///////////////////////////////////////////////////////////////////////////////
//
/// \file message.c
/// \brief Printing messages
//
// Author: Lasse Collin
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "private.h"
#ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
#endif
#include <stdarg.h>
/// Number of the current file
static unsigned int files_pos = 0;
/// Total number of input files; zero if unknown.
static unsigned int files_total;
/// Verbosity level
static enum message_verbosity verbosity = V_WARNING;
/// Filename which we will print with the verbose messages
static const char *filename;
/// True once the a filename has been printed to stderr as part of progress
/// message. If automatic progress updating isn't enabled, this becomes true
/// after the first progress message has been printed due to user sending
/// SIGINFO, SIGUSR1, or SIGALRM. Once this variable is true, we will print
/// an empty line before the next filename to make the output more readable.
static bool first_filename_printed = false;
/// This is set to true when we have printed the current filename to stderr
/// as part of a progress message. This variable is useful only if not
/// updating progress automatically: if user sends many SIGINFO, SIGUSR1, or
/// SIGALRM signals, we won't print the name of the same file multiple times.
static bool current_filename_printed = false;
/// True if we should print progress indicator and update it automatically
/// if also verbose >= V_VERBOSE.
static bool progress_automatic;
/// True if message_progress_start() has been called but
/// message_progress_end() hasn't been called yet.
static bool progress_started = false;
/// This is true when a progress message was printed and the cursor is still
/// on the same line with the progress message. In that case, a newline has
/// to be printed before any error messages.
static bool progress_active = false;
/// Pointer to lzma_stream used to do the encoding or decoding.
static lzma_stream *progress_strm;
/// Expected size of the input stream is needed to show completion percentage
/// and estimate remaining time.
static uint64_t expected_in_size;
/// Time when we started processing the file
static uint64_t start_time;
// Use alarm() and SIGALRM when they are supported. This has two minor
// advantages over the alternative of polling gettimeofday():
// - It is possible for the user to send SIGINFO, SIGUSR1, or SIGALRM to
// get intermediate progress information even when --verbose wasn't used
// or stderr is not a terminal.
// - alarm() + SIGALRM seems to have slightly less overhead than polling
// gettimeofday().
#ifdef SIGALRM
/// The signal handler for SIGALRM sets this to true. It is set back to false
/// once the progress message has been updated.
static volatile sig_atomic_t progress_needs_updating = false;
/// Signal handler for SIGALRM
static void
progress_signal_handler(int sig lzma_attribute((unused)))
{
progress_needs_updating = true;
return;
}
#else
/// This is true when progress message printing is wanted. Using the same
/// variable name as above to avoid some ifdefs.
static bool progress_needs_updating = false;
/// Elapsed time when the next progress message update should be done.
static uint64_t progress_next_update;
#endif
/// Get the current time as microseconds since epoch
static uint64_t
my_time(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (uint64_t)(tv.tv_sec) * UINT64_C(1000000) + tv.tv_usec;
}
/// Wrapper for snprintf() to help constructing a string in pieces.
static void lzma_attribute((format(printf, 3, 4)))
my_snprintf(char **pos, size_t *left, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
const int len = vsnprintf(*pos, *left, fmt, ap);
va_end(ap);
// If an error occurred, we want the caller to think that the whole
// buffer was used. This way no more data will be written to the
// buffer. We don't need better error handling here.
if (len < 0 || (size_t)(len) >= *left) {
*left = 0;
} else {
*pos += len;
*left -= len;
}
return;
}
extern void
message_init(void)
{
// If --verbose is used, we use a progress indicator if and only
// if stderr is a terminal. If stderr is not a terminal, we print
// verbose information only after finishing the file. As a special
// exception, even if --verbose was not used, user can send SIGALRM
// to make us print progress information once without automatic
// updating.
progress_automatic = isatty(STDERR_FILENO);
// Commented out because COLUMNS is rarely exported to environment.
// Most users have at least 80 columns anyway, let's think something
// fancy here if enough people complain.
