aboutsummaryrefslogblamecommitdiff
path: root/tests/test_index.c
blob: f63d2a79d594353af60ce123440f6ecbc921fc64 (plain) (tree)
1
2
3
4
5
6
7
8
9
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683

                                                                               
                            
                                                                 




                                                          
  
  

                                                  




                                                                               












                                           
 









































                                                                            
 
 

                             
 
















                                                                 


 

                            
 




















































                                                                           


 

                                  
 









                                                                        
 

                                                           
 









                                                                    


 

                            
 



                                                                   
 




                                                        
 










































































                                                                       
 
 
































                                                                         


 
           
                                  
 



















                                                                             



           
                                 
 




























                                                                           
 

                                                        
 
                                                                    
 
                                  



           
                          
 




































                                                                      



           
                                 
 
























































                                                                           
 
 




                                                
 


                                                              
 


                                                                        
 

                                                                        
 

                                                                        
 



















                                                                          



           
                               
 

                                                
 


                                                                 
 


                                                                        
 
                                                        
 


                                                             
 
                                                        
 




                                                                      
 

                                                                           
 











                                                                    



           
                                       
 



































                                                                              



           
                               
 



                                                                
 

                                                   
 

                                                  
 

                                                                      
 

                                           
 



                                                                          
 
                                           
 



                                                                          



           
                                 
 











































































































































































































































































































                                                                                

                                                      

                                                        


                                                                           

                                                                      

                                                      






                                                                      

                                                   
                                                      

                                






































                                                                         

                      



                                         
 


                                                                       
 
                                                          

                       












                                                               

                        





                                                               

                      





                                                                       
                                                                  

                                                                      


                                                               


                                                       

                           
                   





                                        
                                                                           
 

                                                                 
                                                           

                                                                   




                                   

                                                                    

         
                                
                           

                                                             
 

                                                                    




                                   

                                                                 
                                                           

                                                                   

         
                                               



                                         
                                            










                                                                      



           
                         
 




































                                                                           
 
 






















































                                                                              


 












                                                                           
                                                                             

 

                         
 

                                                
 






                                                                         
 








                                                                         
 
                                                                        
 


                                                   
 
                                                                        
 

                                                  
 





                                                                
 







































































                                                                              
 
 




























































































































































































































































































































                                                                              
 
///////////////////////////////////////////////////////////////////////////////
//
/// \file       test_index.c
/// \brief      Tests functions handling the lzma_index structure
///
/// \todo       Implement tests for lzma_file_info_decoder
//
//  Authors:    Jia Tan
//              Lasse Collin
//
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "tests.h"

// liblzma internal header file needed for:
// UNPADDED_SIZE_MIN
// UNPADDED_SIZE_MAX
// vli_ceil4
#include "common/index.h"


#define MEMLIMIT (UINT64_C(1) << 20)

static uint8_t *decode_buffer;
static size_t decode_buffer_size = 0;
static lzma_index *decode_test_index;


static void
test_lzma_index_memusage(void)
{
	// The return value from lzma_index_memusage is an approximation
	// of the amount of memory needed for lzma_index for a given
	// amount of Streams and Blocks. It will be an upperbound,
	// so this test will mostly sanity check and error check the
	// function.

	// The maximum number of Streams should be UINT32_MAX in the
	// current implementation even though the parameter is lzma_vli.
	assert_uint_eq(lzma_index_memusage((lzma_vli)UINT32_MAX + 1, 1),
			UINT64_MAX);

	// The maximum number of Blocks should be LZMA_VLI_MAX
	assert_uint_eq(lzma_index_memusage(1, LZMA_VLI_MAX), UINT64_MAX);

	// Number of Streams must be non-zero
	assert_uint_eq(lzma_index_memusage(0, 1), UINT64_MAX);

	// Number of Blocks CAN be zero
	assert_uint(lzma_index_memusage(1, 0), !=, UINT64_MAX);

	// Arbitrary values for Stream and Block should work without error
	// and should always increase
	uint64_t previous = 1;
	lzma_vli streams = 1;
	lzma_vli blocks = 1;

	// Test 100 different increasing values for Streams and Block
	for (int i = 0; i < 100; i++) {
		uint64_t current = lzma_index_memusage(streams, blocks);
		assert_uint(current, >, previous);
		previous = current;
		streams += 29;
		blocks += 107;
	}

	// Force integer overflow in calculation (should result in an error)
	assert_uint_eq(lzma_index_memusage(UINT32_MAX, LZMA_VLI_MAX),
			UINT64_MAX);
}


static void
test_lzma_index_memused(void)
{
	// Very similar to test_lzma_index_memusage above since
	// lzma_index_memused is essentially a wrapper for
	// lzma_index_memusage
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Test with empty Index
	assert_uint(lzma_index_memused(idx), <, UINT64_MAX);

	// Append small Blocks and then test again (should pass).
	for (lzma_vli i = 0; i < 10; i++)
		assert_lzma_ret(lzma_index_append(idx, NULL,
				UNPADDED_SIZE_MIN, 1), LZMA_OK);

	assert_uint(lzma_index_memused(idx), <, UINT64_MAX);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_append(void)
{
	// Basic input-ouput test done here.
	// Less trivial tests for this function are done throughout
	// other tests.

	// First test with NULL lzma_index
	assert_lzma_ret(lzma_index_append(NULL, NULL, UNPADDED_SIZE_MIN,
			1), LZMA_PROG_ERROR);

	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Test with invalid Unpadded Size
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN - 1, 1), LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MAX + 1, 1), LZMA_PROG_ERROR);

	// Test with invalid Uncompressed Size
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MAX, LZMA_VLI_MAX + 1),
			LZMA_PROG_ERROR);

	// Test expected successful Block appends
	assert_lzma_ret(lzma_index_append(idx, NULL, UNPADDED_SIZE_MIN,
			1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 2,
			2), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 3,
			3), LZMA_OK);

	lzma_index_end(idx, NULL);

	// Test uncompressed .xz file size growing too large.
	// Should result in LZMA_DATA_ERROR.
	idx = lzma_index_init(NULL);

	assert_lzma_ret(lzma_index_append(idx, NULL, UNPADDED_SIZE_MAX,
			1), LZMA_DATA_ERROR);

	// Test compressed size growing too large.
	// Should result in LZMA_DATA_ERROR.
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, LZMA_VLI_MAX), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_DATA_ERROR);

	// Currently not testing for error case when the size of the Index
	// grows too large to be stored. This was not practical to test for
	// since too many Blocks needed to be created to cause this.

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_stream_flags(void)
{
	// Only trivial tests done here testing for basic functionality.
	// More in-depth testing for this function will be done in
	// test_lzma_index_checks.

