diff options
author | Jia Tan <jiat0218@gmail.com> | 2023-10-14 12:17:57 +0800 |
---|---|---|
committer | Jia Tan <jiat0218@gmail.com> | 2023-10-18 23:54:36 +0800 |
commit | 8c0f9376f58c0696d5d6719705164d35542dd891 (patch) | |
tree | 104f3471d2ecd77b25314e67fdef743fcecbe193 /src/liblzma/check/crc_common.h | |
parent | liblzma: Define CRC_USE_IFUNC in crc_common.h. (diff) | |
download | xz-8c0f9376f58c0696d5d6719705164d35542dd891.tar.xz |
liblzma: Create crc_clmul.c.
Both crc32_clmul() and crc64_clmul() are now exported from
crc32_clmul.c as lzma_crc32_clmul() and lzma_crc64_clmul(). This
ensures that is_clmul_supported() (now lzma_is_clmul_supported()) is
not duplicated between crc32_fast.c and crc64_fast.c.
Also, it encapsulates the complexity of the CLMUL implementations into a
single file and reduces the complexity of crc32_fast.c and crc64_fast.c.
Before, CLMUL code was present in crc32_fast.c, crc64_fast.c, and
crc_common.h.
During the conversion, various cleanups were applied to code (thanks to
Lasse Collin) including:
- Require using semicolons with MASK_/L/H/LH macros.
- Variable typing and const handling improvements.
- Improvements to comments.
- Fixes to the pragmas used.
- Removed unneeded variables.
- Whitespace improvements.
- Fixed CRC_USE_GENERIC_FOR_SMALL_INPUTS handling.
- Silenced warnings and removed the need for some #pragmas
Diffstat (limited to 'src/liblzma/check/crc_common.h')
-rw-r--r-- | src/liblzma/check/crc_common.h | 190 |
1 files changed, 10 insertions, 180 deletions
diff --git a/src/liblzma/check/crc_common.h b/src/liblzma/check/crc_common.h index 55fdd55e..b0176adc 100644 --- a/src/liblzma/check/crc_common.h +++ b/src/liblzma/check/crc_common.h @@ -6,6 +6,7 @@ // Authors: Lasse Collin // Ilya Kurdyukov // Hans Jansen +// Jia Tan // // This file has been put into the public domain. // You can do whatever you want with this file. @@ -77,185 +78,14 @@ # endif #endif -//////////////////////// -// Detect CPU support // -//////////////////////// +/// Detect at runtime if the CPU supports the x86 CLMUL instruction when +/// both the generic and CLMUL implementations are built. +extern bool lzma_is_clmul_supported(void); -#if defined(CRC_GENERIC) && defined(CRC_CLMUL) -static inline bool -is_clmul_supported(void) -{ - int success = 1; - uint32_t r[4]; // eax, ebx, ecx, edx +/// CRC32 implemented with the x86 CLMUL instruction. +extern uint32_t lzma_crc32_clmul(const uint8_t *buf, size_t size, + uint32_t crc); -#if defined(_MSC_VER) - // This needs <intrin.h> with MSVC. ICC has it as a built-in - // on all platforms. - __cpuid(r, 1); -#elif defined(HAVE_CPUID_H) - // Compared to just using __asm__ to run CPUID, this also checks - // that CPUID is supported and saves and restores ebx as that is - // needed with GCC < 5 with position-independent code (PIC). - success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]); -#else - // Just a fallback that shouldn't be needed. - __asm__("cpuid\n\t" - : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3]) - : "a"(1), "c"(0)); -#endif - - // Returns true if these are supported: - // CLMUL (bit 1 in ecx) - // SSSE3 (bit 9 in ecx) - // SSE4.1 (bit 19 in ecx) - const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19); - return success && (r[2] & ecx_mask) == ecx_mask; - - // Alternative methods that weren't used: - // - ICC's _may_i_use_cpu_feature: the other methods should work too. - // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul") - // - // CPUID decding is needed with MSVC anyway and older GCC. This keeps - // the feature checks in the build system simpler too. The nice thing - // about __builtin_cpu_supports would be that it generates very short - // code as is it only reads a variable set at startup but a few bytes - // doesn't matter here. -} -#endif - - -#define MASK_L(in, mask, r) r = _mm_shuffle_epi8(in, mask); -#define MASK_H(in, mask, r) \ - r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign)); -#define MASK_LH(in, mask, low, high) \ - MASK_L(in, mask, low) MASK_H(in, mask, high) - -#ifdef CRC_CLMUL - -#include <immintrin.h> - - -#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__) -__attribute__((__target__("ssse3,sse4.1,pclmul"))) -#endif -#if lzma_has_attribute(__no_sanitize_address__) -__attribute__((__no_sanitize_address__)) -#endif -static inline void -crc_simd_body(const uint8_t *buf, size_t size, __m128i *v0, __m128i *v1, - __m128i vfold16, __m128i crc2vec) -{ -#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__) -# pragma