///////////////////////////////////////////////////////////////////////////////
//
/// \file coder.c
/// \brief Compresses or uncompresses a file
//
// Author: Lasse Collin
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "private.h"
/// Return value type for coder_init().
enum coder_init_ret {
CODER_INIT_NORMAL,
CODER_INIT_PASSTHRU,
CODER_INIT_ERROR,
};
enum operation_mode opt_mode = MODE_COMPRESS;
enum format_type opt_format = FORMAT_AUTO;
bool opt_auto_adjust = true;
bool opt_single_stream = false;
uint64_t opt_block_size = 0;
block_list_entry *opt_block_list = NULL;
/// Stream used to communicate with liblzma
static lzma_stream strm = LZMA_STREAM_INIT;
/// Maximum number of filter chains. The first filter chain is the default,
/// and 9 other filter chains can be specified with --filtersX.
#define NUM_FILTER_CHAIN_MAX 10
/// The default filter chain is in filters[0]. It is used for encoding
/// in all supported formats and also for decdoing raw streams. The other
/// filter chains are set by --filtersX to support changing filters with
/// the --block-list option.
static lzma_filter filters[NUM_FILTER_CHAIN_MAX][LZMA_FILTERS_MAX + 1];
/// Bit mask representing the filters specified through --filtersX. This
/// is needed to verify that an entry in the --block-list option does not
/// try to reference a filter chain that was not initialized.
static uint32_t filters_init_mask = 1;
#ifdef HAVE_ENCODERS
/// Track the memory usage for all filter chains (default or --filtersX).
/// The memory usage may need to be scaled down depending on the memory limit.
static uint64_t filter_memusages[ARRAY_SIZE(filters)];
#endif
/// Input and output buffers
static io_buf in_buf;
static io_buf out_buf;
/// Number of filters in the default filter chain. Zero indicates that
/// we are using a preset.
static uint32_t filters_count = 0;
/// Number of the preset (0-9)
static uint32_t preset_number = LZMA_PRESET_DEFAULT;
/// True if the current default filter chain was set using the --filters
/// option. The filter chain is reset if a preset option (like -9) or an
/// old-style filter option (like --lzma2) is used after a --filters option.
static bool string_to_filter_used = false;
/// Integrity check type
static lzma_check check;
/// This becomes false if the --check=CHECK option is used.
static bool check_default = true;
/// Indicates if unconsumed input is allowed to remain after
/// decoding has successfully finished. This is set for each file
/// in coder_init().
static bool allow_trailing_input;
#ifdef MYTHREAD_ENABLED
static lzma_mt mt_options = {
.flags = 0,
.timeout = 300,
};
#endif
extern void
coder_set_check(lzma_check new_check)
{
check = new_check;
check_default = false;
return;
}
static void
forget_filter_chain(void)
{
// Setting a preset or using --filters makes us forget
// the earlier custom filter chain (if any).
if (filters_count > 0) {
lzma_filters_free(filters[0], NULL);
filters_count = 0;
}
string_to_filter_used = false;
return;
}
extern void
coder_set_preset(uint32_t new_preset)
{
preset_number &= ~LZMA_PRESET_LEVEL_MASK;
preset_number |= new_preset;
forget_filter_chain();
return;
}
extern void
coder_set_extreme(void)
{
preset_number |= LZMA_PRESET_EXTREME;
forget_filter_chain();
return;
}
extern void
coder_add_filter(lzma_vli id, void *options)
{
if (filters_count == LZMA_FILTERS_MAX)
message_fatal(_("Maximum number of filters is four"));
if (string_to_filter_used)
forget_filter_chain();
filters[0][filters_count].id = id;
filters[0][filters_count].options = options;
// Terminate the filter chain with LZMA_VLI_UNKNOWN to simplify
// implementation of forget_filter_chain().
filters[0][++filters_count].id = LZMA_VLI_UNKNOWN;
// Setting a custom filter chain makes us forget the preset options.
// This makes a difference if one specifies e.g. "xz -9 --lzma2 -e"
// where the custom filter chain resets the preset level back to
// the default 6, making the example equivalent to "xz -6e".
preset_number = LZMA_PRESET_DEFAULT;
return;
}
static void
str_to_filters(const char *str, uint32_t index, uint32_t flags)
{
int error_pos;
const char *err = lzma_str_to_filters(str, &error_pos,
filters[index], flags, NULL);
if (err != NULL) {
char filter_num[2] = "";
if (index > 0)
filter_num[0] = '0' + index;
// FIXME? The message in err isn't translated.
// Including the translations in the xz translations is
// slightly ugly but possible. Creating a new domain for
// liblzma might not be worth it especially since on some
// OSes it adds extra dependencies to translation libraries.
message(V_ERROR, _("Error in --filters%s=FILTERS option:"),
filter_num);
message(V_ERROR, "%s", str);
message(V_ERROR, "%*s^", error_pos, "");
message_fatal("%s", err);
}
}
extern void
coder_add_filters_from_str(const char *filter_str)
{
// Forget presets and previously defined filter chain. See
// coder_add_filter() above for why preset_number must be reset too.
forget_filter_chain();
preset_number = LZMA_PRESET_DEFAULT;
string_to_filter_used = true;
// Include LZMA_STR_ALL_FILTERS so this can be used with --format=raw.