	// Testing for NULL inputs
	assert_lzma_ret(lzma_index_stream_flags(NULL, NULL),
			LZMA_PROG_ERROR);

	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	assert_lzma_ret(lzma_index_stream_flags(idx, NULL),
			LZMA_PROG_ERROR);

	lzma_stream_flags stream_flags = {
		.version = 0,
		.backward_size = LZMA_BACKWARD_SIZE_MIN,
		.check = LZMA_CHECK_CRC32
	};

	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_checks(void)
{
	// Tests should still pass, even if some of the check types
	// are disabled.
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	lzma_stream_flags stream_flags = {
		.version = 0,
		.backward_size = LZMA_BACKWARD_SIZE_MIN,
		.check = LZMA_CHECK_NONE
	};

	// First set the check type to None
	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);
	assert_uint_eq(lzma_index_checks(idx),
			UINT32_C(1) << LZMA_CHECK_NONE);

	// Set the check type to CRC32 and repeat
	stream_flags.check = LZMA_CHECK_CRC32;
	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);
	assert_uint_eq(lzma_index_checks(idx),
			UINT32_C(1) << LZMA_CHECK_CRC32);

	// Set the check type to CRC64 and repeat
	stream_flags.check = LZMA_CHECK_CRC64;
	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);
	assert_uint_eq(lzma_index_checks(idx),
			UINT32_C(1) << LZMA_CHECK_CRC64);

	// Set the check type to SHA256 and repeat
	stream_flags.check = LZMA_CHECK_SHA256;
	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);
	assert_uint_eq(lzma_index_checks(idx),
			UINT32_C(1) << LZMA_CHECK_SHA256);

	// Create second lzma_index and cat to first
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	// Set the check type to CRC32 for the second lzma_index
	stream_flags.check = LZMA_CHECK_CRC32;
	assert_lzma_ret(lzma_index_stream_flags(second, &stream_flags),
			LZMA_OK);

	assert_uint_eq(lzma_index_checks(second),
			UINT32_C(1) << LZMA_CHECK_CRC32);

	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);

	// Index should now have both CRC32 and SHA256
	assert_uint_eq(lzma_index_checks(idx),
			(UINT32_C(1) << LZMA_CHECK_CRC32) |
			(UINT32_C(1) << LZMA_CHECK_SHA256));

	// Change the check type of the second Stream to SHA256
	stream_flags.check = LZMA_CHECK_SHA256;
	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);

	// Index should now have only SHA256
	assert_uint_eq(lzma_index_checks(idx),
			UINT32_C(1) << LZMA_CHECK_SHA256);

	// Test with a third Stream
	lzma_index *third = lzma_index_init(NULL);
	assert_true(third != NULL);

	stream_flags.check = LZMA_CHECK_CRC64;
	assert_lzma_ret(lzma_index_stream_flags(third, &stream_flags),
			LZMA_OK);

	assert_uint_eq(lzma_index_checks(third),
			UINT32_C(1) << LZMA_CHECK_CRC64);

	assert_lzma_ret(lzma_index_cat(idx, third, NULL), LZMA_OK);

	// Index should now have CRC64 and SHA256
	assert_uint_eq(lzma_index_checks(idx),
			(UINT32_C(1) << LZMA_CHECK_CRC64) |
			(UINT32_C(1) << LZMA_CHECK_SHA256));

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_stream_padding(void)
{
	// Test NULL lzma_index
	assert_lzma_ret(lzma_index_stream_padding(NULL, 0),
			LZMA_PROG_ERROR);

	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Test Stream Padding not a multiple of 4
	assert_lzma_ret(lzma_index_stream_padding(idx, 3),
			LZMA_PROG_ERROR);

	// Test Stream Padding too large
	assert_lzma_ret(lzma_index_stream_padding(idx, LZMA_VLI_MAX - 3),
			LZMA_DATA_ERROR);

	// Test Stream Padding valid
	assert_lzma_ret(lzma_index_stream_padding(idx, 0x1000),
			LZMA_OK);
	assert_lzma_ret(lzma_index_stream_padding(idx, 4),
			LZMA_OK);
	assert_lzma_ret(lzma_index_stream_padding(idx, 0),
			LZMA_OK);

	// Test Stream Padding causing the file size to grow too large
	assert_lzma_ret(lzma_index_append(idx, NULL,
			LZMA_VLI_MAX - 0x1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_stream_padding(idx, 0x1000),
			LZMA_DATA_ERROR);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_stream_count(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	assert_uint_eq(lzma_index_stream_count(idx), 1);

	// Appending Blocks should not change the Stream count value
	assert_lzma_ret(lzma_index_append(idx, NULL, UNPADDED_SIZE_MIN,
			1), LZMA_OK);

	assert_uint_eq(lzma_index_stream_count(idx), 1);

	// Test with multiple Streams
	for (uint32_t i = 0; i < 100; i++) {
		lzma_index *idx_cat = lzma_index_init(NULL);
		assert_true(idx != NULL);
		assert_lzma_ret(lzma_index_cat(idx, idx_cat, NULL), LZMA_OK);
		assert_uint_eq(lzma_index_stream_count(idx), i + 2);
	}

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_block_count(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	assert_uint_eq(lzma_index_block_count(idx), 0);

	const uint32_t iterations = 0x1000;
	for (uint32_t i = 0; i < iterations; i++) {
		assert_lzma_ret(lzma_index_append(idx, NULL,
				UNPADDED_SIZE_MIN, 1), LZMA_OK);
		assert_uint_eq(lzma_index_block_count(idx), i + 1);
	}

	// Create new lzma_index with a few Blocks
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_lzma_ret(lzma_index_append(second, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(second, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(second, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);

	assert_uint_eq(lzma_index_block_count(second), 3);

	// Concatenate the lzma_indexes together and the result should have
	// the sum of the two individual counts.
	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);
	assert_uint_eq(lzma_index_block_count(idx), iterations + 3);

	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);

	assert_uint_eq(lzma_index_block_count(idx), iterations + 4);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_size(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Base size should be:
	// 1 byte Index Indicator
	// 1 byte Number of Records
	// 0 bytes Records
	// 2 bytes Index Padding
	// 4 bytes CRC32
	// Total: 8 bytes
	assert_uint_eq(lzma_index_size(idx), 8);

	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);

	// New size should be:
	// 1 byte Index Indicator
	// 1 byte Number of Records
	// 2 bytes Records
	// 0 bytes Index Padding
	// 4 bytes CRC32
	// Total: 8 bytes
	assert_uint_eq(lzma_index_size(idx), 8);

	assert_lzma_ret(lzma_index_append(idx, NULL,
			LZMA_VLI_MAX / 4, LZMA_VLI_MAX / 4), LZMA_OK);