GCC diagnostic push -# pragma GCC diagnostic ignored "-Wsign-conversion" -#endif - // Memory addresses A to D and the distances between them: - // - // A B C D - // [skip_start][size][skip_end] - // [ size2 ] - // - // A and D are 16-byte aligned. B and C are 1-byte aligned. - // skip_start and skip_end are 0-15 bytes. size is at least 1 byte. - // - // A = aligned_buf will initially point to this address. - // B = The address pointed by the caller-supplied buf. - // C = buf + size == aligned_buf + size2 - // D = buf + size + skip_end == aligned_buf + size2 + skip_end - uintptr_t skip_start = (uintptr_t)buf & 15; - uintptr_t skip_end = -(uintptr_t)(buf + size) & 15; - - // Create a vector with 8-bit values 0 to 15. - // This is used to construct control masks - // for _mm_blendv_epi8 and _mm_shuffle_epi8. - __m128i vramp = _mm_setr_epi32( - 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c); - - // This is used to inverse the control mask of _mm_shuffle_epi8 - // so that bytes that wouldn't be picked with the original mask - // will be picked and vice versa. - __m128i vsign = _mm_set1_epi8(-0x80); - - // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8 - // The first skip_start or skip_end bytes in the vectors will hav - // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi - // will produce zeros for these positions. (Bitwise-xor of thes - // masks with vsign will produce the opposite behavior.) - __m128i mask_start = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_start)); - __m128i mask_end = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_end)); - - // If size2 <= 16 then the whole input fits into a single 16-byte - // vector. If size2 > 16 then at least two 16-byte vectors must - // be processed. If size2 > 16 && size <= 16 then there is only - // one 16-byte vector's worth of input but it is unaligned in memory. - // - // NOTE: There is no integer overflow here if the arguments - // are valid. If this overflowed, buf + size would too. - uintptr_t size2 = skip_start + size; - const __m128i *aligned_buf = (const __m128i*)((uintptr_t)buf & -16); - __m128i v2, v3, vcrc, data0; - - vcrc = crc2vec; - - // Get the first 1-16 bytes into data0. If loading less than 16 - // bytes, the bytes are loaded to the high bits of the vector and - // the least significant positions are filled with zeros. - data0 = _mm_load_si128(aligned_buf); - data0 = _mm_blendv_epi8(data0, _mm_setzero_si128(), mask_start); - aligned_buf++; - if (size2 <= 16) { - // There are 1-16 bytes of input and it is all - // in data0. Copy the input bytes to v3. If there - // are fewer than 16 bytes, the low bytes in v3 - // will be filled with zeros. That is, the input - // bytes are stored to the same position as - // (part of) initial_crc is in v0. - __m128i mask_low = _mm_add_epi8( - vramp, _mm_set1_epi8(size - 16)); - MASK_LH(vcrc, mask_low, *v0, *v1) - MASK_L(data0, mask_end, v3) - *v0 = _mm_xor_si128(*v0, v3); - *v1 = _mm_alignr_epi8(*v1, *v0, 8); - } else { - __m128i data1 = _mm_load_si128(aligned_buf); - if (size <= 16) { - // Collect the 2-16 input bytes from data0 and data1 - // to v2 and v3, and bitwise-xor them with the - // low bits of initial_crc in v0. Note that the - // the second xor is below this else-block as it - // is shared with the other branch. - __m128i mask_low = _mm_add_epi8( - vramp, _mm_set1_epi8(size - 16)); - MASK_LH(vcrc, mask_low, *v0, *v1); - MASK_H(data0, mask_end, v2) - MASK_L(data1, mask_end, v3) - *v0 = _mm_xor_si128(*v0, v2); - *v0 = _mm_xor_si128(*v0, v3); - - *v1 = _mm_alignr_epi8(*v1, *v0, 8); - } else { - const __m128i *end = (const __m128i*)( - (char*)aligned_buf++ - 16 + size2); - MASK_LH(vcrc, mask_start, *v0, *v1) - *v0 = _mm_xor_si128(*v0, data0); - *v1 = _mm_xor_si128(*v1, data1); - while (aligned_buf < end) { - *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x00)); \ - *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x11)); - *v1 = _mm_load_si128(aligned_buf++); - } - - if (aligned_buf != end) { - MASK_H(*v0, mask_end, v2) - MASK_L(*v0, mask_end, *v0) - MASK_L(*v1, mask_end, v3) - *v1 = _mm_or_si128(v2, v3); - } - *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x00)); - *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(*v0, vfold16, 0x11)); - - *v1 = _mm_srli_si128(*v0, 8); - } - } -} -#endif +/// CRC64 implemented with the x86 CLMUL instruction. +extern uint64_t lzma_crc64_clmul(const uint8_t *buf, size_t size, + uint64_t crc); |