str_to_filters(filter_str, 0, LZMA_STR_ALL_FILTERS);
// Set the filters_count to be the number of filters converted from
// the string.
for (filters_count = 0; filters[0][filters_count].id
!= LZMA_VLI_UNKNOWN;
++filters_count) ;
assert(filters_count > 0);
return;
}
extern void
coder_add_block_filters(const char *str, size_t slot)
{
// Free old filters first, if they were previously allocated.
if (filters_init_mask & (1 << slot))
lzma_filters_free(filters[slot], NULL);
str_to_filters(str, slot, 0);
filters_init_mask |= 1 << slot;
}
static void lzma_attribute((__noreturn__))
memlimit_too_small(uint64_t memory_usage)
{
message(V_ERROR, _("Memory usage limit is too low for the given "
"filter setup."));
message_mem_needed(V_ERROR, memory_usage);
tuklib_exit(E_ERROR, E_ERROR, false);
}
#ifdef HAVE_ENCODERS
// For a given opt_block_list index, validate that the filter has been
// set. If it has not been set, we must exit with error to avoid using
// an uninitialized filter chain.
static void
validate_block_list_filter(const uint32_t filter_num)
{
if (!(filters_init_mask & (1 << filter_num)))
message_fatal(_("filter chain %u used by --block-list, but "
"not specified with --filters%u="),
(unsigned)filter_num, (unsigned)filter_num);
}
// Sets the memory usage for each filter chain. It will return the maximum
// memory usage of all of the filter chains.
static uint64_t
filters_memusage_max(const lzma_mt *mt, bool encode)
{
uint64_t max_memusage = 0;
#ifdef MYTHREAD_ENABLED
// Copy multithreaded options to a temporary struct since the
// filters member needs to be changed
lzma_mt mt_local;
if (mt != NULL)
mt_local = *mt;
#else
(void)mt;
#endif
for (uint32_t i = 0; i < ARRAY_SIZE(filters); i++) {
if (!(filters_init_mask & (1 << i)))
continue;
uint64_t memusage = UINT64_MAX;
#ifdef MYTHREAD_ENABLED
if (mt != NULL) {
mt_local.filters = filters[i];
memusage = lzma_stream_encoder_mt_memusage(&mt_local);
filter_memusages[i] = memusage;
}
else
#endif
if (encode) {
memusage = lzma_raw_encoder_memusage(filters[i]);
filter_memusages[i] = memusage;
}
#ifdef HAVE_DECODERS
else {
memusage = lzma_raw_decoder_memusage(filters[i]);
}
#endif
if (memusage > max_memusage)
max_memusage = memusage;
}
return max_memusage;
}
#endif
extern void
coder_set_compression_settings(void)
{
#ifdef HAVE_LZIP_DECODER
// .lz compression isn't supported.
assert(opt_format != FORMAT_LZIP);
#endif
#ifdef HAVE_ENCODERS
if (opt_block_list != NULL)
for (uint32_t i = 0; opt_block_list[i].size != 0; i++) {
validate_block_list_filter(
opt_block_list[i].filters_index);
}
#endif
// The default check type is CRC64, but fallback to CRC32
// if CRC64 isn't supported by the copy of liblzma we are
// using. CRC32 is always supported.
if (check_default) {
check = LZMA_CHECK_CRC64;
if (!lzma_check_is_supported(check))
check = LZMA_CHECK_CRC32;
}
// Options for LZMA1 or LZMA2 in case we are using a preset.
static lzma_options_lzma opt_lzma;
// The first filter in the filters[] array is for the default
// filter chain.
lzma_filter *default_filters = filters[0];
if (filters_count == 0) {
// We are using a preset. This is not a good idea in raw mode
// except when playing around with things. Different versions
// of this software may use different options in presets, and
// thus make uncompressing the raw data difficult.
if (opt_format == FORMAT_RAW) {
// The message is shown only if warnings are allowed
// but the exit status isn't changed.
message(V_WARNING, _("Using a preset in raw mode "
"is discouraged."));
message(V_WARNING, _("The exact options of the "
"presets may vary between software "
"versions."));
}
// Get the preset for LZMA1 or LZMA2.
if (lzma_lzma_preset(&opt_lzma, preset_number))
message_bug();
// Use LZMA2 except with --format=lzma we use LZMA1.
default_filters[0].id = opt_format == FORMAT_LZMA
? LZMA_FILTER_LZMA1 : LZMA_FILTER_LZMA2;
default_filters[0].options = &opt_lzma;
filters_count = 1;
// Terminate the filter options array.
default_filters[1].id = LZMA_VLI_UNKNOWN;
}
// If we are using the .lzma format, allow exactly one filter
// which has to be LZMA1.
if (opt_format == FORMAT_LZMA && (filters_count != 1
|| default_filters[0].id != LZMA_FILTER_LZMA1))
message_fatal(_("The .lzma format supports only "
"the LZMA1 filter"));
// If we are using the .xz format, make sure that there is no LZMA1
// filter to prevent LZMA_PROG_ERROR.
if (opt_format == FORMAT_XZ)
for (size_t i = 0; i < filters_count; ++i)
if (default_filters[i].id == LZMA_FILTER_LZMA1)
message_fatal(_("LZMA1 cannot be used "
"with the .xz format"));
// Print the selected default filter chain.