	// New size should be:
	// 1 byte Index Indicator
	// 1 byte Number of Records
	// 20 bytes Records
	// 2 bytes Index Padding
	// 4 bytes CRC32
	// Total: 28 bytes
	assert_uint_eq(lzma_index_size(idx), 28);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_stream_size(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Stream size calculated by:
	// Size of Stream Header (12 bytes)
	// Size of all Blocks
	// Size of the Index
	// Size of the Stream Footer (12 bytes)

	// First test with empty Index
	// Stream size should be:
	// Size of Stream Header - 12 bytes
	// Size of all Blocks - 0 bytes
	// Size of Index - 8 bytes
	// Size of Stream Footer - 12 bytes
	// Total: 32 bytes
	assert_uint_eq(lzma_index_stream_size(idx), 32);

	// Next, append a few Blocks and retest
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);

	// Stream size should be:
	// Size of Stream Header - 12 bytes
	// Size of all Blocks - 3000 bytes
	// Size of Index - 16 bytes
	// Size of Stream Footer - 12 bytes
	// Total: 3040 bytes
	assert_uint_eq(lzma_index_stream_size(idx), 3040);

	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_uint_eq(lzma_index_stream_size(second), 32);
	assert_lzma_ret(lzma_index_append(second, NULL, 1000, 1), LZMA_OK);

	// Stream size should be:
	// Size of Stream Header - 12 bytes
	// Size of all Blocks - 1000 bytes
	// Size of Index - 12 bytes
	// Size of Stream Footer - 12 bytes
	// Total: 1036 bytes
	assert_uint_eq(lzma_index_stream_size(second), 1036);

	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);

	// Stream size should be:
	// Size of Stream Header - 12 bytes
	// Size of all Blocks - 4000 bytes
	// Size of Index - 20 bytes
	// Size of Stream Footer - 12 bytes
	// Total: 4044 bytes
	assert_uint_eq(lzma_index_stream_size(idx), 4044);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_total_size(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// First test empty lzma_index.
	// Result should be 0 since no Blocks have been added.
	assert_uint_eq(lzma_index_total_size(idx), 0);

	// Add a few Blocks and retest after each append
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_uint_eq(lzma_index_total_size(idx), 1000);

	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_uint_eq(lzma_index_total_size(idx), 2000);

	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_uint_eq(lzma_index_total_size(idx), 3000);

	// Create second lzma_index and append Blocks to it.
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_uint_eq(lzma_index_total_size(second), 0);

	assert_lzma_ret(lzma_index_append(second, NULL, 100, 1), LZMA_OK);
	assert_uint_eq(lzma_index_total_size(second), 100);

	assert_lzma_ret(lzma_index_append(second, NULL, 100, 1), LZMA_OK);
	assert_uint_eq(lzma_index_total_size(second), 200);

	// Concatenate the Streams together
	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);

	// The resulting total size should be the size of all Blocks
	// from both Streams
	assert_uint_eq(lzma_index_total_size(idx), 3200);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_file_size(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Should be the same as test_lzma_index_stream_size with
	// only one Stream and no Stream Padding.
	assert_uint_eq(lzma_index_file_size(idx), 32);

	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);

	assert_uint_eq(lzma_index_file_size(idx), 3040);

	// Next add Stream Padding
	assert_lzma_ret(lzma_index_stream_padding(idx, 1000),
			LZMA_OK);

	assert_uint_eq(lzma_index_file_size(idx), 4040);

	// Create second lzma_index.
	// Very similar to test_lzma_index_stream_size, but
	// the values should include the headers of the second Stream.
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_lzma_ret(lzma_index_append(second, NULL, 1000, 1), LZMA_OK);
	assert_uint_eq(lzma_index_stream_size(second), 1036);

	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);

	// .xz file size should be:
	// Size of 2 Stream Headers - 12 * 2 bytes
	// Size of all Blocks - 3000 + 1000 bytes
	// Size of 2 Indexes - 16 + 12 bytes
	// Size of Stream Padding - 1000 bytes
	// Size of 2 Stream Footers - 12 * 2 bytes
	// Total: 5076 bytes
	assert_uint_eq(lzma_index_file_size(idx), 5076);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_uncompressed_size(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Empty lzma_index should have 0 uncompressed .xz file size.
	assert_uint_eq(lzma_index_uncompressed_size(idx), 0);

	// Append a few small Blocks
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 10), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 100), LZMA_OK);

	assert_uint_eq(lzma_index_uncompressed_size(idx), 111);

	// Create another lzma_index
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	// Append a few small Blocks
	assert_lzma_ret(lzma_index_append(second, NULL, 1000, 2), LZMA_OK);
	assert_lzma_ret(lzma_index_append(second, NULL, 1000, 20), LZMA_OK);
	assert_lzma_ret(lzma_index_append(second, NULL, 1000, 200), LZMA_OK);

	assert_uint_eq(lzma_index_uncompressed_size(second), 222);

	// Concatenate second lzma_index to first
	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);

	// New uncompressed .xz file size should be the sum of the two Streams
	assert_uint_eq(lzma_index_uncompressed_size(idx), 333);

	// Append one more Block to the lzma_index and ensure that
	// it is properly updated
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 111), LZMA_OK);
	assert_uint_eq(lzma_index_uncompressed_size(idx), 444);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_iter_init(void)
{
	// Testing basic init functionality.
	// The init function should call rewind on the iterator.
	lzma_index *first = lzma_index_init(NULL);
	assert_true(first != NULL);

	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	lzma_index *third = lzma_index_init(NULL);
	assert_true(third != NULL);

	assert_lzma_ret(lzma_index_cat(first, second, NULL), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(first, third, NULL), LZMA_OK);

	lzma_index_iter iter;
	lzma_index_iter_init(&iter, first);

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));
	assert_uint_eq(iter.stream.number, 1);
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));
	assert_uint_eq(iter.stream.number, 2);

	lzma_index_iter_init(&iter, first);

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));
	assert_uint_eq(iter.stream.number, 3);
}


static void
test_lzma_index_iter_rewind(void)
{
	lzma_index *first = lzma_index_init(NULL);
	assert_true(first != NULL);

	lzma_index_iter iter;
	lzma_index_iter_init(&iter, first);

	// Append 3 Blocks and iterate over each. This is to test
	// the LZMA_INDEX_ITER_BLOCK mode.
	for (uint32_t i = 0; i < 3; i++) {
		assert_lzma_ret(lzma_index_append(first, NULL,
				UNPADDED_SIZE_MIN, 1), LZMA_OK);
		assert_false(lzma_index_iter_next(&iter,
				LZMA_INDEX_ITER_BLOCK));
		assert_uint_eq(iter.block.number_in_file, i + 1);
	}

	// Rewind back to the begining and iterate over the Blocks again
	lzma_index_iter_rewind(&iter);

