uncompressed_base;
+ s->node.compressed_base = compressed_base;
+ s->node.parent = NULL;
+ s->node.left = NULL;
+ s->node.right = NULL;
+
+ s->number = stream_number;
+ s->block_number_base = block_number_base;
+
+ index_tree_init(&s->groups);
+
+ s->record_count = 0;
+ s->index_list_size = 0;
+ s->stream_flags.version = UINT32_MAX;
+ s->stream_padding = 0;
+
+ return s;
+}
+
+
+/// Free the memory allocated for a Stream and its Record groups.
+static void
+index_stream_end(void *node, lzma_allocator *allocator)
+{
+ index_stream *s = node;
+ index_tree_end(&s->groups, allocator, NULL);
return;
}
+static lzma_index *
+index_init_plain(lzma_allocator *allocator)
+{
+ lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
+ if (i != NULL) {
+ index_tree_init(&i->streams);
+ i->uncompressed_size = 0;
+ i->total_size = 0;
+ i->record_count = 0;
+ i->index_list_size = 0;
+ i->prealloc = INDEX_GROUP_SIZE;
+ i->checks = 0;
+ }
+
+ return i;
+}
+
+
extern LZMA_API(lzma_index *)
-lzma_index_init(lzma_index *i, lzma_allocator *allocator)
+lzma_index_init(lzma_allocator *allocator)
{
- if (i == NULL) {
- i = lzma_alloc(sizeof(lzma_index), allocator);
- if (i == NULL)
- return NULL;
- } else {
- free_index_list(i, allocator);
+ lzma_index *i = index_init_plain(allocator);
+ index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
+ if (i == NULL || s == NULL) {
+ index_stream_end(s, allocator);
+ lzma_free(i, allocator);
}
- i->total_size = 0;
- i->uncompressed_size = 0;
- i->count = 0;
- i->index_list_size = 0;
- i->head = NULL;
- i->tail = NULL;
- i->current.group = NULL;
- i->old.count = 0;
- i->old.index_list_size = 0;
- i->old.streams_size = 0;
+ index_tree_append(&i->streams, &s->node);
return i;
}
@@ -162,8 +413,10 @@ lzma_index_init(lzma_index *i, lzma_allocator *allocator)
extern LZMA_API(void)
lzma_index_end(lzma_index *i, lzma_allocator *allocator)
{
+ // NOTE: If you modify this function, check also the bottom
+ // of lzma_index_cat().
if (i != NULL) {
- free_index_list(i, allocator);
+ index_tree_end(&i->streams, allocator, &index_stream_end);
lzma_free(i, allocator);
}
@@ -171,17 +424,91 @@ lzma_index_end(lzma_index *i, lzma_allocator *allocator)
}
+extern void
+lzma_index_prealloc(lzma_index *i, lzma_vli records)
+{
+ if (records > PREALLOC_MAX)
+ records = PREALLOC_MAX;
+
+ i->prealloc = (size_t)(records);
+ return;
+}
+
+
+extern LZMA_API(uint64_t)
+lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
+{
+ // This calculates an upper bound that is only a little bit
+ // bigger than the exact maximum memory usage with the given
+ // parameters.
+
+ // Typical malloc() overhead is 2 * sizeof(void *) but we take
+ // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
+ // instead would give too inaccurate estimate.
+ const size_t alloc_overhead = 4 * sizeof(void *);
+
+ // Amount of memory needed for each Stream base structures.
+ // We assume that every Stream has at least one Block and
+ // thus at least one group.
+ const size_t stream_base = sizeof(index_stream)
+ + sizeof(index_group) + 2 * alloc_overhead;
+
+ // Amount of memory needed per group.
+ const size_t group_base = sizeof(index_group)
+ + INDEX_GROUP_SIZE * sizeof(index_record)
+ + alloc_overhead;
+
+ // Number of groups. There may actually be more, but that overhead
+ // has been taken into account in stream_base already.
+ const lzma_vli groups
+ = (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
+
+ // Memory used by index_stream and index_group structures.
+ const uint64_t streams_mem = streams * stream_base;
+ const uint64_t groups_mem = groups * group_base;
+
+ // Memory used by the base structure.
+ const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
+
+ // Validate the arguments and catch integer overflows.
+ // Maximum number of Streams is "only" UINT32_MAX, because
+ // that limit is used by the tree containing the Streams.
+ const uint64_t limit = UINT64_MAX - index_base;
+ if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
+ || streams > limit / stream_base
+ || groups > limit / group_base
+ || limit - streams_mem < groups_mem)
+ return UINT64_MAX;
+
+ return index_base + streams_mem + groups_mem;
+}
+
+
+extern LZMA_API(uint64_t)
+lzma_index_memused(const lzma_index *i)
+{
+ return lzma_index_memusage(i->streams.count, i->record_count);
+}
+
+
extern LZMA_API(lzma_vli)
-lzma_index_count(const lzma_index *i)
+lzma_index_block_count(const lzma_index *i)
{
- return i->count;
+ return i->record_count;
+}
+
+
+extern LZMA_API(lzma_vli)
+lzma_index_stream_count(const lzma_index *i)
+{
+ return i->streams.count;
}
extern LZMA_API(lzma_vli)
lzma_index_size(const lzma_index *i)
{
- return index_size(i->count, i->index_list_size);
+ return index_size(i->record_count, i->index_list_size);
}
@@ -197,22 +524,44 @@ lzma_index_stream_size(const lzma_index *i)
{
// Stream Header + Blocks + Index + Stream Footer
return LZMA_STREAM_HEADER_SIZE + i->total_size
- + index_size(i->count, i->index_list_size)
+ + index_size(i->record_count, i->index_list_size)
+ LZMA_STREAM_HEADER_SIZE;
}
+static lzma_vli
+index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
+ lzma_vli record_count, lzma_vli index_list_size,
+ lzma_vli stream_padding)
+{
+ // Earlier Streams and Stream Paddings + Stream Header
+ // + Blocks + Index + Stream Footer + Stream Padding
+ //
+ // This might go over LZMA_VLI_MAX due to too big unpadded_sum
+ // when this function is used in lzma_index_append().
+ lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
+ + stream_padding + vli_ceil4(unpadded_sum);
+ if (file_size > LZMA_VLI_MAX)
+ return LZMA_VLI_UNKNOWN;
+
+ // The same applies here.
+ file_size += index_size(record_count, index_list_size);
+ if (file_size > LZMA_VLI_MAX)
+ return LZMA_VLI_UNKNOWN;
+
+ return file_size;
+}
+
+
extern LZMA_API(lzma_vli)
lzma_index_file_size(const lzma_index *i)
{
- // If multiple Streams are concatenated, the Stream Header, Index,
- // and Stream Footer fields of all but the last Stream are already
- // included in old.streams_size. Thus, we need to calculate only the
- // size of the last Index, not all Indexes.
- return i->old.streams_size + LZMA_STREAM_HEADER_SIZE + i->total_size
- + index_size(i->count - i->old.count,
- i->index_list_size - i->old.index_list_size)
- + LZMA_STREAM_HEADER_SIZE;
+ const index_stream *s = (const index_stream *)(i->streams.rightmost);
+ const index_group *g = (const index_group *)(s->groups.rightmost);
+ return index_file_size(s->node.compressed_base,
+ g == NULL ? 0 : g->records[g->last].unpadded_sum,
+ s->record_count, s->index_list_size,
+ s->stream_padding);
}
@@ -223,58 +572,63 @@ lzma_index_uncompressed_size(const lzma_index *i)
}
+extern LZMA_API(uint32_t)
+lzma_index_checks(const lzma_index *i)
+{
+ uint32_t checks = i->checks;
+
+ // Get the type of the Check of the last Stream too.
+ const index_stream *s = (const index_stream *)(i->streams.rightmost);
+ if (s->stream_flags.version != UINT32_MAX)
+ checks |= UINT32_C(1) << s->stream_flags.check;
+
+ return checks;
+}
+
+
extern uint32_t
lzma_index_padding_size(const lzma_index *i)
{
- return (LZMA_VLI_C(4)
- - index_size_unpadded(i->count, i->index_list_size)) & 3;
+ return (LZMA_VLI_C(4) - index_size_unpadded(
+ i->record_count, i->index_list_size)) & 3;
}
-/// Appends a new Record to the Index. If needed, this allocates a new
-/// Record group.
-static lzma_ret
-index_append_real(lzma_index *i, lzma_allocator *allocator,
- lzma_vli unpadded_size, lzma_vli uncompressed_size,
- bool is_padding)
+extern LZMA_API(lzma_ret)
+lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
{
- // Add the new record.
- if (i->tail == NULL || i->tail->last == INDEX_GROUP_SIZE - 1) {
- // Allocate a new group.
- lzma_index_group *g = lzma_alloc(sizeof(lzma_index_group),
- allocator);
- if (g == NULL)
- return LZMA_MEM_ERROR;
+ if (i == NULL || stream_flags == NULL)
+ return LZMA_PROG_ERROR;
- // Initialize the group and set its first record.
- g->prev = i->tail;
- g->next = NULL;
- g->last = 0;
- g->unpadded_sums[0] = unpadded_size;
- g->uncompressed_sums[0] = uncompressed_size;
- g->paddings[0] = is_padding;
+ // Validate the Stream Flags.
+ return_if_error(lzma_stream_flags_compare(
+ stream_flags, stream_flags));
- // If this is the first group, make it the head.
- if (i->head == NULL)
- i->head = g;
- else
- i->tail->next = g;
+ index_stream *s = (index_stream *)(i->streams.rightmost);
+ s->stream_flags = *stream_flags;
- // Make it the new tail.
- i->tail = g;
+ return LZMA_OK;
+}
- } else {
- // i->tail has space left for at least one record.
- i->tail->unpadded_sums[i->tail->last + 1]
- = unpadded_size + vli_ceil4(
- i->tail->unpadded_sums[i->tail->last]);
- i->tail->uncompressed_sums[i->tail->last + 1]
- = i->tail->uncompressed_sums[i->tail->last]
- + uncompressed_size;
- i->tail->paddings[i->tail->last + 1] = is_padding;
- ++i->tail->last;
+
+extern LZMA_API(lzma_ret)
+lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
+{
+ if (i == NULL || stream_padding > LZMA_VLI_MAX
+ || (stream_padding & 3) != 0)
+ return LZMA_PROG_ERROR;
+
+ index_stream *s = (index_stream *)(i->streams.rightmost);
+
+ // Check that the new value won't make the file grow too big.
+ const lzma_vli old_stream_padding = s->stream_padding;
+ s->stream_padding = 0;
+ if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
+ s->stream_padding = old_stream_padding;
+ return LZMA_DATA_ERROR;
}
+ s->stream_padding = stream_padding;
return LZMA_OK;
}
@@ -283,502 +637,605 @@ extern LZMA_API(lzma_ret)
lzma_index_append(lzma_index *i, lzma_allocator *allocator,
lzma_vli unpadded_size, lzma_vli uncompressed_size)
{
- if (unpadded_size < UNPADDED_SIZE_MIN
+ // Validate.
+ if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
|| unpadded_size > UNPADDED_SIZE_MAX
|| uncompressed_size > LZMA_VLI_MAX)
return LZMA_PROG_ERROR;
- // This looks a bit ugly. We want to first validate that the Index
- // and Stream stay in valid limits after adding this Record. After
- // validating, we may need to allocate a new lzma_index_group (it's
- // slightly more correct to validate before allocating, YMMV).
