///////////////////////////////////////////////////////////////////////////////
//
/// \file lzma_encoder.c
/// \brief LZMA encoder
//
// Copyright (C) 1999-2006 Igor Pavlov
// Copyright (C) 2007 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////
#include "lzma_encoder_private.h"
#include "fastpos.h"
/////////////
// Literal //
/////////////
static inline void
literal_normal(lzma_range_encoder *rc, probability *subcoder, uint32_t symbol)
{
uint32_t context = 1;
uint32_t bit_count = 8; // Bits per byte
do {
const uint32_t bit = (symbol >> --bit_count) & 1;
rc_bit(rc, &subcoder[context], bit);
context = (context << 1) | bit;
} while (bit_count != 0);
}
static inline void
literal_matched(lzma_range_encoder *rc, probability *subcoder,
uint32_t match_byte, uint32_t symbol)
{
uint32_t context = 1;
uint32_t bit_count = 8;
do {
uint32_t bit = (symbol >> --bit_count) & 1;
const uint32_t match_bit = (match_byte >> bit_count) & 1;
rc_bit(rc, &subcoder[(0x100 << match_bit) + context], bit);
context = (context << 1) | bit;
if (match_bit != bit) {
// The bit from the literal being encoded and the bit
// from the previous match differ. Finish encoding
// as a normal literal.
while (bit_count != 0) {
bit = (symbol >> --bit_count) & 1;
rc_bit(rc, &subcoder[context], bit);
context = (context << 1) | bit;
}
break;
}
} while (bit_count != 0);
}
static inline void
literal(lzma_coder *coder)
{
// Locate the literal byte to be encoded and the subcoder.
const uint8_t cur_byte = coder->lz.buffer[
coder->lz.read_pos - coder->additional_offset];
probability *subcoder = literal_get_subcoder(coder->literal_coder,
coder->now_pos, coder->previous_byte);
if (is_literal_state(coder->state)) {
// Previous LZMA-symbol was a literal. Encode a normal
// literal without a match byte.
literal_normal(&coder->rc, subcoder, cur_byte);
} else {
// Previous LZMA-symbol was a match. Use the last byte of
// the match as a "match byte". That is, compare the bits
// of the current literal and the match byte.
const uint8_t match_byte = coder->lz.buffer[
coder->lz.read_pos - coder->reps[0] - 1
- coder->additional_offset];
literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
}
update_literal(coder->state);
coder->previous_byte = cur_byte;
}
//////////////////
// Match length //
//////////////////
static inline void
length(lzma_range_encoder *rc, lzma_length_encoder *lc,
const uint32_t pos_state, uint32_t len)
{
assert(len <= MATCH_MAX_LEN);
len -= MATCH_MIN_LEN;
if (len < LEN_LOW_SYMBOLS) {
rc_bit(rc, &lc->choice, 0);
rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
} else {
rc_bit(rc, &lc->choice, 1);
len -= LEN_LOW_SYMBOLS;
if (len < LEN_MID_SYMBOLS) {
rc_bit(rc, &lc->choice2, 0);
rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
} else {
rc_bit(rc, &lc->choice2, 1);
len -= LEN_MID_SYMBOLS;
rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
}
}
}
///////////
// Match //
///////////
static inline void
match(lzma_coder *coder, const uint32_t pos_state,
const uint32_t distance, const uint32_t len)
{
update_match(coder->state);
length(&coder->rc, &coder->match_len_encoder, pos_state, len);
coder->prev_len_encoder = &coder->match_len_encoder;
const uint32_t pos_slot = get_pos_slot(distance);
const uint32_t len_to_pos_state = get_len_to_pos_state(len);
rc_bittree(&coder->rc, coder->pos_slot_encoder[len_to_pos_state],
POS_SLOT_BITS, pos_slot);
if (pos_slot >= START_POS_MODEL_INDEX) {
const uint32_t footer_bits = (pos_slot >> 1) - 1;
const uint32_t base = (2 | (pos_slot & 1)) << footer_bits;
const uint32_t pos_reduced = distance - base;
if (pos_slot < END_POS_MODEL_INDEX) {
rc_bittree_reverse(&coder->rc,
&coder->pos_encoders[base - pos_slot - 1],
footer_bits, pos_reduced);
} else {
rc_direct(&coder->rc, pos_reduced >> ALIGN_BITS,
footer_bits - ALIGN_BITS);
rc_bittree_reverse(
&coder->rc, coder->pos_align_encoder,
ALIGN_BITS, pos_reduced & ALIGN_MASK);
++coder->align_price_count;
}
}
coder->reps[3] = coder->reps[2];
coder->reps[2] = coder->reps[1];
coder->reps[1] = coder->reps[0];
coder->reps[0] = distance;
++coder->match_price_count;
}
////////////////////
// Repeated match //
////////////////////
static inline void
rep_match(lzma_coder *coder, const uint32_t pos_state,
const uint32_t rep, const uint32_t len)
{
if (rep == 0) {
rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