	// Should be able to re-iterate over the Blocks again.
	for (uint32_t i = 0; i < 3; i++) {
		assert_false(lzma_index_iter_next(&iter,
				LZMA_INDEX_ITER_BLOCK));
		assert_uint_eq(iter.block.number_in_file, i + 1);
	}

	// Next concatenate two more lzma_indexes, iterate over them,
	// rewind, and iterate over them again. This is to test
	// the LZMA_INDEX_ITER_STREAM mode.
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	lzma_index *third = lzma_index_init(NULL);
	assert_true(third != NULL);

	assert_lzma_ret(lzma_index_cat(first, second, NULL), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(first, third, NULL), LZMA_OK);

	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_STREAM));
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_STREAM));

	assert_uint_eq(iter.stream.number, 3);

	lzma_index_iter_rewind(&iter);

	for (uint32_t i = 0; i < 3; i++) {
		assert_false(lzma_index_iter_next(&iter,
				LZMA_INDEX_ITER_STREAM));
		assert_uint_eq(iter.stream.number, i + 1);
	}

	lzma_index_end(first, NULL);
}


static void
test_lzma_index_iter_next(void)
{
	lzma_index *first = lzma_index_init(NULL);
	assert_true(first != NULL);

	lzma_index_iter iter;
	lzma_index_iter_init(&iter, first);

	// First test bad mode values
	for (uint32_t i = LZMA_INDEX_ITER_NONEMPTY_BLOCK + 1; i < 100; i++)
		assert_true(lzma_index_iter_next(&iter, i));

	// Test iterating over Blocks
	assert_lzma_ret(lzma_index_append(first, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(first, NULL,
			UNPADDED_SIZE_MIN * 2, 10), LZMA_OK);
	assert_lzma_ret(lzma_index_append(first, NULL,
			UNPADDED_SIZE_MIN * 3, 100), LZMA_OK);

	// For Blocks, need to verify:
	// - number_in_file (overall Block number)
	// - compressed_file_offset
	// - uncompressed_file_offset
	// - number_in_stream (Block number relative to current Stream)
	// - compressed_stream_offset
	// - uncompressed_stream_offset
	// - uncompressed_size
	// - unpadded_size
	// - total_size

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	// Verify Block data stored correctly
	assert_uint_eq(iter.block.number_in_file, 1);

	// Should start right after the Stream Header
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);
	assert_uint_eq(iter.block.number_in_stream, 1);
	assert_uint_eq(iter.block.compressed_stream_offset,
			LZMA_STREAM_HEADER_SIZE);
	assert_uint_eq(iter.block.uncompressed_stream_offset, 0);
	assert_uint_eq(iter.block.unpadded_size, UNPADDED_SIZE_MIN);
	assert_uint_eq(iter.block.total_size, vli_ceil4(UNPADDED_SIZE_MIN));

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	// Verify Block data stored correctly
	assert_uint_eq(iter.block.number_in_file, 2);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE +
			vli_ceil4(UNPADDED_SIZE_MIN));
	assert_uint_eq(iter.block.uncompressed_file_offset, 1);
	assert_uint_eq(iter.block.number_in_stream, 2);
	assert_uint_eq(iter.block.compressed_stream_offset,
			LZMA_STREAM_HEADER_SIZE +
			vli_ceil4(UNPADDED_SIZE_MIN));
	assert_uint_eq(iter.block.uncompressed_stream_offset, 1);
	assert_uint_eq(iter.block.unpadded_size, UNPADDED_SIZE_MIN * 2);
	assert_uint_eq(iter.block.total_size, vli_ceil4(UNPADDED_SIZE_MIN * 2));

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	// Verify Block data stored correctly
	assert_uint_eq(iter.block.number_in_file, 3);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE +
			vli_ceil4(UNPADDED_SIZE_MIN) +
			vli_ceil4(UNPADDED_SIZE_MIN * 2));
	assert_uint_eq(iter.block.uncompressed_file_offset, 11);
	assert_uint_eq(iter.block.number_in_stream, 3);
	assert_uint_eq(iter.block.compressed_stream_offset,
			LZMA_STREAM_HEADER_SIZE +
			vli_ceil4(UNPADDED_SIZE_MIN) +
			vli_ceil4(UNPADDED_SIZE_MIN * 2));
	assert_uint_eq(iter.block.uncompressed_stream_offset, 11);
	assert_uint_eq(iter.block.unpadded_size, UNPADDED_SIZE_MIN * 3);
	assert_uint_eq(iter.block.total_size,
			vli_ceil4(UNPADDED_SIZE_MIN * 3));

	// Only three Blocks were added, so this should return true
	assert_true(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	const lzma_vli second_stream_compressed_start =
			LZMA_STREAM_HEADER_SIZE * 2 +
			vli_ceil4(UNPADDED_SIZE_MIN) +
			vli_ceil4(UNPADDED_SIZE_MIN * 2) +
			vli_ceil4(UNPADDED_SIZE_MIN * 3) +
			lzma_index_size(first);
	const lzma_vli second_stream_uncompressed_start = 1 + 10 + 100;

	// Test iterating over Streams.
	// The second Stream will have 0 Blocks
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	// Set Stream Flags for Stream 2
	lzma_stream_flags flags = {
		.version = 0,
		.backward_size = LZMA_BACKWARD_SIZE_MIN,
		.check = LZMA_CHECK_CRC32
	};

	assert_lzma_ret(lzma_index_stream_flags(second, &flags), LZMA_OK);

	// The Second stream will have 8 bytes of Stream Padding
	assert_lzma_ret(lzma_index_stream_padding(second, 8), LZMA_OK);

	const lzma_vli second_stream_index_size = lzma_index_size(second);

	// The third Stream will have 2 Blocks
	lzma_index *third = lzma_index_init(NULL);
	assert_true(third != NULL);

	assert_lzma_ret(lzma_index_append(third, NULL, 32, 20), LZMA_OK);
	assert_lzma_ret(lzma_index_append(third, NULL, 64, 40), LZMA_OK);

	const lzma_vli third_stream_index_size = lzma_index_size(third);

	assert_lzma_ret(lzma_index_cat(first, second, NULL), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(first, third, NULL), LZMA_OK);

	// For Streams, need to verify:
	// - flags (Stream Flags)
	// - number (Stream count)
	// - block_count
	// - compressed_offset
	// - uncompressed_offset
	// - compressed_size
	// - uncompressed_size
	// - padding (Stream Padding)
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));

	// Verify Stream
	assert_uint_eq(iter.stream.flags->backward_size,
			LZMA_BACKWARD_SIZE_MIN);
	assert_uint_eq(iter.stream.flags->check, LZMA_CHECK_CRC32);
	assert_uint_eq(iter.stream.number, 2);
	assert_uint_eq(iter.stream.block_count, 0);
	assert_uint_eq(iter.stream.compressed_offset,
			second_stream_compressed_start);
	assert_uint_eq(iter.stream.uncompressed_offset,
			second_stream_uncompressed_start);
	assert_uint_eq(iter.stream.compressed_size,
			LZMA_STREAM_HEADER_SIZE * 2 +
			second_stream_index_size);
	assert_uint_eq(iter.stream.uncompressed_size, 0);
	assert_uint_eq(iter.stream.padding, 8);