message_filters_show(V_DEBUG, default_filters);
// The --flush-timeout option requires LZMA_SYNC_FLUSH support
// from the filter chain. Currently the threaded encoder doesn't
// support LZMA_SYNC_FLUSH so single-threaded mode must be used.
if (opt_mode == MODE_COMPRESS && opt_flush_timeout != 0) {
for (size_t i = 0; i < filters_count; ++i) {
switch (default_filters[i].id) {
case LZMA_FILTER_LZMA2:
case LZMA_FILTER_DELTA:
break;
default:
message_fatal(_("The filter chain is "
"incompatible with --flush-timeout"));
}
}
if (hardware_threads_is_mt()) {
message(V_WARNING, _("Switching to single-threaded "
"mode due to --flush-timeout"));
hardware_threads_set(1);
}
}
// Get the memory usage and memory limit. The memory usage is the
// maximum of the default filters[] and any filters specified by
// --filtersX.
// Note that if --format=raw was used, we can be decompressing and
// do not need to account for any filter chains created
// with --filtersX.
//
// If multithreaded .xz compression is done, the memory limit
// will be replaced.
uint64_t memory_limit = hardware_memlimit_get(opt_mode);
uint64_t memory_usage = UINT64_MAX;
if (opt_mode == MODE_COMPRESS) {
#ifdef HAVE_ENCODERS
# ifdef MYTHREAD_ENABLED
if (opt_format == FORMAT_XZ && hardware_threads_is_mt()) {
memory_limit = hardware_memlimit_mtenc_get();
mt_options.threads = hardware_threads_get();
mt_options.block_size = opt_block_size;
mt_options.check = check;
memory_usage = filters_memusage_max(
&mt_options, true);
if (memory_usage != UINT64_MAX)
message(V_DEBUG, _("Using up to %" PRIu32
" threads."),
mt_options.threads);
} else
# endif
{
memory_usage = filters_memusage_max(NULL, true);
}
#endif
} else {
#ifdef HAVE_DECODERS
memory_usage = lzma_raw_decoder_memusage(default_filters);
#endif
}
if (memory_usage == UINT64_MAX)
message_fatal(_("Unsupported filter chain or filter options"));
// Print memory usage info before possible dictionary
// size auto-adjusting.
//
// NOTE: If only encoder support was built, we cannot show the
// what the decoder memory usage will be.
message_mem_needed(V_DEBUG, memory_usage);
#ifdef HAVE_DECODERS
if (opt_mode == MODE_COMPRESS) {
#ifdef HAVE_ENCODERS
const uint64_t decmem =
filters_memusage_max(NULL, false);
#else
// If encoders are not enabled, then --block-list is never
// usable, so the other filter chains 1-9 can never be used.
// So there is no need to find the maximum decoder memory
// required in this case.
const uint64_t decmem = lzma_raw_decoder_memusage(filters[0]);
#endif
if (decmem != UINT64_MAX)
message(V_DEBUG, _("Decompression will need "
"%s MiB of memory."), uint64_to_str(
round_up_to_mib(decmem), 0));
}
#endif
if (memory_usage <= memory_limit)
return;
// With --format=raw settings are never adjusted to meet
// the memory usage limit.
if (opt_format == FORMAT_RAW)
memlimit_too_small(memory_usage);
assert(opt_mode == MODE_COMPRESS);
#ifdef HAVE_ENCODERS
# ifdef MYTHREAD_ENABLED
if (opt_format == FORMAT_XZ && hardware_threads_is_mt()) {
// Try to reduce the number of threads before
// adjusting the compression settings down.
while (mt_options.threads > 1) {
// Reduce the number of threads by one and check
// the memory usage.
--mt_options.threads;
memory_usage = filters_memusage_max(
&mt_options, true);
if (memory_usage == UINT64_MAX)
message_bug();
if (memory_usage <= memory_limit) {
// The memory usage is now low enough.
message(V_WARNING, _("Reduced the number of "
"threads from %s to %s to not exceed "
"the memory usage limit of %s MiB"),
uint64_to_str(
hardware_threads_get(), 0),
uint64_to_str(mt_options.threads, 1),
uint64_to_str(round_up_to_mib(
memory_limit), 2));
return;
}
}
// If the memory usage limit is only a soft limit (automatic
// number of threads and no --memlimit-compress), the limit
// is only used to reduce the number of threads and once at
// just one thread, the limit is completely ignored. This
// way -T0 won't use insane amount of memory but at the same
// time the soft limit will never make xz fail and never make
// xz change settings that would affect the compressed output.
if (hardware_memlimit_mtenc_is_default()) {
message(V_WARNING, _("Reduced the number of threads "
"from %s to one. The automatic memory usage "
"limit of %s MiB is still being exceeded. "
"%s MiB of memory is required. "
"Continuing anyway."),
uint64_to_str(hardware_threads_get(), 0),
uint64_to_str(
round_up_to_mib(memory_limit), 1),
uint64_to_str(
round_up_to_mib(memory_usage), 2));
return;
}
// If --no-adjust was used, we cannot drop to single-threaded
// mode since it produces different compressed output.
