aboutsummaryrefslogblamecommitdiff
path: root/src/liblzma/common/stream_decoder_mt.c
blob: 7f445982243c68d68420aa17999a310411b77dcc (plain) (tree)
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902








































                                                                               



















                                                                      


















































                                                                               



                                                                             

























































































































































































                                                                              
 





                                                                              











                                                                            

















                                                                          

                                                    





























                                                        
                                           




































                                                                   








                                                                           
                                   
                                             
 
                                                                          







                                                                         
                                                                          











                                                                 






                                                                             
 





                                                                             


                                                                             





























































































































































































                                                                              
                                                      



















                                                                           
                                                          


























                                                                               







                                                                               









































































































                                                                              

                                                                            








































                                                                               
                                                    



















































































































                                                                               


                                   

























                                                                              























                                                                              

                                      











































































                                                                               




                                                                            













                                                                               



                                                                         



                                                                              
                                                      




























































































































































































































































































































































                                                                               

                                                                           

                                                                      
                                                      































































































































































































































































































































































































































                                                                                
 
                                   
                                      




















                                                                   
///////////////////////////////////////////////////////////////////////////////
//
/// \file       stream_decoder_mt.c
/// \brief      Multithreaded .xz Stream decoder
//
//  Authors:    Sebastian Andrzej Siewior
//              Lasse Collin
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "common.h"
#include "block_decoder.h"
#include "stream_decoder.h"
#include "index.h"
#include "outqueue.h"


typedef enum {
	/// Waiting for work.
	/// Main thread may change this to THR_RUN or THR_EXIT.
	THR_IDLE,

	/// Decoding is in progress.
	/// Main thread may change this to THR_STOP or THR_EXIT.
	/// The worker thread may change this to THR_IDLE.
	THR_RUN,

	/// The main thread wants the thread to stop whatever it was doing
	/// but not exit. Main thread may change this to THR_EXIT.
	/// The worker thread may change this to THR_IDLE.
	THR_STOP,

	/// The main thread wants the thread to exit.
	THR_EXIT,

} worker_state;


typedef enum {
	/// Partial updates (storing of worker thread progress
	/// to lzma_outbuf) are disabled.
	PARTIAL_DISABLED,

	/// Main thread requests partial updates to be enabled but
	/// no partial update has been done by the worker thread yet.
	///
	/// Changing from PARTIAL_DISABLED to PARTIAL_START requires
	/// use of the worker-thread mutex. Other transitions don't
	/// need a mutex.
	PARTIAL_START,

	/// Partial updates are enabled and the worker thread has done
	/// at least one partial update.
	PARTIAL_ENABLED,

} partial_update_mode;


struct worker_thread {
	/// Worker state is protected with our mutex.
	worker_state state;

	/// Input buffer that will contain the whole Block except Block Header.
	uint8_t *in;

	/// Amount of memory allocated for "in"
	size_t in_size;

	/// Number of bytes written to "in" by the main thread
	size_t in_filled;

	/// Number of bytes consumed from "in" by the worker thread.
	size_t in_pos;

	/// Amount of uncompressed data that has been decoded. This local
	/// copy is needed because updating outbuf->pos requires locking
	/// the main mutex (coder->mutex).
	size_t out_pos;

	/// Pointer to the main structure is needed to (1) lock the main
	/// mutex (coder->mutex) when updating outbuf->pos and (2) when
	/// putting this thread back to the stack of free threads.
	struct lzma_stream_coder *coder;

	/// The allocator is set by the main thread. Since a copy of the
	/// pointer is kept here, the application must not change the
	/// allocator before calling lzma_end().
	const lzma_allocator *allocator;

	/// Output queue buffer to which the uncompressed data is written.
	lzma_outbuf *outbuf;

	/// Amount of compressed data that has already been decompressed.
	/// This is updated from in_pos when our mutex is locked.
	/// This is size_t, not uint64_t, because per-thread progress
	/// is limited to sizes of allocated buffers.
	size_t progress_in;

	/// Like progress_in but for uncompressed data.
	size_t progress_out;

	/// Updating outbuf->pos requires locking the main mutex
	/// (coder->mutex). Since the main thread will only read output
	/// from the oldest outbuf in the queue, only the worker thread
	/// that is associated with the oldest outbuf needs to update its
	/// outbuf->pos. This avoids useless mutex contention that would
	/// happen if all worker threads were frequently locking the main
	/// mutex to update their outbuf->pos.
	///
	/// Only when partial_update is something else than PARTIAL_DISABLED,
	/// this worker thread will update outbuf->pos after each call to
	/// the Block decoder.
	partial_update_mode partial_update;

	/// Block decoder
	lzma_next_coder block_decoder;

	/// Thread-specific Block options are needed because the Block
	/// decoder modifies the struct given to it at initialization.
	lzma_block block_options;