/*
if (progress_automatic) {
// stderr is a terminal. Check the COLUMNS environment
// variable to see if the terminal is wide enough. If COLUMNS
// doesn't exist or it has some unparsable value, we assume
// that the terminal is wide enough.
const char *columns_str = getenv("COLUMNS");
if (columns_str != NULL) {
char *endptr;
const long columns = strtol(columns_str, &endptr, 10);
if (*endptr != '\0' || columns < 80)
progress_automatic = false;
}
}
*/
#ifdef SIGALRM
// At least DJGPP lacks SA_RESTART. It's not essential for us (the
// rest of the code can handle interrupted system calls), so just
// define it zero.
# ifndef SA_RESTART
# define SA_RESTART 0
# endif
// Establish the signal handlers which set a flag to tell us that
// progress info should be updated. Since these signals don't
// require any quick action, we set SA_RESTART.
static const int sigs[] = {
#ifdef SIGALRM
SIGALRM,
#endif
#ifdef SIGINFO
SIGINFO,
#endif
#ifdef SIGUSR1
SIGUSR1,
#endif
};
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
sa.sa_handler = &progress_signal_handler;
for (size_t i = 0; i < ARRAY_SIZE(sigs); ++i)
if (sigaction(sigs[i], &sa, NULL))
message_signal_handler();
#endif
return;
}
extern void
message_verbosity_increase(void)
{
if (verbosity < V_DEBUG)
++verbosity;
return;
}
extern void
message_verbosity_decrease(void)
{
if (verbosity > V_SILENT)
--verbosity;
return;
}
extern enum message_verbosity
message_verbosity_get(void)
{
return verbosity;
}
extern void
message_set_files(unsigned int files)
{
files_total = files;
return;
}
/// Prints the name of the current file if it hasn't been printed already,
/// except if we are processing exactly one stream from stdin to stdout.
/// I think it looks nicer to not print "(stdin)" when --verbose is used
/// in a pipe and no other files are processed.
static void
print_filename(void)
{
if (!current_filename_printed
&& (files_total != 1 || filename != stdin_filename)) {
signals_block();
// If a file was already processed, put an empty line
// before the next filename to improve readability.
if (first_filename_printed)
fputc('\n', stderr);
first_filename_printed = true;
current_filename_printed = true;
// If we don't know how many files there will be due
// to usage of --files or --files0.
if (files_total == 0)
fprintf(stderr, "%s (%u)\n", filename,
files_pos);
else
fprintf(stderr, "%s (%u/%u)\n", filename,
files_pos, files_total);
signals_unblock();
}
return;
}
extern void
message_progress_start(
lzma_stream *strm, const char *src_name, uint64_t in_size)
{
// Store the pointer to the lzma_stream used to do the coding.
// It is needed to find out the position in the stream.
progress_strm = strm;
// Store the processing start time of the file and its expected size.
// If we aren't printing any statistics, then these are unused. But
// since it is possible that the user sends us a signal to show
// statistics, we need to have these available anyway.
start_time = my_time();
filename = src_name;
expected_in_size = in_size;
// Indicate that progress info may need to be printed before
// printing error messages.
progress_started = true;
// Indicate the name of this file hasn't been printed to
// stderr yet.
current_filename_printed = false;
// Start numbering the files starting from one.
++files_pos;
// If progress indicator is wanted, print the filename and possibly
// the file count now.
if (verbosity >= V_VERBOSE && progress_automatic) {
// Print the filename to stderr if that is appropriate with
// the current settings.
print_filename();
// Start the timer to display the first progress message
// after one second. An alternative would be to show the
// first message almost immediatelly, but delaying by one
// second looks better to me, since extremely early
// progress info is pretty much useless.