//
// NOTE: In xz 5.2.x, --no-adjust also prevented reducing
// the number of threads. This changed in 5.3.3alpha.
if (!opt_auto_adjust)
memlimit_too_small(memory_usage);
// Switch to single-threaded mode. It uses
// less memory than using one thread in
// the multithreaded mode but the output
// is also different.
hardware_threads_set(1);
memory_usage = filters_memusage_max(NULL, true);
message(V_WARNING, _("Switching to single-threaded mode "
"to not exceed the memory usage limit of %s MiB"),
uint64_to_str(round_up_to_mib(memory_limit), 0));
}
# endif
if (memory_usage <= memory_limit)
return;
// Don't adjust LZMA2 or LZMA1 dictionary size if --no-adjust
// was specified as that would change the compressed output.
if (!opt_auto_adjust)
memlimit_too_small(memory_usage);
// Decrease the dictionary size until we meet the memory usage limit.
// The struct is used to track data needed to correctly reduce the
// memory usage and report which filters were adjusted.
typedef struct {
// Pointer to the filter chain that needs to be reduced.
// NULL indicates that this filter chain was either never
// set or was never above the memory limit.
lzma_filter *filters;
// Original dictionary sizes are used to show how each
// filter's dictionary was reduced.
uint64_t orig_dict_size;
// Index of the LZMA filter in the filters member. We only
// adjust this filter's memusage because we don't know how
// to reduce the memory usage of the other filters.
uint32_t lzma_idx;
// Indicates if the filter's dictionary size needs to be
// reduced to fit under the memory limit (true) or if the
// filter chain is unused or is already under the memory
// limit (false).
bool reduce_dict_size;
} memusage_reduction_data;
memusage_reduction_data memusage_reduction[ARRAY_SIZE(filters)];
// Counter represents how many filter chains are above the memory
// limit.
size_t count = 0;
for (uint32_t i = 0; i < ARRAY_SIZE(filters); i++) {
// The short var name "r" will reduce the number of lines
// of code needed since less lines will stretch past 80
// characters.
memusage_reduction_data *r = &memusage_reduction[i];
r->filters = NULL;
r->reduce_dict_size = false;
if (!(filters_init_mask & (1 << i)))
continue;
for (uint32_t j = 0; filters[i][j].id != LZMA_VLI_UNKNOWN;
j++)
if ((filters[i][j].id == LZMA_FILTER_LZMA2
|| filters[i][j].id
== LZMA_FILTER_LZMA1)
&& filter_memusages[i]
> memory_limit) {
count++;
r->filters = filters[i];
r->lzma_idx = j;
r->reduce_dict_size = true;
lzma_options_lzma *opt = r->filters
[r->lzma_idx].options;
r->orig_dict_size = opt->dict_size;
opt->dict_size &= ~((UINT32_C(1) << 20) - 1);
}
}
// Loop until all filters use <= memory_limit, or exit.
while (count > 0) {
for (uint32_t i = 0; i < ARRAY_SIZE(memusage_reduction); i++) {
memusage_reduction_data *r = &memusage_reduction[i];
if (!r->reduce_dict_size)
continue;
lzma_options_lzma *opt =
r->filters[r->lzma_idx].options;
// If it is below 1 MiB, auto-adjusting failed.
// We could be more sophisticated and scale it
// down even more, but nobody has complained so far.
if (opt->dict_size < (UINT32_C(1) << 20))
memlimit_too_small(memory_usage);
uint64_t filt_mem_usage =
lzma_raw_encoder_memusage(r->filters);
if (filt_mem_usage == UINT64_MAX)
message_bug();
if (filt_mem_usage < memory_limit) {
r->reduce_dict_size = false;
count--;
}
else {
opt->dict_size -= UINT32_C(1) << 20;
}
}
}
// Tell the user that we decreased the dictionary size for
// each filter that was adjusted.
for (uint32_t i = 0; i < ARRAY_SIZE(memusage_reduction); i++) {
memusage_reduction_data *r = &memusage_reduction[i];
// If the filters were never set, then the memory usage
// was never adjusted.
if (r->filters == NULL)
continue;
lzma_filter *filter_lzma = &(r->filters[r->lzma_idx]);
lzma_options_lzma *opt = filter_lzma->options;
// The first index is the default filter chain. The message
// should be slightly different if the default filter chain
// or if --filtersX was adjusted.
if (i == 0)
message(V_WARNING, _("Adjusted LZMA%c dictionary "
"size from %s MiB to %s MiB to not exceed the "
"memory usage limit of %s MiB"),
filter_lzma->id == LZMA_FILTER_LZMA2
? '2' : '1',
uint64_to_str(r->orig_dict_size >> 20, 0),
uint64_to_str(opt->dict_size >> 20, 1),
uint64_to_str(round_up_to_mib(
memory_limit), 2));
else
message(V_WARNING, _("Adjusted LZMA%c dictionary size "
"for --filters%u from %s MiB to %s MiB to not "
"exceed the memory usage limit of %s MiB"),
filter_lzma->id == LZMA_FILTER_LZMA2
? '2' : '1',
(unsigned)i,
uint64_to_str(r->orig_dict_size >> 20, 0),
uint64_to_str(opt->dict_size >> 20, 1),
uint64_to_str(round_up_to_mib(
memory_limit), 2));
}
#endif
return;
}
#ifdef HAVE_DECODERS
/// Return true if the data in in_buf seems to be in the .xz format.
static bool
is_format_xz(void)
{
// Specify the magic as hex to be compatible with EBCDIC systems.
static const uint8_t magic[6] = { 0xFD, 0x37, 0x7A, 0x58, 0x5A, 0x00 };
return strm.avail_in >= sizeof(magic)
&& memcmp(in_buf.u8, magic, sizeof(magic)) == 0;
}
/// Return true if the data in in_buf seems to be in the .lzma format.
static bool
is_format_lzma(void)
{
// The .lzma header is 13 bytes.
if (strm.avail_in < 13)
return false;
// Decode the LZMA1 properties.
lzma_filter filter = { .id = LZMA_FILTER_LZMA1 };
if (lzma_properties_decode(&filter, NULL, in_buf.u8, 5) != LZMA_OK)
return false;
// A hack to ditch tons of false positives: We allow only dictionary
// sizes that are 2^n or 2^n + 2^(n-1) or UINT32_MAX. LZMA_Alone
// created only files with 2^n, but accepts any dictionary size.