- lzma_ret ret;
+ index_stream *s = (index_stream *)(i->streams.rightmost);
+ index_group *g = (index_group *)(s->groups.rightmost);
- // First update the overall info so we can validate it.
- const lzma_vli index_list_size_add = lzma_vli_size(unpadded_size)
+ const lzma_vli compressed_base = g == NULL ? 0
+ : vli_ceil4(g->records[g->last].unpadded_sum);
+ const lzma_vli uncompressed_base = g == NULL ? 0
+ : g->records[g->last].uncompressed_sum;
+ const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
+ lzma_vli_size(uncompressed_size);
- const lzma_vli total_size = vli_ceil4(unpadded_size);
+ // Check that the file size will stay within limits.
+ if (index_file_size(s->node.compressed_base,
+ compressed_base + unpadded_size, s->record_count + 1,
+ s->index_list_size + index_list_size_add,
+ s->stream_padding) == LZMA_VLI_UNKNOWN)
+ return LZMA_DATA_ERROR;
- i->total_size += total_size;
- i->uncompressed_size += uncompressed_size;
- ++i->count;
- i->index_list_size += index_list_size_add;
+ // The size of the Index field must not exceed the maximum value
+ // that can be stored in the Backward Size field.
+ if (index_size(i->record_count + 1,
+ i->index_list_size + index_list_size_add)
+ > LZMA_BACKWARD_SIZE_MAX)
+ return LZMA_DATA_ERROR;
- if (i->total_size > LZMA_VLI_MAX
- || i->uncompressed_size > LZMA_VLI_MAX
- || lzma_index_size(i) > LZMA_BACKWARD_SIZE_MAX
- || lzma_index_file_size(i) > LZMA_VLI_MAX)
- ret = LZMA_DATA_ERROR; // Would grow past the limits.
- else
- ret = index_append_real(i, allocator, unpadded_size,
- uncompressed_size, false);
-
- if (ret != LZMA_OK) {
- // Something went wrong. Undo the updates.
- i->total_size -= total_size;
- i->uncompressed_size -= uncompressed_size;
- --i->count;
- i->index_list_size -= index_list_size_add;
- }
+ if (g != NULL && g->last + 1 < g->allocated) {
+ // There is space in the last group at least for one Record.
+ ++g->last;
+ } else {
+ // We need to allocate a new group.
+ g = lzma_alloc(sizeof(index_group)
+ + i->prealloc * sizeof(index_record),
+ allocator);
+ if (g == NULL)
+ return LZMA_MEM_ERROR;
- return ret;
-}
+ g->last = 0;
+ g->allocated = i->prealloc;
+ // Reset prealloc so that if the application happens to
+ // add new Records, the allocation size will be sane.
+ i->prealloc = INDEX_GROUP_SIZE;
-/// Initialize i->current to point to the first Record.
-/// Return true if there are no Records.
-static bool
-init_current(lzma_index *i)
-{
- if (i->count == 0)
- return true;
+ // Set the start offsets of this group.
+ g->node.uncompressed_base = uncompressed_base;
+ g->node.compressed_base = compressed_base;
+ g->number_base = s->record_count + 1;
- assert(i->head != NULL);
- i->current.group = i->head;
- i->current.record = 0;
- i->current.stream_offset = LZMA_STREAM_HEADER_SIZE;
- i->current.uncompressed_offset = 0;
+ // Add the new group to the Stream.
+ index_tree_append(&s->groups, &g->node);
+ }
- return false;
-}
+ // Add the new Record to the group.
+ g->records[g->last].uncompressed_sum
+ = uncompressed_base + uncompressed_size;
+ g->records[g->last].unpadded_sum
+ = compressed_base + unpadded_size;
+ // Update the totals.
+ ++s->record_count;
+ s->index_list_size += index_list_size_add;
-/// Go backward to the previous group.
-static void
-previous_group(lzma_index *i)
-{
- assert(i->current.group->prev != NULL);
+ i->total_size += vli_ceil4(unpadded_size);
+ i->uncompressed_size += uncompressed_size;
+ ++i->record_count;
+ i->index_list_size += index_list_size_add;
- // Go to the previous group first.
- i->current.group = i->current.group->prev;
- i->current.record = i->current.group->last;
+ return LZMA_OK;
+}
- // Then update the offsets.
- i->current.stream_offset -= vli_ceil4(i->current.group->unpadded_sums[
- i->current.group->last]);
- i->current.uncompressed_offset -= i->current.group->uncompressed_sums[
- i->current.group->last];
- return;
-}
+/// Structure to pass info to index_cat_helper()
+typedef struct {
+ /// Uncompressed size of the destination
+ lzma_vli uncompressed_size;
+ /// Compressed file size of the destination
+ lzma_vli file_size;
-/// Go forward to the next group.
-static void
-next_group(lzma_index *i)
-{
- assert(i->current.group->next != NULL);
+ /// Same as above but for Block numbers
+ lzma_vli block_number_add;
- // Update the offsets first.
- i->current.stream_offset += vli_ceil4(i->current.group->unpadded_sums[
- i->current.group->last]);
- i->current.uncompressed_offset += i->current.group
- ->uncompressed_sums[i->current.group->last];
+ /// Number of Streams that were in the destination index before we
+ /// started appending new Streams from the source index. This is
+ /// used to fix the Stream numbering.
+ uint32_t stream_number_add;
- // Then go to the next group.
- i->current.record = 0;
- i->current.group = i->current.group->next;
+ /// Destination index' Stream tree
+ index_tree *streams;
- return;
-}
+} index_cat_info;
-/// Set *info from i->current.