#ifdef SIGALRM
// First disable a possibly existing alarm.
alarm(0);
progress_needs_updating = false;
alarm(1);
#else
progress_needs_updating = true;
progress_next_update = 1000000;
#endif
}
return;
}
/// Make the string indicating completion percentage.
static const char *
progress_percentage(uint64_t in_pos, bool final)
{
static char buf[sizeof("100.0 %")];
double percentage;
if (final) {
// Use floating point conversion of snprintf() also for
// 100.0 % instead of fixed string, because the decimal
// separator isn't a dot in all locales.
percentage = 100.0;
} else {
// If the size of the input file is unknown or the size told us is
// clearly wrong since we have processed more data than the alleged
// size of the file, show a static string indicating that we have
// no idea of the completion percentage.
if (expected_in_size == 0 || in_pos > expected_in_size)
return "--- %";
// Never show 100.0 % before we actually are finished.
percentage = (double)(in_pos) / (double)(expected_in_size)
* 99.9;
}
snprintf(buf, sizeof(buf), "%.1f %%", percentage);
return buf;
}
static void
progress_sizes_helper(char **pos, size_t *left, uint64_t value, bool final)
{
// Allow high precision only for the final message, since it looks
// stupid for in-progress information.
if (final) {
// A maximum of four digits are allowed for exact byte count.
if (value < 10000) {
my_snprintf(pos, left, "%s B",
uint64_to_str(value, 0));
return;
}
// A maximum of five significant digits are allowed for KiB.
if (value < UINT64_C(10239900)) {
my_snprintf(pos, left, "%s KiB", double_to_str(
(double)(value) / 1024.0));
return;
}
}
// Otherwise we use MiB.
my_snprintf(pos, left, "%s MiB",
double_to_str((double)(value) / (1024.0 * 1024.0)));
return;
}
/// Make the string containing the amount of input processed, amount of
/// output produced, and the compression ratio.
static const char *
progress_sizes(uint64_t compressed_pos, uint64_t uncompressed_pos, bool final)
{
// This is enough to hold sizes up to about 99 TiB if thousand
// separator is used, or about 1 PiB without thousand separator.
// After that the progress indicator will look a bit silly, since
// the compression ratio no longer fits with three decimal places.
static char buf[44];
char *pos = buf;
size_t left = sizeof(buf);
// Print the sizes. If this the final message, use more reasonable
// units than MiB if the file was small.
progress_sizes_helper(&pos, &left, compressed_pos, final);
my_snprintf(&pos, &left, " / ");
progress_sizes_helper(&pos, &left, uncompressed_pos, final);
// Avoid division by zero. If we cannot calculate the ratio, set
// it to some nice number greater than 10.0 so that it gets caught
// in the next if-clause.
const double ratio = uncompressed_pos > 0
? (double)(compressed_pos) / (double)(uncompressed_pos)
: 16.0;
// If the ratio is very bad, just indicate that it is greater than
// 9.999. This way the length of the ratio field stays fixed.
if (ratio > 9.999)
snprintf(pos, left, " > %.3f", 9.999);
else
snprintf(pos, left, " = %.3f", ratio);
return buf;
}
/// Make the string containing the processing speed of uncompressed data.
static const char *
progress_speed(uint64_t uncompressed_pos, uint64_t elapsed)
{
// Don't print the speed immediatelly, since the early values look
// like somewhat random.
if (elapsed < 3000000)
return "";
static const char unit[][8] = {
"KiB/s",
"MiB/s",
"GiB/s",
};
size_t unit_index = 0;
// Calculate the speed as KiB/s.
double speed = (double)(uncompressed_pos)
/ ((double)(elapsed) * (1024.0 / 1e6));
// Adjust the unit of the speed if needed.
while (speed > 999.0) {
speed /= 1024.0;
if (++unit_index == ARRAY_SIZE(unit))
return ""; // Way too fast ;-)
}
// Use decimal point only if the number is small. Examples:
// - 0.1 KiB/s
// - 9.9 KiB/s
// - 99 KiB/s
// - 999 KiB/s
static char buf[sizeof("999 GiB/s")];
snprintf(buf, sizeof(buf), "%.*f %s",
speed > 9.9 ? 0 : 1, speed, unit[unit_index]);
return buf;
}
/// Make a string indicating elapsed or remaining time. The format is either
/// M:SS or H:MM:SS depending on if the time is an hour or more.
static const char *
progress_time(uint64_t useconds)
{
// 9999 hours = 416 days
static char buf[sizeof("9999:59:59")];
uint32_t seconds = useconds / 1000000;
// Don't show anything if the time is zero or ridiculously big.