// If someone complains, this will be reconsidered.
lzma_options_lzma *opt = filter.options;
const uint32_t dict_size = opt->dict_size;
free(opt);
if (dict_size != UINT32_MAX) {
uint32_t d = dict_size - 1;
d |= d >> 2;
d |= d >> 3;
d |= d >> 4;
d |= d >> 8;
d |= d >> 16;
++d;
if (d != dict_size || dict_size == 0)
return false;
}
// Another hack to ditch false positives: Assume that if the
// uncompressed size is known, it must be less than 256 GiB.
// Again, if someone complains, this will be reconsidered.
uint64_t uncompressed_size = 0;
for (size_t i = 0; i < 8; ++i)
uncompressed_size |= (uint64_t)(in_buf.u8[5 + i]) << (i * 8);
if (uncompressed_size != UINT64_MAX
&& uncompressed_size > (UINT64_C(1) << 38))
return false;
return true;
}
#ifdef HAVE_LZIP_DECODER
/// Return true if the data in in_buf seems to be in the .lz format.
static bool
is_format_lzip(void)
{
static const uint8_t magic[4] = { 0x4C, 0x5A, 0x49, 0x50 };
return strm.avail_in >= sizeof(magic)
&& memcmp(in_buf.u8, magic, sizeof(magic)) == 0;
}
#endif
#endif
/// Detect the input file type (for now, this done only when decompressing),
/// and initialize an appropriate coder. Return value indicates if a normal
/// liblzma-based coder was initialized (CODER_INIT_NORMAL), if passthru
/// mode should be used (CODER_INIT_PASSTHRU), or if an error occurred
/// (CODER_INIT_ERROR).
static enum coder_init_ret
coder_init(file_pair *pair)
{
lzma_ret ret = LZMA_PROG_ERROR;
// In most cases if there is input left when coding finishes,
// something has gone wrong. Exceptions are --single-stream
// and decoding .lz files which can contain trailing non-.lz data.
// These will be handled later in this function.
allow_trailing_input = false;
// Set the first filter chain. If the --block-list option is not
// used then use the default filter chain (filters[0]).
// Otherwise, use first filter chain from the block list.
lzma_filter *active_filters = opt_block_list == NULL
? filters[0]
: filters[opt_block_list[0].filters_index];
if (opt_mode == MODE_COMPRESS) {
#ifdef HAVE_ENCODERS
switch (opt_format) {
case FORMAT_AUTO:
// args.c ensures this.
assert(0);
break;
case FORMAT_XZ:
# ifdef MYTHREAD_ENABLED
mt_options.filters = active_filters;
if (hardware_threads_is_mt())
ret = lzma_stream_encoder_mt(
&strm, &mt_options);
else
# endif
ret = lzma_stream_encoder(
&strm, active_filters, check);
break;
case FORMAT_LZMA:
ret = lzma_alone_encoder(&strm,
active_filters[0].options);
break;
# ifdef HAVE_LZIP_DECODER
case FORMAT_LZIP:
// args.c should disallow this.
assert(0);
ret = LZMA_PROG_ERROR;
break;
# endif
case FORMAT_RAW:
ret = lzma_raw_encoder(&strm, active_filters);
break;
}
#endif
} else {
#ifdef HAVE_DECODERS
uint32_t flags = 0;
// It seems silly to warn about unsupported check if the
// check won't be verified anyway due to --ignore-check.
if (opt_ignore_check)
flags |= LZMA_IGNORE_CHECK;
else
flags |= LZMA_TELL_UNSUPPORTED_CHECK;
if (opt_single_stream)
allow_trailing_input = true;
else
flags |= LZMA_CONCATENATED;
// We abuse FORMAT_AUTO to indicate unknown file format,
// for which we may consider passthru mode.
enum format_type init_format = FORMAT_AUTO;
switch (opt_format) {
case FORMAT_AUTO:
// .lz is checked before .lzma since .lzma detection
// is more complicated (no magic bytes).
if (is_format_xz())
init_format = FORMAT_XZ;
# ifdef HAVE_LZIP_DECODER
else if (is_format_lzip())
init_format = FORMAT_LZIP;
# endif
else if (is_format_lzma())
init_format = FORMAT_LZMA;
break;
case FORMAT_XZ:
if (is_format_xz())
init_format = FORMAT_XZ;
break;
case FORMAT_LZMA:
if (is_format_lzma())
init_format = FORMAT_LZMA;
break;
# ifdef HAVE_LZIP_DECODER
case FORMAT_LZIP:
if (is_format_lzip())
init_format = FORMAT_LZIP;
break;
# endif
case FORMAT_RAW:
init_format = FORMAT_RAW;
break;
}
switch (init_format) {
case FORMAT_AUTO:
// Unknown file format. If --decompress --stdout
// --force have been given, then we copy the input
// as is to stdout. Checking for MODE_DECOMPRESS
// is needed, because we don't want to do use
// passthru mode with --test.
