///////////////////////////////////////////////////////////////////////////////
//
/// \file lz_encoder.c
/// \brief LZ in window
//
// Copyright (C) 1999-2006 Igor Pavlov
// Copyright (C) 2007 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////
#include "lz_encoder_private.h"
// Hash Chains
#ifdef HAVE_HC3
# include "hc3.h"
#endif
#ifdef HAVE_HC4
# include "hc4.h"
#endif
// Binary Trees
#ifdef HAVE_BT2
# include "bt2.h"
#endif
#ifdef HAVE_BT3
# include "bt3.h"
#endif
#ifdef HAVE_BT4
# include "bt4.h"
#endif
/// This is needed in two places so provide a macro.
#define get_cyclic_buffer_size(history_size) ((history_size) + 1)
/// Calculate certain match finder properties and validate the calculated
/// values. This is as its own function, because *num_items is needed to
/// calculate memory requirements in common/memory.c.
extern uint32_t
lzma_lz_encoder_hash_properties(lzma_match_finder match_finder,
uint32_t history_size, uint32_t *restrict hash_mask,
uint32_t *restrict hash_size_sum, uint32_t *restrict num_items)
{
uint32_t fix_hash_size;
uint32_t sons;
switch (match_finder) {
#ifdef HAVE_HC3
case LZMA_MF_HC3:
fix_hash_size = LZMA_HC3_FIX_HASH_SIZE;
sons = 1;
break;
#endif
#ifdef HAVE_HC4
case LZMA_MF_HC4:
fix_hash_size = LZMA_HC4_FIX_HASH_SIZE;
sons = 1;
break;
#endif
#ifdef HAVE_BT2
case LZMA_MF_BT2:
fix_hash_size = LZMA_BT2_FIX_HASH_SIZE;
sons = 2;
break;
#endif
#ifdef HAVE_BT3
case LZMA_MF_BT3:
fix_hash_size = LZMA_BT3_FIX_HASH_SIZE;
sons = 2;
break;
#endif
#ifdef HAVE_BT4
case LZMA_MF_BT4:
fix_hash_size = LZMA_BT4_FIX_HASH_SIZE;
sons = 2;
break;
#endif
default:
return true;
}
uint32_t hs;
#ifdef HAVE_LZMA_BT2
if (match_finder == LZMA_BT2) {
// NOTE: hash_mask is not used by the BT2 match finder,
// but it is initialized just in case.
hs = LZMA_BT2_HASH_SIZE;
*hash_mask = 0;
} else
#endif
{
hs = history_size - 1;
hs |= (hs >> 1);
hs |= (hs >> 2);
hs |= (hs >> 4);
hs |= (hs >> 8);
hs >>= 1;
hs |= 0xFFFF;
if (hs > (UINT32_C(1) << 24)) {
if (match_finder == LZMA_MF_HC4
|| match_finder == LZMA_MF_BT4)
hs >>= 1;
else
hs = (1 << 24) - 1;
}
*hash_mask = hs;
++hs;
}
*hash_size_sum = hs + fix_hash_size;
*num_items = *hash_size_sum
+ get_cyclic_buffer_size(history_size) * sons;
return false;
}
extern lzma_ret
lzma_lz_encoder_reset(lzma_lz_encoder *lz, lzma_allocator *allocator,
bool (*process)(lzma_coder *coder, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size),
lzma_vli uncompressed_size,
size_t history_size, size_t additional_buffer_before,
size_t match_max_len, size_t additional_buffer_after,
lzma_match_finder match_finder, uint32_t match_finder_cycles,
const uint8_t *preset_dictionary,
size_t preset_dictionary_size)
{
// Set uncompressed size.
lz->uncompressed_size = uncompressed_size;
///////////////
// In Window //
///////////////
// Validate history size.
if (history_size < LZMA_DICTIONARY_SIZE_MIN
|| history_size > LZMA_DICTIONARY_SIZE_MAX) {
lzma_lz_encoder_end(lz, allocator);
return LZMA_HEADER_ERROR;
}
assert(history_size <= MAX_VAL_FOR_NORMALIZE - 256);
assert(LZMA_DICTIONARY_SIZE_MAX <= MAX_VAL_FOR_NORMALIZE - 256);
// Calculate the size of the history buffer to allocate.