	/// Filter chain memory usage
	uint64_t mem_filters;

	/// Next structure in the stack of free worker threads.
	struct worker_thread *next;

	mythread_mutex mutex;
	mythread_cond cond;

	/// The ID of this thread is used to join the thread
	/// when it's not needed anymore.
	mythread thread_id;
};


struct lzma_stream_coder {
	enum {
		SEQ_STREAM_HEADER,
		SEQ_BLOCK_HEADER,
		SEQ_BLOCK_INIT,
		SEQ_BLOCK_THR_INIT,
		SEQ_BLOCK_THR_RUN,
		SEQ_BLOCK_DIRECT_INIT,
		SEQ_BLOCK_DIRECT_RUN,
		SEQ_INDEX_WAIT_OUTPUT,
		SEQ_INDEX_DECODE,
		SEQ_STREAM_FOOTER,
		SEQ_STREAM_PADDING,
		SEQ_ERROR,
	} sequence;

	/// Block decoder
	lzma_next_coder block_decoder;

	/// Every Block Header will be decoded into this structure.
	/// This is also used to initialize a Block decoder when in
	/// direct mode. In threaded mode, a thread-specific copy will
	/// be made for decoder initialization because the Block decoder
	/// will modify the structure given to it.
	lzma_block block_options;

	/// Buffer to hold a filter chain for Block Header decoding and
	/// initialization. These are freed after successful Block decoder
	/// initialization or at stream_decoder_mt_end(). The thread-specific
	/// copy of block_options won't hold a pointer to filters[] after
	/// initialization.
	lzma_filter filters[LZMA_FILTERS_MAX + 1];

	/// Stream Flags from Stream Header
	lzma_stream_flags stream_flags;

	/// Index is hashed so that it can be compared to the sizes of Blocks
	/// with O(1) memory usage.
	lzma_index_hash *index_hash;


	/// Maximum wait time if cannot use all the input and cannot
	/// fill the output buffer. This is in milliseconds.
	uint32_t timeout;


	/// Error code from a worker thread.
	///
	/// \note       Use mutex.
	lzma_ret thread_error;

	/// Error code to return after pending output has been copied out. If
	/// set in read_output_and_wait(), this is a mirror of thread_error.
	/// If set in stream_decode_mt() then it's, for example, error that
	/// occurred when decoding Block Header.
	lzma_ret pending_error;

	/// Number of threads that will be created at maximum.
	uint32_t threads_max;

	/// Number of thread structures that have been initialized from
	/// "threads", and thus the number of worker threads actually
	/// created so far.
	uint32_t threads_initialized;

	/// Array of allocated thread-specific structures. When no threads
	/// are in use (direct mode) this is NULL. In threaded mode this
	/// points to an array of threads_max number of worker_thread structs.
	struct worker_thread *threads;

	/// Stack of free threads. When a thread finishes, it puts itself
	/// back into this stack. This starts as empty because threads
	/// are created only when actually needed.
	///
	/// \note       Use mutex.
	struct worker_thread *threads_free;

	/// The most recent worker thread to which the main thread writes
	/// the new input from the application.
	struct worker_thread *thr;

	/// Output buffer queue for decompressed data from the worker threads
	///
	/// \note       Use mutex with operations that need it.
	lzma_outq outq;

	mythread_mutex mutex;
	mythread_cond cond;


	/// Memory usage that will not be exceeded in multi-threaded mode.
	/// Single-threaded mode can exceed this even by a large amount.
	uint64_t memlimit_threading;

	/// Memory usage limit that should never be exceeded.
	/// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
	/// even in single-threaded mode without exceeding this limit.
	uint64_t memlimit_stop;

	/// Amount of memory in use by the direct mode decoder
	/// (coder->block_decoder). In threaded mode this is 0.
	uint64_t mem_direct_mode;

	/// Amount of memory needed by the running worker threads.
	/// This doesn't include the memory needed by the output buffer.
	///
	/// \note       Use mutex.
	uint64_t mem_in_use;

	/// Amount of memory used by the idle (cached) threads.
	///
	/// \note       Use mutex.
	uint64_t mem_cached;


	/// Amount of memory needed for the filter chain of the next Block.
	uint64_t mem_next_filters;

	/// Amount of memory needed for the thread-specific input buffer
	/// for the next Block.
	uint64_t mem_next_in;

	/// Amount of memory actually needed to decode the next Block
	/// in threaded mode. This is
	/// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
	uint64_t mem_next_block;


	/// Amount of compressed data in Stream Header + Blocks that have
	/// already been finished.
	///
	/// \note       Use mutex.
	uint64_t progress_in;

	/// Amount of uncompressed data in Blocks that have already
	/// been finished.
	///
	/// \note       Use mutex.
	uint64_t progress_out;


	/// If true, LZMA_NO_CHECK is returned if the Stream has
	/// no integrity check.
	bool tell_no_check;