if (seconds == 0 || seconds > ((9999 * 60) + 59) * 60 + 59)
return "";
uint32_t minutes = seconds / 60;
seconds %= 60;
if (minutes >= 60) {
const uint32_t hours = minutes / 60;
minutes %= 60;
snprintf(buf, sizeof(buf),
"%" PRIu32 ":%02" PRIu32 ":%02" PRIu32,
hours, minutes, seconds);
} else {
snprintf(buf, sizeof(buf), "%" PRIu32 ":%02" PRIu32,
minutes, seconds);
}
return buf;
}
/// Make the string to contain the estimated remaining time, or if the amount
/// of input isn't known, how much time has elapsed.
static const char *
progress_remaining(uint64_t in_pos, uint64_t elapsed)
{
// Show the amount of time spent so far when making an estimate of
// remaining time wouldn't be reasonable:
// - Input size is unknown.
// - Input has grown bigger since we started (de)compressing.
// - We haven't processed much data yet, so estimate would be
// too inaccurate.
// - Only a few seconds has passed since we started (de)compressing,
// so estimate would be too inaccurate.
if (expected_in_size == 0 || in_pos > expected_in_size
|| in_pos < (UINT64_C(1) << 19) || elapsed < 8000000)
return progress_time(elapsed);
// Calculate the estimate. Don't give an estimate of zero seconds,
// since it is possible that all the input has been already passed
// to the library, but there is still quite a bit of output pending.
uint32_t remaining = (double)(expected_in_size - in_pos)
* ((double)(elapsed) / 1e6) / (double)(in_pos);
if (remaining < 1)
remaining = 1;
static char buf[sizeof("9 h 55 min")];
// Select appropriate precision for the estimated remaining time.
if (remaining <= 10) {
// A maximum of 10 seconds remaining.
// Show the number of seconds as is.
snprintf(buf, sizeof(buf), "%" PRIu32 " s", remaining);
} else if (remaining <= 50) {
// A maximum of 50 seconds remaining.
// Round up to the next multiple of five seconds.
remaining = (remaining + 4) / 5 * 5;
snprintf(buf, sizeof(buf), "%" PRIu32 " s", remaining);
} else if (remaining <= 590) {
// A maximum of 9 minutes and 50 seconds remaining.
// Round up to the next multiple of ten seconds.
remaining = (remaining + 9) / 10 * 10;
snprintf(buf, sizeof(buf), "%" PRIu32 " min %" PRIu32 " s",
remaining / 60, remaining % 60);
} else if (remaining <= 59 * 60) {
// A maximum of 59 minutes remaining.
// Round up to the next multiple of a minute.
remaining = (remaining + 59) / 60;
snprintf(buf, sizeof(buf), "%" PRIu32 " min", remaining);
} else if (remaining <= 9 * 3600 + 50 * 60) {
// A maximum of 9 hours and 50 minutes left.
// Round up to the next multiple of ten minutes.
remaining = (remaining + 599) / 600 * 10;
snprintf(buf, sizeof(buf), "%" PRIu32 " h %" PRIu32 " min",
remaining / 60, remaining % 60);
} else if (remaining <= 23 * 3600) {
// A maximum of 23 hours remaining.
// Round up to the next multiple of an hour.
remaining = (remaining + 3599) / 3600;
snprintf(buf, sizeof(buf), "%" PRIu32 " h", remaining);
} else if (remaining <= 9 * 24 * 3600 + 23 * 3600) {
// A maximum of 9 days and 23 hours remaining.
// Round up to the next multiple of an hour.
remaining = (remaining + 3599) / 3600;
snprintf(buf, sizeof(buf), "%" PRIu32 " d %" PRIu32 " h",
remaining / 24, remaining % 24);
} else if (remaining <= 999 * 24 * 3600) {
// A maximum of 999 days remaining. ;-)
// Round up to the next multiple of a day.
remaining = (remaining + 24 * 3600 - 1) / (24 * 3600);
snprintf(buf, sizeof(buf), "%" PRIu32 " d", remaining);
} else {
// The estimated remaining time is so big that it's better
// that we just show the elapsed time.
return progress_time(elapsed);
}
return buf;
}
/// Calculate the elapsed time as microseconds.