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));

	// Verify Stream
	const lzma_vli third_stream_compressed_start =
			second_stream_compressed_start +
			LZMA_STREAM_HEADER_SIZE * 2 +
			8 + // Stream padding
			second_stream_index_size;
	const lzma_vli third_stream_uncompressed_start =
			second_stream_uncompressed_start;

	assert_uint_eq(iter.stream.number, 3);
	assert_uint_eq(iter.stream.block_count, 2);
	assert_uint_eq(iter.stream.compressed_offset,
			third_stream_compressed_start);
	assert_uint_eq(iter.stream.uncompressed_offset,
			third_stream_uncompressed_start);
	assert_uint_eq(iter.stream.compressed_size,
			LZMA_STREAM_HEADER_SIZE * 2 +
			96 + // Total compressed size
			third_stream_index_size);
	assert_uint_eq(iter.stream.uncompressed_size, 60);
	assert_uint_eq(iter.stream.padding, 0);

	assert_true(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));

	// Even after a failing call to next with ITER_STREAM mode,
	// should still be able to iterate over the 2 Blocks in
	// Stream 3.
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	// Verify both Blocks

	// Next call to iterate Block should return true because the
	// first Block can already be read from the LZMA_INDEX_ITER_STREAM
	// call.
	assert_true(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	// Rewind to test LZMA_INDEX_ITER_ANY
	lzma_index_iter_rewind(&iter);

	// Iterate past the first three Blocks
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));

	// Iterate past the next Stream
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));

	// Iterate past the next Stream
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));

	// Last call should fail
	assert_true(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));

	// Rewind to test LZMA_INDEX_ITER_NONEMPTY_BLOCK
	lzma_index_iter_rewind(&iter);

	// Iterate past the first three Blocks
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_NONEMPTY_BLOCK));
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_NONEMPTY_BLOCK));
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_NONEMPTY_BLOCK));

	// Skip past the next Stream which has no Blocks.
	// We will get to the first Block of the third Stream.
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_NONEMPTY_BLOCK));

	// Iterate past the second (the last) Block in the third Stream
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_NONEMPTY_BLOCK));

	// Last call should fail since there is nothing left to iterate over.
	assert_true(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));

	lzma_index_end(first, NULL);
}


static void
test_lzma_index_iter_locate(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	lzma_index_iter iter;
	lzma_index_iter_init(&iter, idx);

	// Cannot locate anything from an empty Index.
	assert_true(lzma_index_iter_locate(&iter, 0));
	assert_true(lzma_index_iter_locate(&iter, 555));

	// One empty Record: nothing is found since there's no uncompressed
	// data.
	assert_lzma_ret(lzma_index_append(idx, NULL, 16, 0), LZMA_OK);
	assert_true(lzma_index_iter_locate(&iter, 0));

	// Non-empty Record and we can find something.
	assert_lzma_ret(lzma_index_append(idx, NULL, 32, 5), LZMA_OK);
	assert_false(lzma_index_iter_locate(&iter, 0));
	assert_uint_eq(iter.block.total_size, 32);
	assert_uint_eq(iter.block.uncompressed_size, 5);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	// Still cannot find anything past the end.
	assert_true(lzma_index_iter_locate(&iter, 5));

	// Add the third Record.
	assert_lzma_ret(lzma_index_append(idx, NULL, 40, 11), LZMA_OK);

	assert_false(lzma_index_iter_locate(&iter, 0));
	assert_uint_eq(iter.block.total_size, 32);
	assert_uint_eq(iter.block.uncompressed_size, 5);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));
	assert_uint_eq(iter.block.total_size, 40);
	assert_uint_eq(iter.block.uncompressed_size, 11);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16 + 32);
	assert_uint_eq(iter.block.uncompressed_file_offset, 5);

	assert_false(lzma_index_iter_locate(&iter, 2));
	assert_uint_eq(iter.block.total_size, 32);
	assert_uint_eq(iter.block.uncompressed_size, 5);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	assert_false(lzma_index_iter_locate(&iter, 5));
	assert_uint_eq(iter.block.total_size, 40);
	assert_uint_eq(iter.block.uncompressed_size, 11);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16 + 32);
	assert_uint_eq(iter.block.uncompressed_file_offset, 5);

	assert_false(lzma_index_iter_locate(&iter, 5 + 11 - 1));
	assert_uint_eq(iter.block.total_size, 40);
	assert_uint_eq(iter.block.uncompressed_size, 11);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16 + 32);
	assert_uint_eq(iter.block.uncompressed_file_offset, 5);

	assert_true(lzma_index_iter_locate(&iter, 5 + 11));
	assert_true(lzma_index_iter_locate(&iter, 5 + 15));

	// Large Index
	lzma_index_end(idx, NULL);
	idx = lzma_index_init(NULL);
	assert_true(idx != NULL);
	lzma_index_iter_init(&iter, idx);

	for (uint32_t n = 4; n <= 4 * 5555; n += 4)
		assert_lzma_ret(lzma_index_append(idx, NULL, n + 8, n),
				LZMA_OK);

	assert_uint_eq(lzma_index_block_count(idx), 5555);

	// First Record
	assert_false(lzma_index_iter_locate(&iter, 0));
	assert_uint_eq(iter.block.total_size, 4 + 8);
	assert_uint_eq(iter.block.uncompressed_size, 4);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	assert_false(lzma_index_iter_locate(&iter, 3));
	assert_uint_eq(iter.block.total_size, 4 + 8);
	assert_uint_eq(iter.block.uncompressed_size, 4);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	// Second Record
	assert_false(lzma_index_iter_locate(&iter, 4));
	assert_uint_eq(iter.block.total_size, 2 * 4 + 8);
	assert_uint_eq(iter.block.uncompressed_size, 2 * 4);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 4 + 8);
	assert_uint_eq(iter.block.uncompressed_file_offset, 4);

	// Last Record
	assert_false(lzma_index_iter_locate(
			&iter, lzma_index_uncompressed_size(idx) - 1));
	assert_uint_eq(iter.block.total_size, 4 * 5555 + 8);
	assert_uint_eq(iter.block.uncompressed_size, 4 * 5555);
	assert_uint_eq(iter.block.compressed_file_offset,
			lzma_index_total_size(idx)
			+ LZMA_STREAM_HEADER_SIZE - 4 * 5555 - 8);
	assert_uint_eq(iter.block.uncompressed_file_offset,
			lzma_index_uncompressed_size(idx) - 4 * 5555);