	/// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
	/// an integrity check that isn't supported by this liblzma build.
	bool tell_unsupported_check;

	/// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
	bool tell_any_check;

	/// If true, we will tell the Block decoder to skip calculating
	/// and verifying the integrity check.
	bool ignore_check;

	/// If true, we will decode concatenated Streams that possibly have
	/// Stream Padding between or after them. LZMA_STREAM_END is returned
	/// once the application isn't giving us any new input (LZMA_FINISH),
	/// and we aren't in the middle of a Stream, and possible
	/// Stream Padding is a multiple of four bytes.
	bool concatenated;


	/// When decoding concatenated Streams, this is true as long as we
	/// are decoding the first Stream. This is needed to avoid misleading
	/// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
	/// bytes.
	bool first_stream;

	/// This is used to track if the previous call to stream_decode_mt()
	/// had output space (*out_pos < out_size) and managed to fill the
	/// output buffer (*out_pos == out_size). This may be set to true
	/// in read_output_and_wait(). This is read and then reset to false
	/// at the beginning of stream_decode_mt().
	///
	/// This is needed to support applications that call lzma_code() in
	/// such a way that more input is provided only when lzma_code()
	/// didn't fill the output buffer completely. Basically, this makes
	/// it easier to convert such applications from single-threaded
	/// decoder to multi-threaded decoder.
	bool out_was_filled;

	/// Write position in buffer[] and position in Stream Padding
	size_t pos;

	/// Buffer to hold Stream Header, Block Header, and Stream Footer.
	/// Block Header has biggest maximum size.
	uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
};


/// Enables updating of outbuf->pos. This is a callback function that is
/// used with lzma_outq_enable_partial_output().
static void
worker_enable_partial_update(void *thr_ptr)
{
	struct worker_thread *thr = thr_ptr;

	mythread_sync(thr->mutex) {
		thr->partial_update = PARTIAL_START;
		mythread_cond_signal(&thr->cond);
	}
}


/// Things do to at THR_STOP or when finishing a Block.
/// This is called with thr->mutex locked.
static void
worker_stop(struct worker_thread *thr)
{
	// Update memory usage counters.
	thr->coder->mem_in_use -= thr->in_size;
	thr->in_size = 0; // thr->in was freed above.

	thr->coder->mem_in_use -= thr->mem_filters;
	thr->coder->mem_cached += thr->mem_filters;

	// Put this thread to the stack of free threads.
	thr->next = thr->coder->threads_free;
	thr->coder->threads_free = thr;

	mythread_cond_signal(&thr->coder->cond);
	return;
}


static MYTHREAD_RET_TYPE
worker_decoder(void *thr_ptr)
{
	struct worker_thread *thr = thr_ptr;
	size_t in_filled;
	partial_update_mode partial_update;
	lzma_ret ret;

next_loop_lock:

	mythread_mutex_lock(&thr->mutex);
next_loop_unlocked:

	if (thr->state == THR_IDLE) {
		mythread_cond_wait(&thr->cond, &thr->mutex);
		goto next_loop_unlocked;
	}

	if (thr->state == THR_EXIT) {
		mythread_mutex_unlock(&thr->mutex);

		lzma_free(thr->in, thr->allocator);
		lzma_next_end(&thr->block_decoder, thr->allocator);

		mythread_mutex_destroy(&thr->mutex);
		mythread_cond_destroy(&thr->cond);

		return MYTHREAD_RET_VALUE;
	}

	if (thr->state == THR_STOP) {
		thr->state = THR_IDLE;
		mythread_mutex_unlock(&thr->mutex);

		mythread_sync(thr->coder->mutex) {
			worker_stop(thr);
		}

		goto next_loop_lock;
	}

	assert(thr->state == THR_RUN);

	// Update progress info for get_progress().
	thr->progress_in = thr->in_pos;
	thr->progress_out = thr->out_pos;

	// If we don't have any new input, wait for a signal from the main
	// thread except if partial output has just been enabled. In that
	// case we will do one normal run so that the partial output info
	// gets passed to the main thread. The call to block_decoder.code()
	// is useless but harmless as it can occur only once per Block.
	in_filled = thr->in_filled;
	partial_update = thr->partial_update;

	if (in_filled == thr->in_pos && partial_update != PARTIAL_START) {
		mythread_cond_wait(&thr->cond, &thr->mutex);
		goto next_loop_unlocked;
	}

	mythread_mutex_unlock(&thr->mutex);