+/// Add the Stream nodes from the source index to dest using recursion.
+/// Simplest iterative traversal of the source tree wouldn't work, because
+/// we update the pointers in nodes when moving them to the destinatino tree.
static void
-set_info(const lzma_index *i, lzma_index_record *info)
-{
- // First copy the cumulative sizes from the current Record of the
- // current group.
- info->unpadded_size
- = i->current.group->unpadded_sums[i->current.record];
- info->total_size = vli_ceil4(info->unpadded_size);
- info->uncompressed_size = i->current.group->uncompressed_sums[
- i->current.record];
-
- // Copy the start offsets of this group.
- info->stream_offset = i->current.stream_offset;
- info->uncompressed_offset = i->current.uncompressed_offset;
-
- // If it's not the first Record in this group, we need to do some
- // adjustements.
- if (i->current.record > 0) {
- // Since the _sums[] are cumulative, we substract the sums of
- // the previous Record to get the sizes of the current Record,
- // and add the sums of the previous Record to the offsets.
- // With unpadded_sums[] we need to take into account that it
- // uses a bit weird way to do the cumulative summing
- const lzma_vli total_sum
- = vli_ceil4(i->current.group->unpadded_sums[
- i->current.record - 1]);
-
- const lzma_vli uncompressed_sum = i->current.group
- ->uncompressed_sums[i->current.record - 1];
-
- info->total_size -= total_sum;
- info->unpadded_size -= total_sum;
- info->uncompressed_size -= uncompressed_sum;
-
- info->stream_offset += total_sum;
- info->uncompressed_offset += uncompressed_sum;
- }
+index_cat_helper(const index_cat_info *info, index_stream *this)
+{
+ index_stream *left = (index_stream *)(this->node.left);
+ index_stream *right = (index_stream *)(this->node.right);
+
+ if (left != NULL)
+ index_cat_helper(info, left);
+
+ this->node.uncompressed_base += info->uncompressed_size;
+ this->node.compressed_base += info->file_size;
+ this->number += info->stream_number_add;
+ this->block_number_base += info->block_number_add;
+ index_tree_append(info->streams, &this->node);
+
+ if (right != NULL)
+ index_cat_helper(info, right);
return;
}
-extern LZMA_API(lzma_bool)
-lzma_index_read(lzma_index *i, lzma_index_record *info)
+extern LZMA_API(lzma_ret)
+lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
+ lzma_allocator *allocator)
{
- bool get_next = true;
+ const lzma_vli dest_file_size = lzma_index_file_size(dest);
- if (i->current.group == NULL) {
- // We are at the beginning of the Record list. Set up
- // i->current to point at the first Record. Return if
- // there are no Records.
- if (init_current(i))
- return true;
+ // Check that we don't exceed the file size limits.
+ if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
+ || dest->uncompressed_size + src->uncompressed_size
+ > LZMA_VLI_MAX)
+ return LZMA_DATA_ERROR;
- // This is the first Record. We don't need to look for the
- // next Record unless this one is Stream Padding.
- get_next = false;
+ // Check that the encoded size of the combined lzma_indexes stays
+ // within limits. In theory, this should be done only if we know
+ // that the user plans to actually combine the Streams and thus
+ // construct a single Index (probably rare). However, exceeding
+ // this limit is quite theoretical, so we do this check always
+ // to simplify things elsewhere.
+ {
+ const lzma_vli dest_size = index_size_unpadded(
+ dest->record_count, dest->index_list_size);
+ const lzma_vli src_size = index_size_unpadded(
+ src->record_count, src->index_list_size);
+ if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
+ return LZMA_DATA_ERROR;
}
- // Find the next Record that isn't Stream Padding.
- while (get_next || i->current.group->paddings[i->current.record]) {
- get_next = false;
-
- if (i->current.record < i->current.group->last)
- ++i->current.record;
- else if (i->current.group->next == NULL)
- return true;
- else
- next_group(i);
+ // Optimize the last group to minimize memory usage. Allocation has
+ // to be done before modifying dest or src.
+ {
+ index_stream *s = (index_stream *)(dest->streams.rightmost);
+ index_group *g = (index_group *)(s->groups.rightmost);
+ if (g != NULL && g->last + 1 < g->allocated) {
+ assert(g->node.left == NULL);
+ assert(g->node.right == NULL);
+
+ index_group *newg = lzma_alloc(sizeof(index_group)
+ + (g->last + 1)
+ * sizeof(index_record),
+ allocator);
+ if (newg == NULL)
+ return LZMA_MEM_ERROR;
+
+ newg->node = g->node;
+ newg->allocated = g->last + 1;
+ newg->last = g->last;
+ newg->number_base = g->number_base;
+
+ memcpy(newg->records, g->records, newg->allocated
+ * sizeof(index_record));
+
+ if (g->node.parent != NULL) {
+ assert(g->node.parent->right == &g->node);
+ g->node.parent->right = &newg->node;
+ }
+
+ if (s->groups.leftmost == &g->node) {
+ assert(s->groups.root == &g->node);
+ s->groups.leftmost = &newg->node;
+ s->groups.root = &newg->node;
+ }
+
+ if (s->groups.rightmost == &g->node)
+ s->groups.rightmost = &newg->node;
+
+ lzma_free(g, allocator);
+ }
}
- // We found a new Record. Set the information to *info.
- set_info(i, info);
-
- return false;
-}
+ // Add all the Streams from src to dest. Update the base offsets
+ // of each Stream from src.
+ const index_cat_info info = {
+ .uncompressed_size = dest->uncompressed_size,
+ .file_size = dest_file_size,
+ .stream_number_add = dest->streams.count,
+ .block_number_add = dest->record_count,
+ .streams = &dest->streams,
+ };
+ index_cat_helper(&info, (index_stream *)(src->streams.root));
+
+ // Update info about all the combined Streams.