	// Allocation chunk boundaries. See INDEX_GROUP_SIZE in
	// liblzma/common/index.c.
	const uint32_t group_multiple = 256 * 4;
	const uint32_t radius = 8;
	const uint32_t start = group_multiple - radius;
	lzma_vli ubase = 0;
	lzma_vli tbase = 0;
	uint32_t n;
	for (n = 1; n < start; ++n) {
		ubase += n * 4;
		tbase += n * 4 + 8;
	}

	while (n < start + 2 * radius) {
		assert_false(lzma_index_iter_locate(&iter, ubase + n * 4));

		assert_uint_eq(iter.block.compressed_file_offset,
				tbase + n * 4 + 8
				+ LZMA_STREAM_HEADER_SIZE);
		assert_uint_eq(iter.block.uncompressed_file_offset,
				ubase + n * 4);

		tbase += n * 4 + 8;
		ubase += n * 4;
		++n;

		assert_uint_eq(iter.block.total_size, n * 4 + 8);
		assert_uint_eq(iter.block.uncompressed_size, n * 4);
	}

	// Do it also backwards.
	while (n > start) {
		assert_false(lzma_index_iter_locate(
				&iter, ubase + (n - 1) * 4));

		assert_uint_eq(iter.block.total_size, n * 4 + 8);
		assert_uint_eq(iter.block.uncompressed_size, n * 4);

		--n;
		tbase -= n * 4 + 8;
		ubase -= n * 4;

		assert_uint_eq(iter.block.compressed_file_offset,
				tbase + n * 4 + 8
				+ LZMA_STREAM_HEADER_SIZE);
		assert_uint_eq(iter.block.uncompressed_file_offset,
				ubase + n * 4);
	}

	// Test locating in concatenated Index.
	lzma_index_end(idx, NULL);
	idx = lzma_index_init(NULL);
	assert_true(idx != NULL);
	lzma_index_iter_init(&iter, idx);
	for (n = 0; n < group_multiple; ++n)
		assert_lzma_ret(lzma_index_append(idx, NULL, 8, 0),
				LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 16, 1), LZMA_OK);
	assert_false(lzma_index_iter_locate(&iter, 0));
	assert_uint_eq(iter.block.total_size, 16);
	assert_uint_eq(iter.block.uncompressed_size, 1);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + group_multiple * 8);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_cat(void)
{
	// Most complex tests for this function are done in other tests.
	// This will mostly test basic functionality.

	lzma_index *dest = lzma_index_init(NULL);
	assert_true(dest != NULL);

	lzma_index *src = lzma_index_init(NULL);
	assert_true(src != NULL);

	// First test NULL dest or src
	assert_lzma_ret(lzma_index_cat(NULL, NULL, NULL), LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_cat(dest, NULL, NULL), LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_cat(NULL, src, NULL), LZMA_PROG_ERROR);

	// Check for uncompressed size overflow
	assert_lzma_ret(lzma_index_append(dest, NULL,
			(UNPADDED_SIZE_MAX / 2) + 1, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(src, NULL,
			(UNPADDED_SIZE_MAX / 2) + 1, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(dest, src, NULL), LZMA_DATA_ERROR);

	// Check for compressed size overflow
	dest = lzma_index_init(NULL);
	assert_true(dest != NULL);

	src = lzma_index_init(NULL);
	assert_true(src != NULL);

	assert_lzma_ret(lzma_index_append(dest, NULL,
			UNPADDED_SIZE_MIN, LZMA_VLI_MAX - 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(src, NULL,
			UNPADDED_SIZE_MIN, LZMA_VLI_MAX - 1), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(dest, src, NULL), LZMA_DATA_ERROR);

	lzma_index_end(dest, NULL);
	lzma_index_end(src, NULL);
}


// Helper function for test_lzma_index_dup().
static bool
index_is_equal(const lzma_index *a, const lzma_index *b)
{
	// Compare only the Stream and Block sizes and offsets.
	lzma_index_iter ra, rb;
	lzma_index_iter_init(&ra, a);
	lzma_index_iter_init(&rb, b);

	while (true) {
		bool reta = lzma_index_iter_next(&ra, LZMA_INDEX_ITER_ANY);
		bool retb = lzma_index_iter_next(&rb, LZMA_INDEX_ITER_ANY);

		// If both iterators finish at the same time, then the Indexes
		// are identical.
		if (reta)
			return retb;

		if (ra.stream.number != rb.stream.number
				|| ra.stream.block_count
					!= rb.stream.block_count
				|| ra.stream.compressed_offset
					!= rb.stream.compressed_offset
				|| ra.stream.uncompressed_offset
					!= rb.stream.uncompressed_offset
				|| ra.stream.compressed_size
					!= rb.stream.compressed_size
				|| ra.stream.uncompressed_size
					!= rb.stream.uncompressed_size
				|| ra.stream.padding
					!= rb.stream.padding)
			return false;

		if (ra.stream.block_count == 0)
			continue;

		if (ra.block.number_in_file != rb.block.number_in_file
				|| ra.block.compressed_file_offset
					!= rb.block.compressed_file_offset
				|| ra.block.uncompressed_file_offset
					!= rb.block.uncompressed_file_offset
				|| ra.block.number_in_stream
					!= rb.block.number_in_stream
				|| ra.block.compressed_stream_offset
					!= rb.block.compressed_stream_offset
				|| ra.block.uncompressed_stream_offset
					!= rb.block.uncompressed_stream_offset
				|| ra.block.uncompressed_size
					!= rb.block.uncompressed_size
				|| ra.block.unpadded_size
					!= rb.block.unpadded_size
				|| ra.block.total_size
					!= rb.block.total_size)
			return false;
	}
}


// Allocator that succeeds for the first two allocation but fails the rest.
static void *
my_alloc(void *opaque, size_t a, size_t b)
{
	(void)opaque;

	static unsigned count = 0;
	if (++count > 2)
		return NULL;

	return malloc(a * b);
}

static const lzma_allocator test_index_dup_alloc = { &my_alloc, NULL, NULL };


static void
test_lzma_index_dup(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Test for the bug fix 21515d79d778b8730a434f151b07202d52a04611:
	// liblzma: Fix lzma_index_dup() for empty Streams.
	assert_lzma_ret(lzma_index_stream_padding(idx, 4), LZMA_OK);
	lzma_index *copy = lzma_index_dup(idx, NULL);
	assert_true(copy != NULL);
	assert_true(index_is_equal(idx, copy));
	lzma_index_end(copy, NULL);

	// Test for the bug fix 3bf857edfef51374f6f3fffae3d817f57d3264a0:
	// liblzma: Fix a memory leak in error path of lzma_index_dup().
	// Use Valgrind to see that there are no leaks.
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 10), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 2, 100), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 3, 1000), LZMA_OK);

	assert_true(lzma_index_dup(idx, &test_index_dup_alloc) == NULL);