	// Pass the input in small chunks to the Block decoder.
	// This way we react reasonably fast if we are told to stop/exit,
	// and (when partial update is enabled) we tell about our progress
	// to the main thread frequently enough.
	const size_t chunk_size = 16384;
	if ((in_filled - thr->in_pos) > chunk_size)
		in_filled = thr->in_pos + chunk_size;

	ret = thr->block_decoder.code(
			thr->block_decoder.coder, thr->allocator,
			thr->in, &thr->in_pos, in_filled,
			thr->outbuf->buf, &thr->out_pos,
			thr->outbuf->allocated, LZMA_RUN);

	if (ret == LZMA_OK) {
		if (partial_update != PARTIAL_DISABLED) {
			// The main thread uses thr->mutex to change from
			// PARTIAL_DISABLED to PARTIAL_START. The main thread
			// doesn't care about this variable after that so we
			// can safely change it here to PARTIAL_ENABLED
			// without a mutex.
			thr->partial_update = PARTIAL_ENABLED;

			// The main thread is reading decompressed data
			// from thr->outbuf. Tell the main thread about
			// our progress.
			//
			// NOTE: It's possible that we consumed input without
			// producing any new output so it's possible that
			// only in_pos has changed. In case of PARTIAL_START
			// it is possible that neither in_pos nor out_pos has
			// changed.
			mythread_sync(thr->coder->mutex) {
				thr->outbuf->pos = thr->out_pos;
				thr->outbuf->decoder_in_pos = thr->in_pos;
				mythread_cond_signal(&thr->coder->cond);
			}
		}

		goto next_loop_lock;
	}

	// Either we finished successfully (LZMA_STREAM_END) or an error
	// occurred. Both cases are handled almost identically. The error
	// case requires updating thr->coder->thread_error.
	//
	// The sizes are in the Block Header and the Block decoder
	// checks that they match, thus we know these:
	assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size);
	assert(ret != LZMA_STREAM_END
		|| thr->out_pos == thr->block_options.uncompressed_size);

	// Free the input buffer. Don't update in_size as we need
	// it later to update thr->coder->mem_in_use.
	lzma_free(thr->in, thr->allocator);
	thr->in = NULL;

	mythread_sync(thr->mutex) {
		if (thr->state != THR_EXIT)
			thr->state = THR_IDLE;
	}

	mythread_sync(thr->coder->mutex) {
		// Move our progress info to the main thread.
		thr->coder->progress_in += thr->in_pos;
		thr->coder->progress_out += thr->out_pos;
		thr->progress_in = 0;
		thr->progress_out = 0;

		// Mark the outbuf as finished.
		thr->outbuf->pos = thr->out_pos;
		thr->outbuf->decoder_in_pos = thr->in_pos;
		thr->outbuf->finished = true;
		thr->outbuf->finish_ret = ret;
		thr->outbuf = NULL;

		// If an error occurred, tell it to the main thread.
		if (ret != LZMA_STREAM_END
				&& thr->coder->thread_error == LZMA_OK)
			thr->coder->thread_error = ret;

		worker_stop(thr);
	}

	goto next_loop_lock;
}


/// Tells the worker threads to exit and waits for them to terminate.
static void
threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
{
	for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
		mythread_sync(coder->threads[i].mutex) {
			coder->threads[i].state = THR_EXIT;
			mythread_cond_signal(&coder->threads[i].cond);
		}
	}

	for (uint32_t i = 0; i < coder->threads_initialized; ++i)
		mythread_join(coder->threads[i].thread_id);

	lzma_free(coder->threads, allocator);
	coder->threads_initialized = 0;
	coder->threads = NULL;
	coder->threads_free = NULL;

	// The threads don't update these when they exit. Do it here.
	coder->mem_in_use = 0;
	coder->mem_cached = 0;

	return;
}


static void
threads_stop(struct lzma_stream_coder *coder)
{
	for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
		mythread_sync(coder->threads[i].mutex) {
			// The state must be changed conditionally because
			// THR_IDLE -> THR_STOP is not a valid state change.
			if (coder->threads[i].state != THR_IDLE) {
				coder->threads[i].state = THR_STOP;
				mythread_cond_signal(&coder->threads[i].cond);
			}
		}
	}

	return;
}


/// Initialize a new worker_thread structure and create a new thread.
static lzma_ret
initialize_new_thread(struct lzma_stream_coder *coder,
		const lzma_allocator *allocator)
{
	// Allocate the coder->threads array if needed. It's done here instead
	// of when initializing the decoder because we don't need this if we
	// use the direct mode (we may even free coder->threads in the middle
	// of the file if we switch from threaded to direct mode).
	if (coder->threads == NULL) {
		coder->threads = lzma_alloc(
			coder->threads_max * sizeof(struct worker_thread),
			allocator);

		if (coder->threads == NULL)
			return LZMA_MEM_ERROR;
	}

	// Pick a free structure.
	assert(coder->threads_initialized < coder->threads_max);
	struct worker_thread *thr
			= &coder->threads[coder->threads_initialized];

	if (mythread_mutex_init(&thr->mutex))
		goto error_mutex;

	if (mythread_cond_init(&thr->cond))
		goto error_cond;

	thr->state = THR_IDLE;
	thr->in = NULL;
	thr->in_size = 0;
	thr->allocator = allocator;
	thr->coder = coder;
	thr->outbuf = NULL;
	thr->block_decoder = LZMA_NEXT_CODER_INIT;
	thr->mem_filters = 0;

	if (mythread_create(&thr->thread_id, worker_decoder, thr))
		goto error_thread;