if (opt_mode == MODE_DECOMPRESS
&& opt_stdout && opt_force) {
// These are needed for progress info.
strm.total_in = 0;
strm.total_out = 0;
return CODER_INIT_PASSTHRU;
}
ret = LZMA_FORMAT_ERROR;
break;
case FORMAT_XZ:
# ifdef MYTHREAD_ENABLED
mt_options.flags = flags;
mt_options.threads = hardware_threads_get();
mt_options.memlimit_stop
= hardware_memlimit_get(MODE_DECOMPRESS);
// If single-threaded mode was requested, set the
// memlimit for threading to zero. This forces the
// decoder to use single-threaded mode which matches
// the behavior of lzma_stream_decoder().
//
// Otherwise use the limit for threaded decompression
// which has a sane default (users are still free to
// make it insanely high though).
mt_options.memlimit_threading
= mt_options.threads == 1
? 0 : hardware_memlimit_mtdec_get();
ret = lzma_stream_decoder_mt(&strm, &mt_options);
# else
ret = lzma_stream_decoder(&strm,
hardware_memlimit_get(
MODE_DECOMPRESS), flags);
# endif
break;
case FORMAT_LZMA:
ret = lzma_alone_decoder(&strm,
hardware_memlimit_get(
MODE_DECOMPRESS));
break;
# ifdef HAVE_LZIP_DECODER
case FORMAT_LZIP:
allow_trailing_input = true;
ret = lzma_lzip_decoder(&strm,
hardware_memlimit_get(
MODE_DECOMPRESS), flags);
break;
# endif
case FORMAT_RAW:
// Memory usage has already been checked in
// coder_set_compression_settings().
ret = lzma_raw_decoder(&strm, active_filters);
break;
}
// Try to decode the headers. This will catch too low
// memory usage limit in case it happens in the first
// Block of the first Stream, which is where it very
// probably will happen if it is going to happen.
//
// This will also catch unsupported check type which
// we treat as a warning only. If there are empty
// concatenated Streams with unsupported check type then
// the message can be shown more than once here. The loop
// is used in case there is first a warning about
// unsupported check type and then the first Block
// would exceed the memlimit.
if (ret == LZMA_OK && init_format != FORMAT_RAW) {
strm.next_out = NULL;
strm.avail_out = 0;
while ((ret = lzma_code(&strm, LZMA_RUN))
== LZMA_UNSUPPORTED_CHECK)
message_warning("%s: %s", pair->src_name,
message_strm(ret));
// With --single-stream lzma_code won't wait for
// LZMA_FINISH and thus it can return LZMA_STREAM_END
// if the file has no uncompressed data inside.
// So treat LZMA_STREAM_END as LZMA_OK here.
// When lzma_code() is called again in coder_normal()
// it will return LZMA_STREAM_END again.
if (ret == LZMA_STREAM_END)
ret = LZMA_OK;
}
#endif
}
if (ret != LZMA_OK) {
message_error("%s: %s", pair->src_name, message_strm(ret));
if (ret == LZMA_MEMLIMIT_ERROR)
message_mem_needed(V_ERROR, lzma_memusage(&strm));
return CODER_INIT_ERROR;
}
return CODER_INIT_NORMAL;
}
#ifdef HAVE_ENCODERS
/// Resolve conflicts between opt_block_size and opt_block_list in single
/// threaded mode. We want to default to opt_block_list, except when it is
/// larger than opt_block_size. If this is the case for the current Block
/// at *list_pos, then we break into smaller Blocks. Otherwise advance
/// to the next Block in opt_block_list, and break apart if needed.
static void
split_block(uint64_t *block_remaining,
uint64_t *next_block_remaining,
size_t *list_pos)
{
if (*next_block_remaining > 0) {
// The Block at *list_pos has previously been split up.
assert(!hardware_threads_is_mt());
assert(opt_block_size > 0);
assert(opt_block_list != NULL);
if (*next_block_remaining > opt_block_size) {
// We have to split the current Block at *list_pos
// into another opt_block_size length Block.
*block_remaining = opt_block_size;
} else {
// This is the last remaining split Block for the
// Block at *list_pos.
*block_remaining = *next_block_remaining;
}
*next_block_remaining -= *block_remaining;
} else {
// The Block at *list_pos has been finished. Go to the next
// entry in the list. If the end of the list has been
// reached, reuse the size and filters of the last Block.
if (opt_block_list[*list_pos + 1].size != 0) {
++*list_pos;
// Update the filters if needed.
if (opt_block_list[*list_pos - 1].filters_index
!= opt_block_list[*list_pos].filters_index) {
const uint32_t filter_idx = opt_block_list
[*list_pos].filters_index;
const lzma_filter *next = filters[filter_idx];
const lzma_ret ret = lzma_filters_update(
&strm, next);
if (ret != LZMA_OK) {
// This message is only possible if
// the filter chain has unsupported
// options since the filter chain is
// validated using
// lzma_raw_encoder_memusage() or
// lzma_stream_encoder_mt_memusage().