	// Test a few streams and blocks
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_lzma_ret(lzma_index_stream_padding(second, 16), LZMA_OK);

	lzma_index *third = lzma_index_init(NULL);
	assert_true(third != NULL);

	assert_lzma_ret(lzma_index_append(third, NULL,
			UNPADDED_SIZE_MIN * 10, 40), LZMA_OK);
	assert_lzma_ret(lzma_index_append(third, NULL,
			UNPADDED_SIZE_MIN * 20, 400), LZMA_OK);
	assert_lzma_ret(lzma_index_append(third, NULL,
			UNPADDED_SIZE_MIN * 30, 4000), LZMA_OK);

	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(idx, third, NULL), LZMA_OK);

	copy = lzma_index_dup(idx, NULL);
	assert_true(copy != NULL);
	assert_true(index_is_equal(idx, copy));

	lzma_index_end(idx, NULL);
}

#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
static void
verify_index_buffer(const lzma_index *idx, const uint8_t *buffer,
		const size_t buffer_size)
{
	lzma_index_iter iter;
	lzma_index_iter_init(&iter, idx);

	size_t buffer_pos = 0;

	// Verify Index Indicator
	assert_uint_eq(buffer[buffer_pos++], 0);

	// Get Number of Records
	lzma_vli number_of_records = 0;
	lzma_vli block_count = 0;
	assert_lzma_ret(lzma_vli_decode(&number_of_records, NULL, buffer,
			&buffer_pos, buffer_size), LZMA_OK);

	while (!lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY)) {
		// Verify each Record (Unpadded Size, then Uncompressed Size).
		// Verify Unpadded Size.
		lzma_vli unpadded_size, uncompressed_size;
		assert_lzma_ret(lzma_vli_decode(&unpadded_size,
				NULL, buffer, &buffer_pos,
				buffer_size), LZMA_OK);
		assert_uint_eq(unpadded_size,
				iter.block.unpadded_size);

		// Verify Uncompressed Size
		assert_lzma_ret(lzma_vli_decode(&uncompressed_size,
				NULL, buffer, &buffer_pos,
				buffer_size), LZMA_OK);
		assert_uint_eq(uncompressed_size,
				iter.block.uncompressed_size);

		block_count++;
	}

	// Verify Number of Records
	assert_uint_eq(number_of_records, block_count);

	// Verify Index Padding
	for (; buffer_pos % 4 != 0; buffer_pos++)
		assert_uint_eq(buffer[buffer_pos], 0);

	// Verify CRC32
	uint32_t crc32 = lzma_crc32(buffer, buffer_pos, 0);
	assert_uint_eq(read32le(buffer + buffer_pos), crc32);
}


// In a few places the Index size is needed as a size_t but lzma_index_size()
// returns lzma_vli.
static size_t
get_index_size(const lzma_index *idx)
{
	const lzma_vli size = lzma_index_size(idx);
	assert_uint(size, <, SIZE_MAX);
	return (size_t)size;
}
#endif


static void
test_lzma_index_encoder(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
	assert_skip("Encoder or decoder support disabled");
#else
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	lzma_stream strm = LZMA_STREAM_INIT;

	// First do basic NULL checks
	assert_lzma_ret(lzma_index_encoder(NULL, NULL), LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_encoder(&strm, NULL), LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_encoder(NULL, idx), LZMA_PROG_ERROR);

	// Append three small Blocks
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 10), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 2, 100), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 3, 1000), LZMA_OK);

	// Encode this lzma_index into a buffer
	size_t buffer_size = get_index_size(idx);
	uint8_t *buffer = tuktest_malloc(buffer_size);

	assert_lzma_ret(lzma_index_encoder(&strm, idx), LZMA_OK);

	strm.avail_out = buffer_size;
	strm.next_out = buffer;

	assert_lzma_ret(lzma_code(&strm, LZMA_FINISH), LZMA_STREAM_END);
	assert_uint_eq(strm.avail_out, 0);

	lzma_end(&strm);

	verify_index_buffer(idx, buffer, buffer_size);

	// Test with multiple Streams concatenated into 1 Index
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	// Include 1 Block
	assert_lzma_ret(lzma_index_append(second, NULL,
			UNPADDED_SIZE_MIN * 4, 20), LZMA_OK);

	// Include Stream Padding
	assert_lzma_ret(lzma_index_stream_padding(second, 16), LZMA_OK);

	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);
	buffer_size = get_index_size(idx);
	buffer = tuktest_malloc(buffer_size);
	assert_lzma_ret(lzma_index_encoder(&strm, idx), LZMA_OK);

	strm.avail_out = buffer_size;
	strm.next_out = buffer;

	assert_lzma_ret(lzma_code(&strm, LZMA_FINISH), LZMA_STREAM_END);
	assert_uint_eq(strm.avail_out, 0);

	verify_index_buffer(idx, buffer, buffer_size);

	lzma_end(&strm);
#endif
}

static void
generate_index_decode_buffer(void)
{
#ifdef HAVE_ENCODERS
	decode_test_index = lzma_index_init(NULL);
	if (decode_test_index == NULL)
		return;

	// Add 4 Blocks
	for (uint32_t i = 1; i < 5; i++)
		if (lzma_index_append(decode_test_index, NULL,
				0x1000 * i, 0x100 * i) != LZMA_OK)
			return;

	size_t size = lzma_index_size(decode_test_index);
	decode_buffer = tuktest_malloc(size);

	if (lzma_index_buffer_encode(decode_test_index,
			decode_buffer, &decode_buffer_size, size) != LZMA_OK)
		decode_buffer_size = 0;
#endif
}


#ifdef HAVE_DECODERS
static void
decode_index(const uint8_t *buffer, const size_t size, lzma_stream *strm,
		lzma_ret expected_error)
{
	strm->avail_in = size;
	strm->next_in = buffer;
	assert_lzma_ret(lzma_code(strm, LZMA_FINISH), expected_error);
}
#endif


static void
test_lzma_index_decoder(void)
{
#ifndef HAVE_DECODERS
	assert_skip("Decoder support disabled");
#else
	if (decode_buffer_size == 0)
		assert_skip("Could not initialize decode test buffer");

	lzma_stream strm = LZMA_STREAM_INIT;

	assert_lzma_ret(lzma_index_decoder(NULL, NULL, MEMLIMIT),
			LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_decoder(&strm, NULL, MEMLIMIT),
			LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_decoder(NULL, &decode_test_index,
			MEMLIMIT), LZMA_PROG_ERROR);