	++coder->threads_initialized;
	coder->thr = thr;

	return LZMA_OK;

error_thread:
	mythread_cond_destroy(&thr->cond);

error_cond:
	mythread_mutex_destroy(&thr->mutex);

error_mutex:
	return LZMA_MEM_ERROR;
}


static lzma_ret
get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
{
	// If there is a free structure on the stack, use it.
	mythread_sync(coder->mutex) {
		if (coder->threads_free != NULL) {
			coder->thr = coder->threads_free;
			coder->threads_free = coder->threads_free->next;

			// The thread is no longer in the cache so substract
			// it from the cached memory usage. Don't add it
			// to mem_in_use though; the caller will handle it
			// since it knows how much memory it will actually
			// use (the filter chain might change).
			coder->mem_cached -= coder->thr->mem_filters;
		}
	}

	if (coder->thr == NULL) {
		assert(coder->threads_initialized < coder->threads_max);

		// Initialize a new thread.
		return_if_error(initialize_new_thread(coder, allocator));
	}

	coder->thr->in_filled = 0;
	coder->thr->in_pos = 0;
	coder->thr->out_pos = 0;

	coder->thr->progress_in = 0;
	coder->thr->progress_out = 0;

	coder->thr->partial_update = PARTIAL_DISABLED;

	return LZMA_OK;
}


static lzma_ret
read_output_and_wait(struct lzma_stream_coder *coder,
		const lzma_allocator *allocator,
		uint8_t *restrict out, size_t *restrict out_pos,
		size_t out_size,
		bool *input_is_possible,
		bool waiting_allowed,
		mythread_condtime *wait_abs, bool *has_blocked)
{
	lzma_ret ret = LZMA_OK;

	mythread_sync(coder->mutex) {
		do {
			// Get as much output from the queue as is possible
			// without blocking.
			const size_t out_start = *out_pos;
			do {
				ret = lzma_outq_read(&coder->outq, allocator,
						out, out_pos, out_size,
						NULL, NULL);

				// If a Block was finished, tell the worker
				// thread of the next Block (if it is still
				// running) to start telling the main thread
				// when new output is available.
				if (ret == LZMA_STREAM_END)
					lzma_outq_enable_partial_output(
						&coder->outq,
						&worker_enable_partial_update);

				// Loop until a Block wasn't finished.
				// It's important to loop around even if
				// *out_pos == out_size because there could
				// be an empty Block that will return
				// LZMA_STREAM_END without needing any
				// output space.
			} while (ret == LZMA_STREAM_END);

			// Check if lzma_outq_read reported an error from
			// the Block decoder.
			if (ret != LZMA_OK)
				break;

			// If the output buffer is now full but it wasn't full
			// when this function was called, set out_was_filled.
			// This way the next call to stream_decode_mt() knows
			// that some output was produced and no output space
			// remained in the previous call to stream_decode_mt().
			if (*out_pos == out_size && *out_pos != out_start)
				coder->out_was_filled = true;

			// Check if any thread has indicated an error.
			if (coder->thread_error != LZMA_OK) {
				if (coder->pending_error == LZMA_OK)
					coder->pending_error
							= coder->thread_error;

				// FIXME? Add a flag to do this conditionally?
				// That way errors would get reported to the
				// application without a delay.
// 				if (coder->fast_errors) {
// 					ret = coder->thread_error;
// 					break;
// 				}
			}

			// Check if decoding of the next Block can be started.
			// The memusage of the active threads must be low
			// enough, there must be a free buffer slot in the
			// output queue, and there must be a free thread
			// (that can be either created or an existing one
			// reused).
			//
			// NOTE: This is checked after reading the output
			// above because reading the output can free a slot in
			// the output queue and also reduce active memusage.
			//
			// NOTE: If output queue is empty, then input will
			// always be possible.
			if (input_is_possible != NULL
					&& coder->memlimit_threading
						- coder->mem_in_use
						- coder->outq.mem_in_use
						>= coder->mem_next_block
					&& lzma_outq_has_buf(&coder->outq)
					&& (coder->threads_initialized
							< coder->threads_max
						|| coder->threads_free
							!= NULL)) {
				*input_is_possible = true;
				break;
			}

			// If the caller doesn't want us to block, return now.
			if (!waiting_allowed)
				break;

			// This check is needed only when input_is_possible
			// is NULL. We must return if we aren't waiting for
			// input to become possible and there is no more
			// output coming from the queue.
			if (lzma_outq_is_empty(&coder->outq)) {
				assert(input_is_possible == NULL);
				break;
			}