// Some options are not validated until
// the encoders are initialized.
message_fatal(
_("Error changing to "
"filter chain %u: %s"),
(unsigned)filter_idx,
message_strm(ret));
}
}
}
*block_remaining = opt_block_list[*list_pos].size;
// If in single-threaded mode, split up the Block if needed.
// This is not needed in multi-threaded mode because liblzma
// will do this due to how threaded encoding works.
if (!hardware_threads_is_mt() && opt_block_size > 0
&& *block_remaining > opt_block_size) {
*next_block_remaining
= *block_remaining - opt_block_size;
*block_remaining = opt_block_size;
}
}
}
#endif
static bool
coder_write_output(file_pair *pair)
{
if (opt_mode != MODE_TEST) {
if (io_write(pair, &out_buf, IO_BUFFER_SIZE - strm.avail_out))
return true;
}
strm.next_out = out_buf.u8;
strm.avail_out = IO_BUFFER_SIZE;
return false;
}
/// Compress or decompress using liblzma.
static bool
coder_normal(file_pair *pair)
{
// Encoder needs to know when we have given all the input to it.
// The decoders need to know it too when we are using
// LZMA_CONCATENATED. We need to check for src_eof here, because
// the first input chunk has been already read if decompressing,
// and that may have been the only chunk we will read.
lzma_action action = pair->src_eof ? LZMA_FINISH : LZMA_RUN;
lzma_ret ret;
// Assume that something goes wrong.
bool success = false;
#ifdef HAVE_ENCODERS
// block_remaining indicates how many input bytes to encode before
// finishing the current .xz Block. The Block size is set with
// --block-size=SIZE and --block-list. They have an effect only when
// compressing to the .xz format. If block_remaining == UINT64_MAX,
// only a single block is created.
uint64_t block_remaining = UINT64_MAX;
// next_block_remaining for when we are in single-threaded mode and
// the Block in --block-list is larger than the --block-size=SIZE.
uint64_t next_block_remaining = 0;
// Position in opt_block_list. Unused if --block-list wasn't used.
size_t list_pos = 0;
// Handle --block-size for single-threaded mode and the first step
// of --block-list.
if (opt_mode == MODE_COMPRESS && opt_format == FORMAT_XZ) {
// --block-size doesn't do anything here in threaded mode,
// because the threaded encoder will take care of splitting
// to fixed-sized Blocks.
if (!hardware_threads_is_mt() && opt_block_size > 0)
block_remaining = opt_block_size;
// If --block-list was used, start with the first size.
//
// For threaded case, --block-size specifies how big Blocks
// the encoder needs to be prepared to create at maximum
// and --block-list will simultaneously cause new Blocks
// to be started at specified intervals. To keep things
// logical, the same is done in single-threaded mode. The
// output is still not identical because in single-threaded
// mode the size info isn't written into Block Headers.
if (opt_block_list != NULL) {
if (block_remaining < opt_block_list[list_pos].size) {
assert(!hardware_threads_is_mt());
next_block_remaining =
opt_block_list[list_pos].size
- block_remaining;
} else {
block_remaining =
opt_block_list[list_pos].size;
}
}
}
#endif
strm.next_out = out_buf.u8;
strm.avail_out = IO_BUFFER_SIZE;
while (!user_abort) {
// Fill the input buffer if it is empty and we aren't
// flushing or finishing.
if (strm.avail_in == 0 && action == LZMA_RUN) {
strm.next_in = in_buf.u8;
#ifdef HAVE_ENCODERS
const size_t read_size = my_min(block_remaining,
IO_BUFFER_SIZE);
#else
const size_t read_size = IO_BUFFER_SIZE;
#endif
strm.avail_in = io_read(pair, &in_buf, read_size);
if (strm.avail_in == SIZE_MAX)
break;
if (pair->src_eof) {
action = LZMA_FINISH;
}
#ifdef HAVE_ENCODERS
else if (block_remaining != UINT64_MAX) {
// Start a new Block after every
// opt_block_size bytes of input.
block_remaining -= strm.avail_in;
if (block_remaining == 0)
action = LZMA_FULL_BARRIER;
}
if (action == LZMA_RUN && pair->flush_needed)
action = LZMA_SYNC_FLUSH;
#endif
}
// Let liblzma do the actual work.
ret = lzma_code(&strm, action);
// Write out if the output buffer became full.
if (strm.avail_out == 0)
if (coder_write_output(pair))
break;
#ifdef HAVE_ENCODERS
if (ret == LZMA_STREAM_END && (action == LZMA_SYNC_FLUSH
|| action == LZMA_FULL_BARRIER)) {
if (action == LZMA_SYNC_FLUSH) {
// Flushing completed. Write the pending data
// out immediately so that the reading side
// can decompress everything compressed so far.
if (coder_write_output(pair))
break;
// Mark that we haven't seen any new input
// since the previous flush.
pair->src_has_seen_input = false;
pair->flush_needed = false;
} else {
// Start a new Block after LZMA_FULL_BARRIER.
if (opt_block_list == NULL) {
assert(!hardware_threads_is_mt());
assert(opt_block_size > 0);
block_remaining = opt_block_size;
} else {
split_block(&block_remaining,
&next_block_remaining,
&list_pos);
}
}
// Start a new Block after LZMA_FULL_FLUSH or continue
// the same block after LZMA_SYNC_FLUSH.
action = LZMA_RUN;
} else
#endif
if (ret != LZMA_OK) {
// Determine if the return value indicates that we
// won't continue coding. LZMA_NO_CHECK would be
// here too if LZMA_TELL_ANY_CHECK was used.
const bool stop = ret != LZMA_UNSUPPORTED_CHECK;
if (stop) {
// Write the remaining bytes even if something
// went wrong, because that way the user gets
// as much data as possible, which can be good
// when trying to get at least some useful
// data out of damaged files.
if (coder_write_output(pair))
break;
}
if (ret == LZMA_STREAM_END) {
if (allow_trailing_input) {
io_fix_src_pos(pair, strm.avail_in);
success = true;
break;
}
// Check that there is no trailing garbage.