	// Do actual decode
	lzma_index *idx;
	assert_lzma_ret(lzma_index_decoder(&strm, &idx, MEMLIMIT),
			LZMA_OK);

	decode_index(decode_buffer, decode_buffer_size, &strm,
			LZMA_STREAM_END);

	// Compare results with expected
	assert_true(index_is_equal(decode_test_index, idx));

	lzma_index_end(idx, NULL);

	// Test again with too low memory limit
	assert_lzma_ret(lzma_index_decoder(&strm, &idx, 0), LZMA_OK);

	decode_index(decode_buffer, decode_buffer_size, &strm,
			LZMA_MEMLIMIT_ERROR);

	uint8_t *corrupt_buffer = tuktest_malloc(decode_buffer_size);
	memcpy(corrupt_buffer, decode_buffer, decode_buffer_size);

	assert_lzma_ret(lzma_index_decoder(&strm, &idx, MEMLIMIT),
			LZMA_OK);

	// First corrupt the Index Indicator
	corrupt_buffer[0] ^= 1;
	decode_index(corrupt_buffer, decode_buffer_size, &strm,
			LZMA_DATA_ERROR);
	corrupt_buffer[0] ^= 1;

	// Corrupt something in the middle of Index
	corrupt_buffer[decode_buffer_size / 2] ^= 1;
	assert_lzma_ret(lzma_index_decoder(&strm, &idx, MEMLIMIT),
			LZMA_OK);
	decode_index(corrupt_buffer, decode_buffer_size, &strm,
			LZMA_DATA_ERROR);
	corrupt_buffer[decode_buffer_size / 2] ^= 1;

	// Corrupt CRC32
	corrupt_buffer[decode_buffer_size - 1] ^= 1;
	assert_lzma_ret(lzma_index_decoder(&strm, &idx, MEMLIMIT),
			LZMA_OK);
	decode_index(corrupt_buffer, decode_buffer_size, &strm,
			LZMA_DATA_ERROR);
	corrupt_buffer[decode_buffer_size - 1] ^= 1;

	// Corrupt Index Padding by setting it to non-zero
	corrupt_buffer[decode_buffer_size - 5] ^= 1;
	assert_lzma_ret(lzma_index_decoder(&strm, &idx, MEMLIMIT),
			LZMA_OK);
	decode_index(corrupt_buffer, decode_buffer_size, &strm,
			LZMA_DATA_ERROR);
	corrupt_buffer[decode_buffer_size - 1] ^= 1;

	lzma_end(&strm);
#endif
}


static void
test_lzma_index_buffer_encode(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
	assert_skip("Encoder or decoder support disabled");
#else
	// More simple test than test_lzma_index_encoder() because
	// currently lzma_index_buffer_encode() is mostly a wrapper
	// around lzma_index_encoder() anyway.
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 10), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 2, 100), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 3, 1000), LZMA_OK);

	size_t buffer_size = get_index_size(idx);
	uint8_t *buffer = tuktest_malloc(buffer_size);
	size_t out_pos = 1;

	// First test bad arguments
	assert_lzma_ret(lzma_index_buffer_encode(NULL, NULL, NULL, 0),
			LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_buffer_encode(idx, NULL, NULL, 0),
			LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_buffer_encode(idx, buffer, NULL, 0),
			LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_buffer_encode(idx, buffer, &out_pos,
			0), LZMA_PROG_ERROR);
	out_pos = 0;
	assert_lzma_ret(lzma_index_buffer_encode(idx, buffer, &out_pos,
			1), LZMA_BUF_ERROR);

	// Do encoding
	assert_lzma_ret(lzma_index_buffer_encode(idx, buffer, &out_pos,
			buffer_size), LZMA_OK);
	assert_uint_eq(out_pos, buffer_size);

	// Validate results
	verify_index_buffer(idx, buffer, buffer_size);
#endif
}


static void
test_lzma_index_buffer_decode(void)
{
#ifndef HAVE_DECODERS
	assert_skip("Decoder support disabled");
#else
	if (decode_buffer_size == 0)
		assert_skip("Could not initialize decode test buffer");

	// Simple test since test_lzma_index_decoder() covers most of the
	// lzma_index_buffer_decode() code anyway.

	// First test NULL checks
	assert_lzma_ret(lzma_index_buffer_decode(NULL, NULL, NULL, NULL,
			NULL, 0), LZMA_PROG_ERROR);

	lzma_index *idx;
	uint64_t memlimit = MEMLIMIT;
	size_t in_pos = 0;

	assert_lzma_ret(lzma_index_buffer_decode(&idx, NULL, NULL, NULL,
			NULL, 0), LZMA_PROG_ERROR);

	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			NULL, NULL, 0), LZMA_PROG_ERROR);

	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, NULL, 0), LZMA_PROG_ERROR);

	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, NULL, 0), LZMA_PROG_ERROR);

	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, &in_pos, 0), LZMA_DATA_ERROR);

	in_pos = 1;
	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, &in_pos, 0), LZMA_PROG_ERROR);
	in_pos = 0;

	// Test expected successful decode
	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, &in_pos, decode_buffer_size), LZMA_OK);

	assert_true(index_is_equal(decode_test_index, idx));

	// Test too small memlimit
	in_pos = 0;
	memlimit = 1;
	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, &in_pos, decode_buffer_size),
			LZMA_MEMLIMIT_ERROR);
	assert_uint(memlimit, >, 1);
	assert_uint(memlimit, <, MEMLIMIT);
#endif
}


extern int
main(int argc, char **argv)
{
	tuktest_start(argc, argv);
	generate_index_decode_buffer();
	tuktest_run(test_lzma_index_memusage);
	tuktest_run(test_lzma_index_memused);
	tuktest_run(test_lzma_index_append);
	tuktest_run(test_lzma_index_stream_flags);
	tuktest_run(test_lzma_index_checks);
	tuktest_run(test_lzma_index_stream_padding);
	tuktest_run(test_lzma_index_stream_count);
	tuktest_run(test_lzma_index_block_count);
	tuktest_run(test_lzma_index_size);
	tuktest_run(test_lzma_index_stream_size);
	tuktest_run(test_lzma_index_total_size);
	tuktest_run(test_lzma_index_file_size);
	tuktest_run(test_lzma_index_uncompressed_size);
	tuktest_run(test_lzma_index_iter_init);
	tuktest_run(test_lzma_index_iter_rewind);
	tuktest_run(test_lzma_index_iter_next);
	tuktest_run(test_lzma_index_iter_locate);
	tuktest_run(test_lzma_index_cat);
	tuktest_run(test_lzma_index_dup);
	tuktest_run(test_lzma_index_encoder);
	tuktest_run(test_lzma_index_decoder);
	tuktest_run(test_lzma_index_buffer_encode);
	tuktest_run(test_lzma_index_buffer_decode);
	lzma_index_end(decode_test_index, NULL);
	return tuktest_end();
}