static uint64_t
progress_elapsed(void)
{
return my_time() - start_time;
}
/// Get information about position in the stream. This is currently simple,
/// but it will become more complicated once we have multithreading support.
static void
progress_pos(uint64_t *in_pos,
uint64_t *compressed_pos, uint64_t *uncompressed_pos)
{
*in_pos = progress_strm->total_in;
if (opt_mode == MODE_COMPRESS) {
*compressed_pos = progress_strm->total_out;
*uncompressed_pos = progress_strm->total_in;
} else {
*compressed_pos = progress_strm->total_in;
*uncompressed_pos = progress_strm->total_out;
}
return;
}
extern void
message_progress_update(void)
{
if (!progress_needs_updating)
return;
// Calculate how long we have been processing this file.
const uint64_t elapsed = progress_elapsed();
#ifndef SIGALRM
if (progress_next_update > elapsed)
return;
progress_next_update = elapsed + 1000000;
#endif
// Get our current position in the stream.
uint64_t in_pos;
uint64_t compressed_pos;
uint64_t uncompressed_pos;
progress_pos(&in_pos, &compressed_pos, &uncompressed_pos);
// Block signals so that fprintf() doesn't get interrupted.
signals_block();
// Print the filename if it hasn't been printed yet.
print_filename();
// Print the actual progress message. The idea is that there is at
// least three spaces between the fields in typical situations, but
// even in rare situations there is at least one space.
fprintf(stderr, " %7s %43s %9s %10s\r",
progress_percentage(in_pos, false),
progress_sizes(compressed_pos, uncompressed_pos, false),
progress_speed(uncompressed_pos, elapsed),
progress_remaining(in_pos, elapsed));
#ifdef SIGALRM
// Updating the progress info was finished. Reset
// progress_needs_updating to wait for the next SIGALRM.
//
// NOTE: This has to be done before alarm(1) or with (very) bad
// luck we could be setting this to false after the alarm has already
// been triggered.
progress_needs_updating = false;
if (verbosity >= V_VERBOSE && progress_automatic) {
// Mark that the progress indicator is active, so if an error
// occurs, the error message gets printed cleanly.
progress_active = true;
// Restart the timer so that progress_needs_updating gets
// set to true after about one second.
alarm(1);
} else {
// The progress message was printed because user had sent us
// SIGALRM. In this case, each progress message is printed
// on its own line.
fputc('\n', stderr);
}
#else
// When SIGALRM isn't supported and we get here, it's always due to
// automatic progress update. We set progress_active here too like
// described above.
assert(verbosity >= V_VERBOSE);
assert(progress_automatic);
progress_active = true;
#endif
signals_unblock();
return;
}
static void
progress_flush(bool finished)
{
if (!progress_started || verbosity < V_VERBOSE)
return;
uint64_t in_pos;
uint64_t compressed_pos;
uint64_t uncompressed_pos;
progress_pos(&in_pos, &compressed_pos, &uncompressed_pos);
// Avoid printing intermediate progress info if some error occurs
// in the beginning of the stream. (If something goes wrong later in
// the stream, it is sometimes useful to tell the user where the
// error approximately occurred, especially if the error occurs
// after a time-consuming operation.)
if (!finished && !progress_active
&& (compressed_pos == 0 || uncompressed_pos == 0))
return;
progress_active = false;
const uint64_t elapsed = progress_elapsed();
const char *elapsed_str = progress_time(elapsed);
signals_block();
// When using the auto-updating progress indicator, the final
// statistics are printed in the same format as the progress
// indicator itself.
if (progress_automatic) {
// Using floating point conversion for the percentage instead
// of static "100.0 %" string, because the decimal separator
// isn't a dot in all locales.
fprintf(stderr, " %7s %43s %9s %10s\n",
progress_percentage(in_pos, finished),
progress_sizes(compressed_pos, uncompressed_pos, true),
progress_speed(uncompressed_pos, elapsed),
elapsed_str);
} else {
// The filename is always printed.
fprintf(stderr, "%s: ", filename);
// Percentage is printed only if we didn't finish yet.