			// If there is more data available from the queue,
			// our out buffer must be full and we need to return
			// so that the application can provide more output
			// space.
			//
			// NOTE: In general lzma_outq_is_readable() can return
			// true also when there are no more bytes available.
			// This can happen when a Block has finished without
			// providing any new output. We know that this is not
			// the case because in the beginning of this loop we
			// tried to read as much as possible even when we had
			// no output space left and the mutex has been locked
			// all the time (so worker threads cannot have changed
			// anything). Thus there must be actual pending output
			// in the queue.
			if (lzma_outq_is_readable(&coder->outq)) {
				assert(*out_pos == out_size);
				break;
			}

			// If the application stops providing more input
			// in the middle of a Block, there will eventually
			// be one worker thread left that is stuck waiting for
			// more input (that might never arrive) and a matching
			// outbuf which the worker thread cannot finish due
			// to lack of input. We must detect this situation,
			// otherwise we would end up waiting indefinitely
			// (if no timeout is in use) or keep returning
			// LZMA_TIMED_OUT while making no progress. Thus, the
			// application would never get LZMA_BUF_ERROR from
			// lzma_code() which would tell the application that
			// no more progress is possible. No LZMA_BUF_ERROR
			// means that, for example, truncated .xz files could
			// cause an infinite loop.
			//
			// A worker thread doing partial updates will
			// store not only the output position in outbuf->pos
			// but also the matching input position in
			// outbuf->decoder_in_pos. Here we check if that
			// input position matches the amount of input that
			// the worker thread has been given (in_filled).
			// If so, we must return and not wait as no more
			// output will be coming without first getting more
			// input to the worker thread. If the application
			// keeps calling lzma_code() without providing more
			// input, it will eventually get LZMA_BUF_ERROR.
			//
			// NOTE: We can read partial_update and in_filled
			// without thr->mutex as only the main thread
			// modifies these variables. decoder_in_pos requires
			// coder->mutex which we are already holding.
			if (coder->thr != NULL && coder->thr->partial_update
					!= PARTIAL_DISABLED) {
				// There is exactly one outbuf in the queue.
				assert(coder->thr->outbuf == coder->outq.head);
				assert(coder->thr->outbuf == coder->outq.tail);

				if (coder->thr->outbuf->decoder_in_pos
						== coder->thr->in_filled)
					break;
			}

			// Wait for input or output to become possible.
			if (coder->timeout != 0) {
				// See the comment in stream_encoder_mt.c
				// about why mythread_condtime_set() is used
				// like this.
				//
				// FIXME?
				// In contrast to the encoder, this calls
				// _condtime_set while the mutex is locked.
				if (!*has_blocked) {
					*has_blocked = true;
					mythread_condtime_set(wait_abs,
							&coder->cond,
							coder->timeout);
				}

				if (mythread_cond_timedwait(&coder->cond,
						&coder->mutex,
						wait_abs) != 0) {
					ret = LZMA_TIMED_OUT;
					break;
				}
			} else {
				mythread_cond_wait(&coder->cond,
						&coder->mutex);
			}
		} while (ret == LZMA_OK);
	}

	// If we are returning an error, then the application cannot get
	// more output from us and thus keeping the threads running is
	// useless and waste of CPU time.
	if (ret != LZMA_OK && ret != LZMA_TIMED_OUT)
		threads_stop(coder);

	return ret;
}


static lzma_ret
decode_block_header(struct lzma_stream_coder *coder,
		const lzma_allocator *allocator, const uint8_t *restrict in,
		size_t *restrict in_pos, size_t in_size)
{
	if (*in_pos >= in_size)
		return LZMA_OK;

	if (coder->pos == 0) {
		// Detect if it's Index.
		if (in[*in_pos] == 0x00)
			return LZMA_INDEX_DETECTED;

		// Calculate the size of the Block Header. Note that
		// Block Header decoder wants to see this byte too
		// so don't advance *in_pos.
		coder->block_options.header_size
				= lzma_block_header_size_decode(
					in[*in_pos]);
	}

	// Copy the Block Header to the internal buffer.
	lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
			coder->block_options.header_size);

	// Return if we didn't get the whole Block Header yet.
	if (coder->pos < coder->block_options.header_size)
		return LZMA_OK;

	coder->pos = 0;

	// Version 1 is needed to support the .ignore_check option.
	coder->block_options.version = 1;

	// Block Header decoder will initialize all members of this array
	// so we don't need to do it here.
	coder->block_options.filters = coder->filters;

	// Decode the Block Header.
	return_if_error(lzma_block_header_decode(&coder->block_options,
			allocator, coder->buffer));

	// If LZMA_IGNORE_CHECK was used, this flag needs to be set.
	// It has to be set after lzma_block_header_decode() because
	// it always resets this to false.
	coder->block_options.ignore_check = coder->ignore_check;