+ dest->uncompressed_size += src->uncompressed_size;
+ dest->total_size += src->total_size;
+ dest->record_count += src->record_count;
+ dest->index_list_size += src->index_list_size;
+ dest->checks = lzma_index_checks(dest) | src->checks;
+ // There's nothing else left in src than the base structure.
+ lzma_free(src, allocator);
-extern LZMA_API(void)
-lzma_index_rewind(lzma_index *i)
-{
- i->current.group = NULL;
- return;
+ return LZMA_OK;
}
-extern LZMA_API(lzma_bool)
-lzma_index_locate(lzma_index *i, lzma_index_record *info, lzma_vli target)
+/// Duplicate an index_stream.
+static index_stream *
+index_dup_stream(const index_stream *src, lzma_allocator *allocator)
{
- // Check if it is possible to fullfill the request.
- if (target >= i->uncompressed_size)
- return true;
+ // Catch a somewhat theoretical integer overflow.
+ if (src->record_count > PREALLOC_MAX)
+ return NULL;
- // Now we know that we will have an answer. Initialize the current
- // read position if needed.
- if (i->current.group == NULL && init_current(i))
- return true;
+ // Allocate and initialize a new Stream.
+ index_stream *dest = index_stream_init(src->node.compressed_base,
+ src->node.uncompressed_base, src->number,
+ src->block_number_base, allocator);
+
+ // Return immediatelly if allocation failed or if there are
+ // no groups to duplicate.
+ if (dest == NULL || src->groups.leftmost == NULL)
+ return dest;
+
+ // Copy the overall information.
+ dest->record_count = src->record_count;
+ dest->index_list_size = src->index_list_size;
+ dest->stream_flags = src->stream_flags;
+ dest->stream_padding = src->stream_padding;
+
+ // Allocate memory for the Records. We put all the Records into
+ // a single group. It's simplest and also tends to make
+ // lzma_index_locate() a little bit faster with very big Indexes.
+ index_group *destg = lzma_alloc(sizeof(index_group)
+ + src->record_count * sizeof(index_record),
+ allocator);
+ if (destg == NULL) {
+ index_stream_end(dest, allocator);
+ return NULL;
+ }
- // Locate the group where the wanted Block is. First search forward.
- while (i->current.uncompressed_offset <= target) {
- // If the first uncompressed byte of the next group is past
- // the target offset, it has to be this or an earlier group.
- if (i->current.uncompressed_offset + i->current.group
- ->uncompressed_sums[i->current.group->last]
- > target)
- break;
+ // Initialize destg.
+ destg->node.uncompressed_base = 0;
+ destg->node.compressed_base = 0;
+ destg->number_base = 1;
+ destg->allocated = src->record_count;
+ destg->last = src->record_count - 1;
- // Go forward to the next group.
- next_group(i);
- }
+ // Go through all the groups in src and copy the Records into destg.
+ const index_group *srcg = (const index_group *)(src->groups.leftmost);
+ size_t i = 0;
+ do {
+ memcpy(destg->records + i, srcg->records,
+ (srcg->last + 1) * sizeof(index_record));
+ i += srcg->last + 1;
+ srcg = index_tree_next(&srcg->node);
+ } while (srcg != NULL);
- // Then search backward.
- while (i->current.uncompressed_offset > target)
- previous_group(i);
+ assert(i == destg->allocated);
- // Now the target Block is somewhere in i->current.group. Offsets
- // in groups are relative to the beginning of the group, thus
- // we must adjust the target before starting the search loop.
- assert(target >= i->current.uncompressed_offset);
- target -= i->current.uncompressed_offset;
+ // Add the group to the new Stream.
+ index_tree_append(&dest->groups, &destg->node);
- // Use binary search to locate the exact Record. It is the first
- // Record whose uncompressed_sums[] value is greater than target.
- // This is because we want the rightmost Record that fullfills the
- // search criterion. It is possible that there are empty Blocks or
- // padding, we don't want to return them.
- size_t left = 0;
- size_t right = i->current.group->last;
+ return dest;
+}
- while (left < right) {
- const size_t pos = left + (right - left) / 2;
- if (i->current.group->uncompressed_sums[pos] <= target)
- left = pos + 1;
- else
- right = pos;
- }
- i->current.record = left;
+extern LZMA_API(lzma_index *)
+lzma_index_dup(const lzma_index *src, lzma_allocator *allocator)
+{
+ // Allocate the base structure (no initial Stream).
+ lzma_index *dest = index_init_plain(allocator);
+ if (dest == NULL)
+ return NULL;
-#ifndef NDEBUG
- // The found Record must not be padding or have zero uncompressed size.
- assert(!i->current.group->paddings[i->current.record]);
+ // Copy the totals.
+ dest->uncompressed_size = src->uncompressed_size;
+ dest->total_size = src->total_size;
+ dest->record_count = src->record_count;
+ dest->index_list_size = src->index_list_size;
+
+ // Copy the Streams and the groups in them.
+ const index_stream *srcstream
+ = (const index_stream *)(src->streams.leftmost);
+ do {
+ index_stream *deststream = index_dup_stream(
+ srcstream, allocator);
+ if (deststream == NULL) {
+ lzma_index_end(dest, allocator);
+ return NULL;
+ }
- if (i->current.record == 0)
- assert(i->current.group->uncompressed_sums[0] > 0);
- else
- assert(i->current.group->uncompressed_sums[i->current.record]
- - i->current.group->uncompressed_sums[
- i->current.record - 1] > 0);
-#endif
+ index_tree_append(&dest->streams, &deststream->node);
- set_info(i, info);
+ srcstream = index_tree_next(&srcstream->node);
+ } while (srcstream != NULL);
- return false;
+ return dest;
}
-extern LZMA_API(lzma_ret)
-lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
- lzma_allocator *allocator, lzma_vli padding)
-{
- if (dest == NULL || src == NULL || dest == src
- || padding > LZMA_VLI_MAX)
- return LZMA_PROG_ERROR;
-
- // Check that the combined size of the Indexes stays within limits.