// FIXME: This may look weird when size of the input
// isn't known.
if (!finished)
fprintf(stderr, "%s, ",
progress_percentage(in_pos, false));
// Size information is always printed.
fprintf(stderr, "%s", progress_sizes(
compressed_pos, uncompressed_pos, true));
// The speed and elapsed time aren't always shown.
const char *speed = progress_speed(uncompressed_pos, elapsed);
if (speed[0] != '\0')
fprintf(stderr, ", %s", speed);
if (elapsed_str[0] != '\0')
fprintf(stderr, ", %s", elapsed_str);
fputc('\n', stderr);
}
signals_unblock();
return;
}
extern void
message_progress_end(bool success)
{
assert(progress_started);
progress_flush(success);
progress_started = false;
return;
}
static void
vmessage(enum message_verbosity v, const char *fmt, va_list ap)
{
if (v <= verbosity) {
signals_block();
progress_flush(false);
fprintf(stderr, "%s: ", progname);
vfprintf(stderr, fmt, ap);
fputc('\n', stderr);
signals_unblock();
}
return;
}
extern void
message(enum message_verbosity v, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vmessage(v, fmt, ap);
va_end(ap);
return;
}
extern void
message_warning(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vmessage(V_WARNING, fmt, ap);
va_end(ap);
set_exit_status(E_WARNING);
return;
}
extern void
message_error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vmessage(V_ERROR, fmt, ap);
va_end(ap);
set_exit_status(E_ERROR);
return;
}
extern void
message_fatal(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vmessage(V_ERROR, fmt, ap);
va_end(ap);
tuklib_exit(E_ERROR, E_ERROR, false);
}
extern void
message_bug(void)
{
message_fatal(_("Internal error (bug)"));
}
extern void
message_signal_handler(void)
{
message_fatal(_("Cannot establish signal handlers"));
}
extern const char *
message_strm(lzma_ret code)
{
switch (code) {
case LZMA_NO_CHECK:
return _("No integrity check; not verifying file integrity");
case LZMA_UNSUPPORTED_CHECK:
return _("Unsupported type of integrity check; "
"not verifying file integrity");
case LZMA_MEM_ERROR:
return strerror(ENOMEM);
case LZMA_MEMLIMIT_ERROR:
return _("Memory usage limit reached");
case LZMA_FORMAT_ERROR:
return _("File format not recognized");
case LZMA_OPTIONS_ERROR:
return _("Unsupported options");
case LZMA_DATA_ERROR:
return _("Compressed data is corrupt");
case LZMA_BUF_ERROR:
return _("Unexpected end of input");
case LZMA_OK:
case LZMA_STREAM_END:
case LZMA_GET_CHECK:
case LZMA_PROG_ERROR:
return _("Internal error (bug)");
}
return NULL;
}
extern void
message_filters(enum message_verbosity v, const lzma_filter *filters)
{
if (v > verbosity)
return;
fprintf(stderr, _("%s: Filter chain:"), progname);
for (size_t i = 0; filters[i].id != LZMA_VLI_UNKNOWN; ++i) {
fprintf(stderr, " --");
switch (filters[i].id) {
case LZMA_FILTER_LZMA1:
case LZMA_FILTER_LZMA2: {
const lzma_options_lzma *opt = filters[i].options;
const char *mode;
const char *mf;
switch (opt->mode) {
case LZMA_MODE_FAST:
mode = "fast";
break;
case LZMA_MODE_NORMAL:
mode = "normal";
break;
default:
mode = "UNKNOWN";
break;
}
switch (opt->mf) {
case LZMA_MF_HC3:
mf = "hc3";
break;
case LZMA_MF_HC4:
mf = "hc4";
break;
case LZMA_MF_BT2:
mf = "bt2";
break;
case LZMA_MF_BT3:
mf = "bt3";
break;
case LZMA_MF_BT4:
mf = "bt4";
break;
default:
mf = "UNKNOWN";
break;
}
fprintf(stderr, "lzma%c=dict=%" PRIu32
",lc=%" PRIu32 ",lp=%" PRIu32
",pb=%" PRIu32
",mode=%s,nice=%" PRIu32 ",mf=%s"
",depth=%" PRIu32,
filters[i].id == LZMA_FILTER_LZMA2
? '2' : '1',
opt->dict_size,
opt->lc, opt->lp, opt->pb,
mode, opt->nice_len, mf, opt->depth);
break;
}
case LZMA_FILTER_X86:
fprintf(stderr, "x86");
break;
case LZMA_FILTER_POWERPC:
fprintf(stderr, "powerpc");
break;
case LZMA_FILTER_IA64:
fprintf(stderr, "ia64");
break;
case LZMA_FILTER_ARM:
fprintf(stderr, "arm");
break;
case LZMA_FILTER_ARMTHUMB:
fprintf(stderr, "armthumb");
break;
case LZMA_FILTER_SPARC:
fprintf(stderr, "sparc");
break;
case LZMA_FILTER_DELTA: {
const lzma_options_delta *opt = filters[i].options;
fprintf(stderr, "delta=dist=%" PRIu32, opt->dist);
break;
}
default:
fprintf(stderr, "UNKNOWN");
break;
}
}
fputc('\n', stderr);
return;
}
extern void
message_try_help(void)
{
// Print this with V_WARNING instead of V_ERROR to prevent it from
// showing up when --quiet has been specified.