	// coder->block_options is ready now.
	return LZMA_STREAM_END;
}


static void
cleanup_filters(lzma_filter *filters, const lzma_allocator *allocator)
{
	for (uint32_t i = 0; i < LZMA_FILTERS_MAX; ++i) {
		lzma_free(filters[i].options, allocator);
		filters[i].options = NULL;
	}

	return;
}


/// Get the size of the Compressed Data + Block Padding + Check.
static size_t
comp_blk_size(const struct lzma_stream_coder *coder)
{
	return vli_ceil4(coder->block_options.compressed_size)
			+ lzma_check_size(coder->stream_flags.check);
}


/// Returns true if the size (compressed or uncompressed) is such that
/// threaded decompression cannot be used. Sizes that are too big compared
/// to SIZE_MAX must be rejected to avoid integer overflows and truncations
/// when lzma_vli is assigned to a size_t.
static bool
is_direct_mode_needed(lzma_vli size)
{
	return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3;
}


static lzma_ret
stream_decoder_reset(struct lzma_stream_coder *coder,
		const lzma_allocator *allocator)
{
	// Initialize the Index hash used to verify the Index.
	coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
	if (coder->index_hash == NULL)
		return LZMA_MEM_ERROR;

	// Reset the rest of the variables.
	coder->sequence = SEQ_STREAM_HEADER;
	coder->pos = 0;

	return LZMA_OK;
}


static lzma_ret
stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator,
		 const uint8_t *restrict in, size_t *restrict in_pos,
		 size_t in_size,
		 uint8_t *restrict out, size_t *restrict out_pos,
		 size_t out_size, lzma_action action)
{
	struct lzma_stream_coder *coder = coder_ptr;

	mythread_condtime wait_abs;
	bool has_blocked = false;

	// Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should
	// tell read_output_and_wait() to wait until it can fill the output
	// buffer (or a timeout occurs). Two conditions must be met:
	//
	// (1) If the caller provided no new input. The reason for this
	//     can be, for example, the end of the file or that there is
	//     a pause in the input stream and more input is available
	//     a little later. In this situation we should wait for output
	//     because otherwise we would end up in a busy-waiting loop where
	//     we make no progress and the application just calls us again
	//     without providing any new input. This would then result in
	//     LZMA_BUF_ERROR even though more output would be available
	//     once the worker threads decode more data.
	//
	// (2) Even if (1) is true, we will not wait if the previous call to
	//     this function managed to produce some output and the output
	//     buffer became full. This is for compatibility with applications
	//     that call lzma_code() in such a way that new input is provided
	//     only when the output buffer didn't become full. Without this
	//     trick such applications would have bad performance (bad
	//     parallelization due to decoder not getting input fast enough).
	//
	//     NOTE: Such loops might require that timeout is disabled (0)
	//     if they assume that output-not-full implies that all input has
	//     been consumed. If and only if timeout is enabled, we may return
	//     when output isn't full *and* not all input has been consumed.
	//
	// However, if LZMA_FINISH is used, the above is ignored and we always
	// wait (timeout can still cause us to return) because we know that
	// we won't get any more input. This matters if the input file is
	// truncated and we are doing single-shot decoding, that is,
	// timeout = 0 and LZMA_FINISH is used on the first call to
	// lzma_code() and the output buffer is known to be big enough
	// to hold all uncompressed data:
	//
	//   - If LZMA_FINISH wasn't handled specially, we could return
	//     LZMA_OK before providing all output that is possible with the
	//     truncated input. The rest would be available if lzma_code() was
	//     called again but then it's not single-shot decoding anymore.
	//
	//   - By handling LZMA_FINISH specially here, the first call will
	//     produce all the output, matching the behavior of the
	//     single-threaded decoder.
	//
	// So it's a very specific corner case but also easy to avoid. Note
	// that this special handling of LZMA_FINISH has no effect for
	// single-shot decoding when the input file is valid (not truncated);
	// premature LZMA_OK wouldn't be possible as long as timeout = 0.
	const bool waiting_allowed = action == LZMA_FINISH
			|| (*in_pos == in_size && !coder->out_was_filled);
	coder->out_was_filled = false;

	while (true)
	switch (coder->sequence) {
	case SEQ_STREAM_HEADER: {
		// Copy the Stream Header to the internal buffer.
		const size_t in_old = *in_pos;
		lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
				LZMA_STREAM_HEADER_SIZE);
		coder->progress_in += *in_pos - in_old;

		// Return if we didn't get the whole Stream Header yet.
		if (coder->pos < LZMA_STREAM_HEADER_SIZE)
			return LZMA_OK;

		coder->pos = 0;