- {
- const lzma_vli dest_size = index_size_unpadded(
- dest->count, dest->index_list_size);
- const lzma_vli src_size = index_size_unpadded(
- src->count, src->index_list_size);
- if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
- return LZMA_DATA_ERROR;
- }
+/// Indexing for lzma_index_iter.internal[]
+enum {
+ ITER_INDEX,
+ ITER_STREAM,
+ ITER_GROUP,
+ ITER_RECORD,
+ ITER_METHOD,
+};
- // Check that the combined size of the "files" (combined total
- // encoded sizes) stays within limits.
- {
- const lzma_vli dest_size = lzma_index_file_size(dest);
- const lzma_vli src_size = lzma_index_file_size(src);
- if (dest_size + src_size > LZMA_VLI_MAX
- || dest_size + src_size + padding
- > LZMA_VLI_MAX)
- return LZMA_DATA_ERROR;
- }
- // Add a padding Record to take into account the size of
- // Index + Stream Footer + Stream Padding + Stream Header.
- //
- // NOTE: This cannot overflow, because Index Size is always
- // far smaller than LZMA_VLI_MAX, and adding two VLIs
- // (Index Size and padding) doesn't overflow.
- padding += index_size(dest->count - dest->old.count,
- dest->index_list_size
- - dest->old.index_list_size)
- + LZMA_STREAM_HEADER_SIZE * 2;
-
- // While the above cannot overflow, but it may become an invalid VLI.
- if (padding > LZMA_VLI_MAX)
- return LZMA_DATA_ERROR;
+/// Values for lzma_index_iter.internal[ITER_METHOD].s
+enum {
+ ITER_METHOD_NORMAL,
+ ITER_METHOD_NEXT,
+ ITER_METHOD_LEFTMOST,
+};
- // Add the padding Record.
- {
- lzma_ret ret;
- // First update the info so we can validate it.
- dest->old.streams_size += padding;
+static void
+iter_set_info(lzma_index_iter *iter)
+{
+ const lzma_index *i = iter->internal[ITER_INDEX].p;
+ const index_stream *stream = iter->internal[ITER_STREAM].p;
+ const index_group *group = iter->internal[ITER_GROUP].p;
+ const size_t record = iter->internal[ITER_RECORD].s;
+
+ // lzma_index_iter.internal must not contain a pointer to the last
+ // group in the index, because that may be reallocated by
+ // lzma_index_cat().
+ if (group == NULL) {
+ // There are no groups.
+ assert(stream->groups.root == NULL);
+ iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
+
+ } else if (i->streams.rightmost != &stream->node
+ || stream->groups.rightmost != &group->node) {
+ // The group is not not the last group in the index.
+ iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
+
+ } else if (stream->groups.leftmost != &group->node) {
+ // The group isn't the only group in the Stream, thus we
+ // know that it must have a parent group i.e. it's not
+ // the root node.
+ assert(stream->groups.root != &group->node);
+ assert(group->node.parent->right == &group->node);
+ iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
+ iter->internal[ITER_GROUP].p = group->node.parent;
- if (dest->old.streams_size > LZMA_VLI_MAX
- || lzma_index_file_size(dest) > LZMA_VLI_MAX)
- ret = LZMA_DATA_ERROR; // Would grow past the limits.
- else
- ret = index_append_real(dest, allocator,
- padding, 0, true);
-
- // If something went wrong, undo the updated value and return
- // the error.
- if (ret != LZMA_OK) {
- dest->old.streams_size -= padding;
- return ret;
- }
+ } else {
+ // The Stream has only one group.
+ assert(stream->groups.root == &group->node);
+ assert(group->node.parent == NULL);
+ iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
+ iter->internal[ITER_GROUP].p = NULL;
}
- // Avoid wasting lots of memory if src->head has only a few records
- // that fit into dest->tail. That is, combine two groups if possible.
- //
- // NOTE: We know that dest->tail != NULL since we just appended
- // a padding Record. But we don't know about src->head.
- if (src->head != NULL && src->head->last + 1
- <= INDEX_GROUP_SIZE - dest->tail->last - 1) {
- // Copy the first Record.
- dest->tail->unpadded_sums[dest->tail->last + 1]
- = vli_ceil4(dest->tail->unpadded_sums[
- dest->tail->last])
- + src->head->unpadded_sums[0];
-
- dest->tail->uncompressed_sums[dest->tail->last + 1]
- = dest->tail->uncompressed_sums[dest->tail->last]
- + src->head->uncompressed_sums[0];
-
- dest->tail->paddings[dest->tail->last + 1]
- = src->head->paddings[0];
-
- ++dest->tail->last;
-
- // Copy the rest.
- for (size_t i = 0; i < src->head->last; ++i) {
- dest->tail->unpadded_sums[dest->tail->last + 1]
- = vli_ceil4(dest->tail->unpadded_sums[
- dest->tail->last])
- + src->head->unpadded_sums[i + 1]
- - src->head->unpadded_sums[i];
-
- dest->tail->uncompressed_sums[dest->tail->last + 1]
- = dest->tail->uncompressed_sums[
- dest->tail->last]
- + src->head->uncompressed_sums[i + 1]
- - src->head->uncompressed_sums[i];
-
- dest->tail->paddings[dest->tail->last + 1]
- = src->head->paddings[i + 1];
-
- ++dest->tail->last;
- }
-
- // Free the head group of *src. Don't bother updating prev
- // pointers since those won't be used for anything before
- // we deallocate the whole *src structure.