message(V_WARNING, _("Try `%s --help' for more information."),
progname);
return;
}
extern void
message_memlimit(void)
{
if (opt_robot)
printf("%" PRIu64 "\n", hardware_memlimit_get());
else
printf(_("%s MiB (%s bytes)\n"),
uint64_to_str(hardware_memlimit_get() >> 20, 0),
uint64_to_str(hardware_memlimit_get(), 1));
tuklib_exit(E_SUCCESS, E_ERROR, verbosity != V_SILENT);
}
extern void
message_version(void)
{
// It is possible that liblzma version is different than the command
// line tool version, so print both.
if (opt_robot) {
printf("XZ_VERSION=%d\nLIBLZMA_VERSION=%d\n",
LZMA_VERSION, lzma_version_number());
} else {
printf("xz (" PACKAGE_NAME ") " LZMA_VERSION_STRING "\n");
printf("liblzma %s\n", lzma_version_string());
}
tuklib_exit(E_SUCCESS, E_ERROR, verbosity != V_SILENT);
}
extern void
message_help(bool long_help)
{
printf(_("Usage: %s [OPTION]... [FILE]...\n"
"Compress or decompress FILEs in the .xz format.\n\n"),
progname);
puts(_("Mandatory arguments to long options are mandatory for "
"short options too.\n"));
if (long_help)
puts(_(" Operation mode:\n"));
puts(_(
" -z, --compress force compression\n"
" -d, --decompress force decompression\n"
" -t, --test test compressed file integrity\n"
" -l, --list list information about files"));
if (long_help)
puts(_("\n Operation modifiers:\n"));
puts(_(
" -k, --keep keep (don't delete) input files\n"
" -f, --force force overwrite of output file and (de)compress links\n"
" -c, --stdout write to standard output and don't delete input files"));
if (long_help)
puts(_(
" --no-sparse do not create sparse files when decompressing\n"
" -S, --suffix=.SUF use the suffix `.SUF' on compressed files\n"
" --files=[FILE] read filenames to process from FILE; if FILE is\n"
" omitted, filenames are read from the standard input;\n"
" filenames must be terminated with the newline character\n"
" --files0=[FILE] like --files but use the null character as terminator"));
if (long_help) {
puts(_("\n Basic file format and compression options:\n"));
puts(_(
" -F, --format=FMT file format to encode or decode; possible values are\n"
" `auto' (default), `xz', `lzma', and `raw'\n"
" -C, --check=CHECK integrity check type: `crc32', `crc64' (default),\n"
" `sha256', or `none' (use with caution)"));
}
puts(_(
" -0 .. -9 compression preset; 0-2 fast compression, 3-5 good\n"
" compression, 6-9 excellent compression; default is 6"));
puts(_(
" -e, --extreme use more CPU time when encoding to increase compression\n"
" ratio without increasing memory usage of the decoder"));
if (long_help)
puts(_(
" -M, --memory=NUM use roughly NUM bytes of memory at maximum; 0 indicates\n"
" the default setting, which is 40 % of total RAM"));
if (long_help) {
puts(_(
"\n Custom filter chain for compression (alternative for using presets):"));
#if defined(HAVE_ENCODER_LZMA1) || defined(HAVE_DECODER_LZMA1) \
|| defined(HAVE_ENCODER_LZMA2) || defined(HAVE_DECODER_LZMA2)
puts(_(
"\n"