rc_bit(&coder->rc,
&coder->is_rep0_long[coder->state][pos_state],
len != 1);
} else {
const uint32_t distance = coder->reps[rep];
rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
if (rep == 1) {
rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
} else {
rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
rc_bit(&coder->rc, &coder->is_rep2[coder->state],
rep - 2);
if (rep == 3)
coder->reps[3] = coder->reps[2];
coder->reps[2] = coder->reps[1];
}
coder->reps[1] = coder->reps[0];
coder->reps[0] = distance;
}
if (len == 1) {
update_short_rep(coder->state);
} else {
length(&coder->rc, &coder->rep_len_encoder, pos_state, len);
coder->prev_len_encoder = &coder->rep_len_encoder;
update_long_rep(coder->state);
}
}
//////////
// Main //
//////////
static void
encode_symbol(lzma_coder *coder, uint32_t pos, uint32_t len)
{
const uint32_t pos_state = coder->now_pos & coder->pos_mask;
if (len == 1 && pos == UINT32_MAX) {
// Literal i.e. eight-bit byte
rc_bit(&coder->rc,
&coder->is_match[coder->state][pos_state], 0);
literal(coder);
} else {
// Some type of match
rc_bit(&coder->rc,
&coder->is_match[coder->state][pos_state], 1);
if (pos < REP_DISTANCES) {
// It's a repeated match i.e. the same distance
// has been used earlier.
rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
rep_match(coder, pos_state, pos, len);
} else {
// Normal match
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
match(coder, pos_state, pos - REP_DISTANCES, len);
}
coder->previous_byte = coder->lz.buffer[
coder->lz.read_pos + len - 1
- coder->additional_offset];
}
assert(coder->additional_offset >= len);
coder->additional_offset -= len;
coder->now_pos += len;
}
static void
encode_eopm(lzma_coder *coder)
{
const uint32_t pos_state = coder->now_pos & coder->pos_mask;
rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
match(coder, pos_state, UINT32_MAX, MATCH_MIN_LEN);
}
/**
* \brief LZMA encoder
*
* \return true if end of stream was reached, false otherwise.
*/
extern bool
lzma_lzma_encode(lzma_coder *coder, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size)
{
// Initialize the stream if no data has been encoded yet.
if (!coder->is_initialized) {
if (coder->lz.read_pos == coder->lz.read_limit) {
if (coder->lz.sequence == SEQ_RUN)
return false; // We cannot do anything.
// We are finishing (we cannot get here when flushing).
assert(coder->lz.write_pos == coder->lz.read_pos);
assert(coder->lz.sequence == SEQ_FINISH);
} else {
// Do the actual initialization.
uint32_t len;
uint32_t num_distance_pairs;
lzma_read_match_distances(coder,
&len, &num_distance_pairs);
encode_symbol(coder, UINT32_MAX, 1);
assert(coder->additional_offset == 0);
}
// Initialization is done (except if empty file).
coder->is_initialized = true;
}
// Encoding loop
while (true) {
// Encode pending bits, if any.
if (rc_encode(&coder->rc, out, out_pos, out_size))
return false;
// Check that there is some input to process.
if (coder->lz.read_pos >= coder->lz.read_limit) {
// If flushing or finishing, we must keep encoding
// until additional_offset becomes zero to make
// all the input available at output.
if (coder->lz.sequence == SEQ_RUN)
return false;
if (coder->additional_offset == 0)
break;
}
assert(coder->lz.read_pos <= coder->lz.write_pos);
#ifndef NDEBUG
if (coder->lz.sequence != SEQ_RUN) {
assert(coder->lz.read_limit == coder->lz.write_pos);
} else {
assert(coder->lz.read_limit + coder->lz.keep_size_after
== coder->lz.write_pos);
}
#endif
uint32_t pos;
uint32_t len;
// Get optimal match (repeat position and length).
// Value ranges for pos:
// - [0, REP_DISTANCES): repeated match
// - [REP_DISTANCES, UINT32_MAX):
// match at (pos - REP_DISTANCES)
// - UINT32_MAX: not a match but a literal
// Value ranges for len:
// - [MATCH_MIN_LEN, MATCH_MAX_LEN]
if (coder->best_compression)
lzma_get_optimum(coder, &pos, &len);
else
lzma_get_optimum_fast(coder, &pos, &len);
encode_symbol(coder, pos, len);
}
assert(!coder->longest_match_was_found);
if (coder->is_flushed) {
coder->is_flushed = false;
return true;
}
// We don't support encoding old LZMA streams without EOPM, and LZMA2
// doesn't use EOPM at LZMA level.
if (coder->write_eopm)
encode_eopm(coder);
rc_flush(&coder->rc);
if (rc_encode(&coder->rc, out, out_pos, out_size)) {
coder->is_flushed = true;
return false;
}
return true;
}