- lzma_index_group *tmp = src->head;
- src->head = src->head->next;
- lzma_free(tmp, allocator);
+ iter->stream.number = stream->number;
+ iter->stream.block_count = stream->record_count;
+ iter->stream.compressed_offset = stream->node.compressed_base;
+ iter->stream.uncompressed_offset = stream->node.uncompressed_base;
+
+ // iter->stream.flags will be NULL if the Stream Flags haven't been
+ // set with lzma_index_stream_flags().
+ iter->stream.flags = stream->stream_flags.version == UINT32_MAX
+ ? NULL : &stream->stream_flags;
+ iter->stream.padding = stream->stream_padding;
+
+ if (stream->groups.rightmost == NULL) {
+ // Stream has no Blocks.
+ iter->stream.compressed_size = index_size(0, 0)
+ + 2 * LZMA_STREAM_HEADER_SIZE;
+ iter->stream.uncompressed_size = 0;
+ } else {
+ const index_group *g = (const index_group *)(
+ stream->groups.rightmost);
+
+ // Stream Header + Stream Footer + Index + Blocks
+ iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
+ + index_size(stream->record_count,
+ stream->index_list_size)
+ + vli_ceil4(g->records[g->last].unpadded_sum);
+ iter->stream.uncompressed_size
+ = g->records[g->last].uncompressed_sum;
}
- // If there are groups left in *src, join them as is. Note that if we
- // are combining already combined Indexes, src->head can be non-NULL
- // even if we just combined the old src->head to dest->tail.
- if (src->head != NULL) {
- src->head->prev = dest->tail;
- dest->tail->next = src->head;
- dest->tail = src->tail;
+ if (group != NULL) {
+ iter->block.number_in_stream = group->number_base + record;
+ iter->block.number_in_file = iter->block.number_in_stream
+ + stream->block_number_base;
+
+ iter->block.compressed_stream_offset
+ = record == 0 ? group->node.compressed_base
+ : vli_ceil4(group->records[
+ record - 1].unpadded_sum);
+ iter->block.uncompressed_stream_offset
+ = record == 0 ? group->node.uncompressed_base
+ : group->records[record - 1].uncompressed_sum;
+
+ iter->block.uncompressed_size
+ = group->records[record].uncompressed_sum
+ - iter->block.uncompressed_stream_offset;
+ iter->block.unpadded_size
+ = group->records[record].unpadded_sum
+ - iter->block.compressed_stream_offset;
+ iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
+
+ iter->block.compressed_stream_offset
+ += LZMA_STREAM_HEADER_SIZE;
+
+ iter->block.compressed_file_offset
+ = iter->block.compressed_stream_offset
+ + iter->stream.compressed_offset;
+ iter->block.uncompressed_file_offset
+ = iter->block.uncompressed_stream_offset
+ + iter->stream.uncompressed_offset;
}
- // Update information about earlier Indexes. Only the last Index
- // from *src won't be counted in dest->old. The last Index is left
- // open and can be even appended with lzma_index_append().
- dest->old.count = dest->count + src->old.count;
- dest->old.index_list_size
- = dest->index_list_size + src->old.index_list_size;
- dest->old.streams_size += src->old.streams_size;
+ return;
+}
- // Update overall information.
- dest->total_size += src->total_size;
- dest->uncompressed_size += src->uncompressed_size;
- dest->count += src->count;
- dest->index_list_size += src->index_list_size;
- // *src has nothing left but the base structure.
- lzma_free(src, allocator);
+extern LZMA_API(void)
+lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
+{
+ iter->internal[ITER_INDEX].p = i;
+ lzma_index_iter_rewind(iter);
+ return;
+}
- return LZMA_OK;
+
+extern LZMA_API(void)
+lzma_index_iter_rewind(lzma_index_iter *iter)
+{
+ iter->internal[ITER_STREAM].p = NULL;
+ iter->internal[ITER_GROUP].p = NULL;
+ iter->internal[ITER_RECORD].s = 0;
+ iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
+ return;
}
-extern LZMA_API(lzma_index *)
-lzma_index_dup(const lzma_index *src, lzma_allocator *allocator)
+extern LZMA_API(lzma_bool)
+lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
{
- lzma_index *dest = lzma_alloc(sizeof(lzma_index), allocator);
- if (dest == NULL)
- return NULL;
+ // Catch unsupported mode values.
+ if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
+ return true;
- // Copy the base structure except the pointers.
- *dest = *src;
- dest->head = NULL;
- dest->tail = NULL;
- dest->current.group = NULL;
-
- // Copy the Records.
- const lzma_index_group *src_group = src->head;
- while (src_group != NULL) {
- // Allocate a new group.
- lzma_index_group *dest_group = lzma_alloc(
- sizeof(lzma_index_group), allocator);
- if (dest_group == NULL) {
- lzma_index_end(dest, allocator);
- return NULL;
- }
+ const lzma_index *i = iter->internal[ITER_INDEX].p;
+ const index_stream *stream = iter->internal[ITER_STREAM].p;
+ const index_group *group = NULL;
+ size_t record = iter->internal[ITER_RECORD].s;
+
+ // If we are being asked for the next Stream, leave group to NULL
+ // so that the rest of the this function thinks that this Stream
+ // has no groups and will thus go to the next Stream.
+ if (mode != LZMA_INDEX_ITER_STREAM) {
+ // Get the pointer to the current group. See iter_set_inf()
+ // for explanation.