" --lzma1[=OPTS] LZMA1 or LZMA2; OPTS is a comma-separated list of zero or\n"
" --lzma2[=OPTS] more of the following options (valid values; default):\n"
" preset=NUM reset options to preset number NUM (0-9)\n"
" dict=NUM dictionary size (4KiB - 1536MiB; 8MiB)\n"
" lc=NUM number of literal context bits (0-4; 3)\n"
" lp=NUM number of literal position bits (0-4; 0)\n"
" pb=NUM number of position bits (0-4; 2)\n"
" mode=MODE compression mode (fast, normal; normal)\n"
" nice=NUM nice length of a match (2-273; 64)\n"
" mf=NAME match finder (hc3, hc4, bt2, bt3, bt4; bt4)\n"
" depth=NUM maximum search depth; 0=automatic (default)"));
#endif
puts(_(
"\n"
" --x86[=OPTS] x86 BCJ filter\n"
" --powerpc[=OPTS] PowerPC BCJ filter (big endian only)\n"
" --ia64[=OPTS] IA64 (Itanium) BCJ filter\n"
" --arm[=OPTS] ARM BCJ filter (little endian only)\n"
" --armthumb[=OPTS] ARM-Thumb BCJ filter (little endian only)\n"
" --sparc[=OPTS] SPARC BCJ filter\n"
" Valid OPTS for all BCJ filters:\n"
" start=NUM start offset for conversions (default=0)"));
#if defined(HAVE_ENCODER_DELTA) || defined(HAVE_DECODER_DELTA)
puts(_(
"\n"
" --delta[=OPTS] Delta filter; valid OPTS (valid values; default):\n"
" dist=NUM distance between bytes being subtracted\n"
" from each other (1-256; 1)"));
#endif
#if defined(HAVE_ENCODER_SUBBLOCK) || defined(HAVE_DECODER_SUBBLOCK)
puts(_(
"\n"
" --subblock[=OPTS] Subblock filter; valid OPTS (valid values; default):\n"
" size=NUM number of bytes of data per subblock\n"
" (1 - 256Mi; 4Ki)\n"
" rle=NUM run-length encoder chunk size (0-256; 0)"));
#endif
}
if (long_help)
puts(_("\n Other options:\n"));
puts(_(
" -q, --quiet suppress warnings; specify twice to suppress errors too\n"
" -v, --verbose be verbose; specify twice for even more verbose"));
if (long_help) {
puts(_(
" -Q, --no-warn make warnings not affect the exit status"));
puts(_(
" --robot use machine-parsable messages (useful for scripts)"));
puts("");
puts(_(
" --info-memory display the memory usage limit and exit"));
puts(_(
" -h, --help display the short help (lists only the basic options)\n"
" -H, --long-help display this long help and exit"));
} else {
puts(_(
" -h, --help display this short help and exit\n"
" -H, --long-help display the long help (lists also the advanced options)"));
}
puts(_(
" -V, --version display the version number and exit"));
puts(_("\nWith no FILE, or when FILE is -, read standard input.\n"));
if (long_help) {
printf(_(
"On this system and configuration, this program will use a maximum of roughly\n"
"%s MiB RAM and "), uint64_to_str(hardware_memlimit_get() / (1024 * 1024), 0));
printf(N_("one thread.\n\n", "%s threads.\n\n",
hardware_threadlimit_get()),
uint64_to_str(hardware_threadlimit_get(), 0));
}
printf(_("Report bugs to <%s> (in English or Finnish).\n"),
PACKAGE_BUGREPORT);
printf(_("%s home page: <%s>\n"), PACKAGE_NAME, PACKAGE_HOMEPAGE);
tuklib_exit(E_SUCCESS, E_ERROR, verbosity != V_SILENT);
}