blob: ba19b6ae0f637713ff901d1f5e7ad490b21675ca (
plain) (
tree)
|
|
///////////////////////////////////////////////////////////////////////////////
//
/// \file lzma_encoder_private.h
/// \brief Private definitions for LZMA encoder
//
// Copyright (C) 1999-2006 Igor Pavlov
// Copyright (C) 2007 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef LZMA_LZMA_ENCODER_PRIVATE_H
#define LZMA_LZMA_ENCODER_PRIVATE_H
#include "lzma_encoder.h"
#include "lzma_common.h"
#include "lz_encoder.h"
#include "range_encoder.h"
// We need space for about two encoding loops, because there is no check
// for available buffer space before end of payload marker gets written.
// 2*26 bytes should be enough for this... but Lasse isn't very sure about
// the exact value. 64 bytes certainly is enough. :-)
#if LZMA_LZ_TEMP_SIZE < 64
# error LZMA_LZ_TEMP_SIZE is too small.
#endif
#define move_pos(num) \
do { \
assert((int32_t)(num) >= 0); \
if ((num) != 0) { \
coder->additional_offset += num; \
coder->lz.skip(&coder->lz, num); \
} \
} while (0)
#define get_pos_slot(pos) \
((pos) < (1 << 11) \
? lzma_fastpos[pos] \
: ((pos) < (1 << 21) \
? lzma_fastpos[(pos) >> 10] + 20 \
: lzma_fastpos[(pos) >> 20] + 40))
#define get_pos_slot_2(pos) \
((pos) < (1 << 17) \
? lzma_fastpos[(pos) >> 6] + 12 \
: ((pos) < (1 << 27) \
? lzma_fastpos[(pos) >> 16] + 32 \
: lzma_fastpos[(pos) >> 26] + 52))
/// This isn't modified once its contents have been
/// initialized by lzma_fastpos_init().
extern uint8_t lzma_fastpos[1 << 11];
typedef struct {
probability choice;
probability choice2;
probability low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
probability mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
probability high[LEN_HIGH_SYMBOLS];
uint32_t prices[POS_STATES_MAX][LEN_SYMBOLS];
uint32_t table_size;
uint32_t counters[POS_STATES_MAX];
} lzma_length_encoder;
typedef struct {
uint32_t state;
bool prev_1_is_char;
bool prev_2;
uint32_t pos_prev_2;
uint32_t back_prev_2;
uint32_t price;
uint32_t pos_prev; // pos_next;
uint32_t back_prev;
uint32_t backs[4];
} lzma_optimal;
struct lzma_coder_s {
// Next coder in the chain
lzma_next_coder next;
// In window and match finder
lzma_lz_encoder lz;
// Range encoder
lzma_range_encoder rc;
// State
uint32_t state;
uint8_t previous_byte;
uint32_t rep_distances[REP_DISTANCES];
// Misc
uint32_t match_distances[MATCH_MAX_LEN * 2 + 2 + 1];
uint32_t num_distance_pairs;
uint32_t additional_offset;
uint32_t now_pos; // Lowest 32 bits are enough here.
bool best_compression; ///< True when LZMA_MODE_BEST is used
bool is_initialized;
// Literal encoder
lzma_literal_coder *literal_coder;
// Bit encoders
probability is_match[STATES][POS_STATES_MAX];
probability is_rep[STATES];
probability is_rep0[STATES];
probability is_rep1[STATES];
probability is_rep2[STATES];
probability is_rep0_long[STATES][POS_STATES_MAX];
probability pos_encoders[FULL_DISTANCES - END_POS_MODEL_INDEX];
// Bit Tree Encoders
probability pos_slot_encoder[LEN_TO_POS_STATES][1 << POS_SLOT_BITS];
probability pos_align_encoder[1 << ALIGN_BITS];
// Length encoders
lzma_length_encoder len_encoder;
lzma_length_encoder rep_match_len_encoder;
// Optimal
lzma_optimal optimum[OPTS];
uint32_t optimum_end_index;
uint32_t optimum_current_index;
uint32_t longest_match_length;
bool longest_match_was_found;
// Prices
uint32_t pos_slot_prices[LEN_TO_POS_STATES][DIST_TABLE_SIZE_MAX];
uint32_t distances_prices[LEN_TO_POS_STATES][FULL_DISTANCES];
uint32_t align_prices[ALIGN_TABLE_SIZE];
uint32_t align_price_count;
uint32_t dist_table_size;
uint32_t match_price_count;
// LZMA specific settings
uint32_t dictionary_size; ///< Size in bytes
uint32_t fast_bytes;
uint32_t pos_state_bits;
uint32_t pos_mask; ///< (1 << pos_state_bits) - 1
};
extern void lzma_length_encoder_update_table(lzma_length_encoder *lencoder,
const uint32_t pos_state);
extern bool lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size);
extern void lzma_get_optimum(lzma_coder *restrict coder,
uint32_t *restrict back_res, uint32_t *restrict len_res);
extern void lzma_get_optimum_fast(lzma_coder *restrict coder,
uint32_t *restrict back_res, uint32_t *restrict len_res);
// NOTE: Don't add 'restrict'.
static inline void
lzma_read_match_distances(lzma_coder *coder,
uint32_t *len_res, uint32_t *num_distance_pairs)
{
*len_res = 0;
coder->lz.get_matches(&coder->lz, coder->match_distances);
*num_distance_pairs = coder->match_distances[0];
if (*num_distance_pairs > 0) {
*len_res = coder->match_distances[*num_distance_pairs - 1];
assert(*len_res <= MATCH_MAX_LEN);
if (*len_res == coder->fast_bytes) {
uint32_t offset = *len_res - 1;
const uint32_t distance = coder->match_distances[
*num_distance_pairs] + 1;
uint32_t limit = MATCH_MAX_LEN - *len_res;
assert(offset + limit < coder->lz.keep_size_after);
assert(coder->lz.read_pos <= coder->lz.write_pos);
// If we are close to end of the stream, we may need
// to limit the length of the match.
if (coder->lz.write_pos - coder->lz.read_pos
< offset + limit)
limit = coder->lz.write_pos
- (coder->lz.read_pos + offset);
offset += coder->lz.read_pos;
uint32_t i = 0;
while (i < limit && coder->lz.buffer[offset + i]
== coder->lz.buffer[
offset + i - distance])
++i;
*len_res += i;
}
}
++coder->additional_offset;
return;
}
#endif
|