+ switch (iter->internal[ITER_METHOD].s) {
+ case ITER_METHOD_NORMAL:
+ group = iter->internal[ITER_GROUP].p;
+ break;
- // Set the pointers.
- dest_group->prev = dest->tail;
- dest_group->next = NULL;
+ case ITER_METHOD_NEXT:
+ group = index_tree_next(iter->internal[ITER_GROUP].p);
+ break;
- if (dest->head == NULL)
- dest->head = dest_group;
- else
- dest->tail->next = dest_group;
+ case ITER_METHOD_LEFTMOST:
+ group = (const index_group *)(
+ stream->groups.leftmost);
+ break;
+ }
+ }
- dest->tail = dest_group;
+again:
+ if (stream == NULL) {
+ // We at the beginning of the lzma_index.
+ // Locate the first Stream.
+ stream = (const index_stream *)(i->streams.leftmost);
+ if (mode >= LZMA_INDEX_ITER_BLOCK) {
+ // Since we are being asked to return information
+ // about the first a Block, skip Streams that have
+ // no Blocks.
+ while (stream->groups.leftmost == NULL) {
+ stream = index_tree_next(&stream->node);
+ if (stream == NULL)
+ return true;
+ }
+ }
- dest_group->last = src_group->last;
+ // Start from the first Record in the Stream.
+ group = (const index_group *)(stream->groups.leftmost);
+ record = 0;
- // Copy the arrays so that we don't read uninitialized memory.
- const size_t count = src_group->last + 1;
- memcpy(dest_group->unpadded_sums, src_group->unpadded_sums,
- sizeof(lzma_vli) * count);
- memcpy(dest_group->uncompressed_sums,
- src_group->uncompressed_sums,
- sizeof(lzma_vli) * count);
- memcpy(dest_group->paddings, src_group->paddings,
- sizeof(bool) * count);
+ } else if (group != NULL && record < group->last) {
+ // The next Record is in the same group.
+ ++record;
- // Copy also the read position.
- if (src_group == src->current.group)
- dest->current.group = dest->tail;
+ } else {
+ // This group has no more Records or this Stream has
+ // no Blocks at all.
+ record = 0;
+
+ // If group is not NULL, this Stream has at least one Block
+ // and thus at least one group. Find the next group.
+ if (group != NULL)
+ group = index_tree_next(&group->node);
+
+ if (group == NULL) {
+ // This Stream has no more Records. Find the next
+ // Stream. If we are being asked to return information
+ // about a Block, we skip empty Streams.
+ do {
+ stream = index_tree_next(&stream->node);
+ if (stream == NULL)
+ return true;
+ } while (mode >= LZMA_INDEX_ITER_BLOCK
+ && stream->groups.leftmost == NULL);
+
+ group = (const index_group *)(
+ stream->groups.leftmost);
+ }
+ }
- src_group = src_group->next;
+ if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
+ // We need to look for the next Block again if this Block
+ // is empty.
+ if (record == 0) {
+ if (group->node.uncompressed_base
+ == group->records[0].uncompressed_sum)
+ goto again;
+ } else if (group->records[record - 1].uncompressed_sum
+ == group->records[record].uncompressed_sum) {
+ goto again;
+ }
}
- return dest;
+ iter->internal[ITER_STREAM].p = stream;
+ iter->internal[ITER_GROUP].p = group;
+ iter->internal[ITER_RECORD].s = record;
+
+ iter_set_info(iter);
+
+ return false;
}
extern LZMA_API(lzma_bool)
-lzma_index_equal(const lzma_index *a, const lzma_index *b)
+lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
{
- // No point to compare more if the pointers are the same.
- if (a == b)
+ const lzma_index *i = iter->internal[ITER_INDEX].p;
+
+ // If the target is past the end of the file, return immediatelly.
+ if (i->uncompressed_size <= target)
return true;
- // Compare the basic properties.
- if (a->total_size != b->total_size
- || a->uncompressed_size != b->uncompressed_size
- || a->index_list_size != b->index_list_size
- || a->count != b->count)
- return false;
-
- // Compare the Records.
- const lzma_index_group *ag = a->head;
- const lzma_index_group *bg = b->head;
- while (ag != NULL && bg != NULL) {
- const size_t count = ag->last + 1;
- if (ag->last != bg->last
- || memcmp(ag->unpadded_sums,
- bg->unpadded_sums,
- sizeof(lzma_vli) * count) != 0
- || memcmp(ag->uncompressed_sums,
- bg->uncompressed_sums,
- sizeof(lzma_vli) * count) != 0
- || memcmp(ag->paddings, bg->paddings,
- sizeof(bool) * count) != 0)
- return false;
-
- ag = ag->next;
- bg = bg->next;
+ // Locate the Stream containing the target offset.
+ const index_stream *stream = index_tree_locate(&i->streams, target);
+ assert(stream != NULL);
+ target -= stream->node.uncompressed_base;
+
+ // Locate the group containing the target offset.
+ const index_group *group = index_tree_locate(&stream->groups, target);
+ assert(group != NULL);
+
+ // Use binary search to locate the exact Record. It is the first
+ // Record whose uncompressed_sum is greater than target.
+ // This is because we want the rightmost Record that fullfills the
+ // search criterion. It is possible that there are empty Blocks;
+ // we don't want to return them.
+ size_t left = 0;
+ size_t right = group->last;
+
+ while (left < right) {
+ const size_t pos = left + (right - left) / 2;
+ if (group->records[pos].uncompressed_sum <= target)
+ left = pos + 1;
+ else
+ right = pos;
}
- return ag == NULL && bg == NULL;
+ iter->internal[ITER_STREAM].p = stream;
+ iter->internal[ITER_GROUP].p = group;
+ iter->internal[ITER_RECORD].s = left;
+
+ iter_set_info(iter);
+
+ return false;
}