// TODO: Get a reason for magic constant of 256.
const size_t size_reserv = (history_size + additional_buffer_before
+ match_max_len + additional_buffer_after) / 2 + 256;
lz->keep_size_before = history_size + additional_buffer_before;
lz->keep_size_after = match_max_len + additional_buffer_after;
const size_t buffer_size = lz->keep_size_before + lz->keep_size_after
+ size_reserv;
// Allocate history buffer if its size has changed.
if (buffer_size != lz->size) {
lzma_free(lz->buffer, allocator);
lz->buffer = lzma_alloc(buffer_size, allocator);
if (lz->buffer == NULL) {
lzma_lz_encoder_end(lz, allocator);
return LZMA_MEM_ERROR;
}
}
// Allocation successful. Store the new size.
lz->size = buffer_size;
// Reset in window variables.
lz->offset = 0;
lz->read_pos = 0;
lz->read_limit = 0;
lz->write_pos = 0;
lz->stream_end_was_reached = false;
//////////////////
// Match Finder //
//////////////////
// Validate match_finder, set function pointers and a few match
// finder specific variables.
switch (match_finder) {
#ifdef HAVE_HC3
case LZMA_MF_HC3:
lz->get_matches = &lzma_hc3_get_matches;
lz->skip = &lzma_hc3_skip;
lz->cut_value = 8 + (match_max_len >> 2);
break;
#endif
#ifdef HAVE_HC4
case LZMA_MF_HC4:
lz->get_matches = &lzma_hc4_get_matches;
lz->skip = &lzma_hc4_skip;
lz->cut_value = 8 + (match_max_len >> 2);
break;
#endif
#ifdef HAVE_BT2
case LZMA_MF_BT2:
lz->get_matches = &lzma_bt2_get_matches;
lz->skip = &lzma_bt2_skip;
lz->cut_value = 16 + (match_max_len >> 1);
break;
#endif
#ifdef HAVE_BT3
case LZMA_MF_BT3:
lz->get_matches = &lzma_bt3_get_matches;
lz->skip = &lzma_bt3_skip;
lz->cut_value = 16 + (match_max_len >> 1);
break;
#endif
#ifdef HAVE_BT4
case LZMA_MF_BT4:
lz->get_matches = &lzma_bt4_get_matches;
lz->skip = &lzma_bt4_skip;
lz->cut_value = 16 + (match_max_len >> 1);
break;
#endif
default:
lzma_lz_encoder_end(lz, allocator);
return LZMA_HEADER_ERROR;
}
// Check if we have been requested to use a non-default cut_value.
if (match_finder_cycles > 0)
lz->cut_value = match_finder_cycles;
lz->match_max_len = match_max_len;
lz->cyclic_buffer_size = get_cyclic_buffer_size(history_size);
uint32_t hash_size_sum;
uint32_t num_items;
if (lzma_lz_encoder_hash_properties(match_finder, history_size,
&lz->hash_mask, &hash_size_sum, &num_items)) {
lzma_lz_encoder_end(lz, allocator);
return LZMA_HEADER_ERROR;
}
if (num_items != lz->num_items) {
#if UINT32_MAX >= SIZE_MAX / 4
// Check for integer overflow. (Huge dictionaries are not
// possible on 32-bit CPU.)
if (num_items > SIZE_MAX / sizeof(uint32_t)) {
lzma_lz_encoder_end(lz, allocator);
return LZMA_MEM_ERROR;
}
#endif
const size_t size_in_bytes
= (size_t)(num_items) * sizeof(uint32_t);
lzma_free(lz->hash, allocator);
lz->hash = lzma_alloc(size_in_bytes, allocator);
if (lz->hash == NULL) {
lzma_lz_encoder_end(lz, allocator);
return LZMA_MEM_ERROR;
}
lz->num_items = num_items;
}
lz->son = lz->hash + hash_size_sum;
// Reset the hash table to empty hash values.
{
uint32_t *restrict items = lz->hash;
for (uint32_t i = 0; i < hash_size_sum; ++i)
items[i] = EMPTY_HASH_VALUE;
}
lz->cyclic_buffer_pos = 0;
// Because zero is used as empty hash value, make the first byte
// appear at buffer[1 - offset].
++lz->offset;
// If we are using a preset dictionary, read it now.
// TODO: This isn't implemented yet so return LZMA_HEADER_ERROR.
if (preset_dictionary != NULL && preset_dictionary_size > 0) {
lzma_lz_encoder_end(lz, allocator);
return LZMA_HEADER_ERROR;
}
// Set the process function pointer.
lz->process = process;
return LZMA_OK;
}
extern void
lzma_lz_encoder_end(lzma_lz_encoder *lz, lzma_allocator *allocator)
{
lzma_free(lz->hash, allocator);
lz->hash = NULL;
lz->num_items = 0;
lzma_free(lz->buffer, allocator);
lz->buffer = NULL;
lz->size = 0;
return;
}
/// \brief Moves the data in the input window to free space for new data
///
/// lz->buffer is a sliding input window, which keeps lz->keep_size_before
/// bytes of input history available all the time. Now and then we need to
/// "slide" the buffer to make space for the new data to the end of the
/// buffer. At the same time, data older than keep_size_before is dropped.