// This is needed for LZMA_Alone and raw
// streams. This is *not* done with .lz files
// as that format specifically requires
// allowing trailing garbage.
if (strm.avail_in == 0 && !pair->src_eof) {
// Try reading one more byte.
// Hopefully we don't get any more
// input, and thus pair->src_eof
// becomes true.
strm.avail_in = io_read(
pair, &in_buf, 1);
if (strm.avail_in == SIZE_MAX)
break;
assert(strm.avail_in == 0
|| strm.avail_in == 1);
}
if (strm.avail_in == 0) {
assert(pair->src_eof);
success = true;
break;
}
// We hadn't reached the end of the file.
ret = LZMA_DATA_ERROR;
assert(stop);
}
// If we get here and stop is true, something went
// wrong and we print an error. Otherwise it's just
// a warning and coding can continue.
if (stop) {
message_error("%s: %s", pair->src_name,
message_strm(ret));
} else {
message_warning("%s: %s", pair->src_name,
message_strm(ret));
// When compressing, all possible errors set
// stop to true.
assert(opt_mode != MODE_COMPRESS);
}
if (ret == LZMA_MEMLIMIT_ERROR) {
// Display how much memory it would have
// actually needed.
message_mem_needed(V_ERROR,
lzma_memusage(&strm));
}
if (stop)
break;
}
// Show progress information under certain conditions.
message_progress_update();
}
return success;
}
/// Copy from input file to output file without processing the data in any
/// way. This is used only when trying to decompress unrecognized files
/// with --decompress --stdout --force, so the output is always stdout.
static bool
coder_passthru(file_pair *pair)
{
while (strm.avail_in != 0) {
if (user_abort)
return false;
if (io_write(pair, &in_buf, strm.avail_in))
return false;
strm.total_in += strm.avail_in;
strm.total_out = strm.total_in;
message_progress_update();
strm.avail_in = io_read(pair, &in_buf, IO_BUFFER_SIZE);
if (strm.avail_in == SIZE_MAX)
return false;
}
return true;
}
extern void
coder_run(const char *filename)
{
// Set and possibly print the filename for the progress message.
message_filename(filename);
// Try to open the input file.
file_pair *pair = io_open_src(filename);
if (pair == NULL)
return;
// Assume that something goes wrong.
bool success = false;
if (opt_mode == MODE_COMPRESS) {
strm.next_in = NULL;
strm.avail_in = 0;
} else {
// Read the first chunk of input data. This is needed
// to detect the input file type.
strm.next_in = in_buf.u8;
strm.avail_in = io_read(pair, &in_buf, IO_BUFFER_SIZE);
}
if (strm.avail_in != SIZE_MAX) {
// Initialize the coder. This will detect the file format
// and, in decompression or testing mode, check the memory
// usage of the first Block too. This way we don't try to
// open the destination file if we see that coding wouldn't
// work at all anyway. This also avoids deleting the old
// "target" file if --force was used.
const enum coder_init_ret init_ret = coder_init(pair);
if (init_ret != CODER_INIT_ERROR && !user_abort) {
// Don't open the destination file when --test
// is used.
if (opt_mode == MODE_TEST || !io_open_dest(pair)) {
// Remember the current time. It is needed
// for progress indicator.
mytime_set_start_time();
// Initialize the progress indicator.
//
// NOTE: When reading from stdin, fstat()
// isn't called on it and thus src_st.st_size
// is zero. If stdin pointed to a regular
// file, it would still be possible to know
// the file size but then we would also need
// to take into account the current reading
// position since with stdin it isn't
// necessarily at the beginning of the file.
const bool is_passthru = init_ret
== CODER_INIT_PASSTHRU;
const uint64_t in_size
= pair->src_st.st_size <= 0
? 0 : (uint64_t)(pair->src_st.st_size);
message_progress_start(&strm,
is_passthru, in_size);
// Do the actual coding or passthru.
if (is_passthru)
success = coder_passthru(pair);
else
success = coder_normal(pair);
message_progress_end(success);
}
}
}
// Close the file pair. It needs to know if coding was successful to
// know if the source or target file should be unlinked.
io_close(pair, success);
return;
}
#ifndef NDEBUG
extern void
coder_free(void)
{
// Free starting from the second filter chain since the default
// filter chain may have its options set from a static variable
// in coder_set_compression_settings(). Since this is only run in
// debug mode and will be freed when the process ends anyway, we
// don't worry about freeing it.
for (uint32_t i = 1; i < ARRAY_SIZE(filters); i++) {
if (filters_init_mask & (1 << i))
lzma_filters_free(filters[i], NULL);
}
lzma_end(&strm);
return;
}
#endif