///
static void
move_window(lzma_lz_encoder *lz)
{
// buffer[move_offset] will become buffer[0].
assert(lz->read_pos > lz->keep_size_after);
size_t move_offset = lz->read_pos - lz->keep_size_before;
// We need one additional byte, since move_pos() moves on 1 byte.
// TODO: Clean up? At least document more.
if (move_offset > 0)
--move_offset;
assert(lz->write_pos > move_offset);
const size_t move_size = lz->write_pos - move_offset;
assert(move_offset + move_size <= lz->size);
memmove(lz->buffer, lz->buffer + move_offset, move_size);
lz->offset += move_offset;
lz->read_pos -= move_offset;
lz->read_limit -= move_offset;
lz->write_pos -= move_offset;
return;
}
/// \brief Tries to fill the input window (lz->buffer)
///
/// If we are the last encoder in the chain, our input data is in in[].
/// Otherwise we call the next filter in the chain to process in[] and
/// write its output to lz->buffer.
///
/// This function must not be called once it has returned LZMA_STREAM_END.
///
static lzma_ret
fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
size_t *in_pos, size_t in_size, lzma_action action)
{
assert(coder->lz.read_pos <= coder->lz.write_pos);
lzma_ret ret;
// Move the sliding window if needed.
if (coder->lz.read_pos >= coder->lz.size - coder->lz.keep_size_after)
move_window(&coder->lz);
if (coder->next.code == NULL) {
// Not using a filter, simply memcpy() as much as possible.
bufcpy(in, in_pos, in_size, coder->lz.buffer,
&coder->lz.write_pos, coder->lz.size);
if (action == LZMA_FINISH && *in_pos == in_size)
ret = LZMA_STREAM_END;
else
ret = LZMA_OK;
} else {
ret = coder->next.code(coder->next.coder, allocator,
in, in_pos, in_size,
coder->lz.buffer, &coder->lz.write_pos,
coder->lz.size, action);
}
// If end of stream has been reached, we allow the encoder to process
// all the input (that is, read_pos is allowed to reach write_pos).
// Otherwise we keep keep_size_after bytes available as prebuffer.
if (ret == LZMA_STREAM_END) {
coder->lz.stream_end_was_reached = true;
coder->lz.read_limit = coder->lz.write_pos;
} else if (coder->lz.write_pos > coder->lz.keep_size_after) {
// This needs to be done conditionally, because if we got
// only little new input, there may be too little input
// to do any encoding yet.
coder->lz.read_limit = coder->lz.write_pos
- coder->lz.keep_size_after;
}
return ret;
}
extern lzma_ret
lzma_lz_encode(lzma_coder *coder, lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size,
uint8_t *restrict out, size_t *restrict out_pos,
size_t out_size, lzma_action action)
{
while (*out_pos < out_size
&& (*in_pos < in_size || action == LZMA_FINISH)) {
// Fill the input window if there is no more usable data.
if (!coder->lz.stream_end_was_reached && coder->lz.read_pos
>= coder->lz.read_limit) {
const lzma_ret ret = fill_window(coder, allocator,
in, in_pos, in_size, action);
if (ret != LZMA_OK && ret != LZMA_STREAM_END)
return ret;
}
// Encode
if (coder->lz.process(coder, out, out_pos, out_size))
return LZMA_STREAM_END;
}
return LZMA_OK;
}
/// \brief Normalizes hash values
///
/// lzma_lz_normalize is called when lz->pos hits MAX_VAL_FOR_NORMALIZE,
/// which currently happens once every 2 GiB of input data (to be exact,
/// after the first 2 GiB it happens once every 2 GiB minus dictionary_size
/// bytes). lz->pos is incremented by lzma_lz_move_pos().
///
/// lz->hash contains big amount of offsets relative to lz->buffer.
/// The offsets are stored as uint32_t, which is the only reasonable
/// datatype for these offsets; uint64_t would waste far too much RAM
/// and uint16_t would limit the dictionary to 64 KiB (far too small).
///
/// When compressing files over 2 GiB, lz->buffer needs to be moved forward
/// to avoid integer overflows. We scan the lz->hash array and fix every
/// value to match the updated lz->buffer.
extern void
lzma_lz_encoder_normalize(lzma_lz_encoder *lz)
{
const uint32_t subvalue = lz->read_pos - lz->cyclic_buffer_size;
assert(subvalue <= INT32_MAX);
{
const uint32_t num_items = lz->num_items;
uint32_t *restrict items = lz->hash;
for (uint32_t i = 0; i < num_items; ++i) {
// If the distance is greater than the dictionary
// size, we can simply mark the item as empty.
if (items[i] <= subvalue)
items[i] = EMPTY_HASH_VALUE;
else
items[i] -= subvalue;
}
}
// Update offset to match the new locations.
lz->offset -= subvalue;
return;
}