		// Decode the Stream Header.
		const lzma_ret ret = lzma_stream_header_decode(
				&coder->stream_flags, coder->buffer);
		if (ret != LZMA_OK)
			return ret == LZMA_FORMAT_ERROR && !coder->first_stream
					? LZMA_DATA_ERROR : ret;

		// If we are decoding concatenated Streams, and the later
		// Streams have invalid Header Magic Bytes, we give
		// LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
		coder->first_stream = false;

		// Copy the type of the Check so that Block Header and Block
		// decoders see it.
		coder->block_options.check = coder->stream_flags.check;

		// Even if we return LZMA_*_CHECK below, we want
		// to continue from Block Header decoding.
		coder->sequence = SEQ_BLOCK_HEADER;

		// Detect if there's no integrity check or if it is
		// unsupported if those were requested by the application.
		if (coder->tell_no_check && coder->stream_flags.check
				== LZMA_CHECK_NONE)
			return LZMA_NO_CHECK;

		if (coder->tell_unsupported_check
				&& !lzma_check_is_supported(
					coder->stream_flags.check))
			return LZMA_UNSUPPORTED_CHECK;

		if (coder->tell_any_check)
			return LZMA_GET_CHECK;
	}

	// Fall through

	case SEQ_BLOCK_HEADER: {
		const size_t in_old = *in_pos;
		const lzma_ret ret = decode_block_header(coder, allocator,
				in, in_pos, in_size);
		coder->progress_in += *in_pos - in_old;

		if (ret == LZMA_OK) {
			// We didn't decode the whole Block Header yet.
			//
			// Read output from the queue before returning. This
			// is important because it is possible that the
			// application doesn't have any new input available
			// immediately. If we didn't try to copy output from
			// the output queue here, lzma_code() could end up
			// returning LZMA_BUF_ERROR even though queued output
			// is available.
			//
			// If the lzma_code() call provided at least one input
			// byte, only copy as much data from the output queue
			// as is available immediately. This way the
			// application will be able to provide more input
			// without a delay.
			//
			// On the other hand, if lzma_code() was called with
			// an empty input buffer(*), treat it specially: try
			// to fill the output buffer even if it requires
			// waiting for the worker threads to provide output
			// (timeout, if specified, can still cause us to
			// return).
			//
			//   - This way the application will be able to get all
			//     data that can be decoded from the input provided
			//     so far.
			//
			//   - We avoid both premature LZMA_BUF_ERROR and
			//     busy-waiting where the application repeatedly
			//     calls lzma_code() which immediately returns
			//     LZMA_OK without providing new data.
			//
			//   - If the queue becomes empty, we won't wait
			//     anything and will return LZMA_OK immediately
			//     (coder->timeout is completely ignored).
			//
			// (*) See the comment at the beginning of this
			//     function how waiting_allowed is determined
			//     and why there is an exception to the rule
			//     of "called with an empty input buffer".
			assert(*in_pos == in_size);

			return_if_error(read_output_and_wait(coder, allocator,
				out, out_pos, out_size,
				NULL, waiting_allowed,
				&wait_abs, &has_blocked));

			if (coder->pending_error != LZMA_OK) {
				coder->sequence = SEQ_ERROR;
				break;
			}

			return LZMA_OK;
		}

		if (ret == LZMA_INDEX_DETECTED) {
			coder->sequence = SEQ_INDEX_WAIT_OUTPUT;
			break;
		}

		// See if an error occurred.
		if (ret != LZMA_STREAM_END) {
			if (coder->pending_error == LZMA_OK)
				coder->pending_error = ret;

			coder->sequence = SEQ_ERROR;
			break;
		}

		// Calculate the memory usage of the filters / Block decoder.
		coder->mem_next_filters = lzma_raw_decoder_memusage(
				coder->filters);

		if (coder->mem_next_filters == UINT64_MAX) {
			// One or more unknown Filter IDs.
			if (coder->pending_error == LZMA_OK)
				coder->pending_error = LZMA_OPTIONS_ERROR;

			coder->sequence = SEQ_ERROR;
			break;
		}

		coder->sequence = SEQ_BLOCK_INIT;
	}

	// Fall through

	case SEQ_BLOCK_INIT: {
		// Check if decoding is possible at all with the current
		// memlimit_stop which we must never exceed.
		//
		// This needs to be the first thing in SEQ_BLOCK_INIT
		// to make it possible to restart decoding after increasing
		// memlimit_stop with lzma_memlimit_set().
		if (coder->mem_next_filters > coder->memlimit_stop) {
			// Flush pending output before returning
			// LZMA_MEMLIMIT_ERROR. If the application doesn't
			// want to increase the limit, at least it will get
			// all the output possible so far.
			return_if_error(read_output_and_wait(coder, allocator,
					out, out_pos, out_size,
					NULL, true, &wait_abs, &has_blocked));

			if (!lzma_outq_is_empty(&coder->outq))
				return LZMA_OK;

			return LZMA_MEMLIMIT_ERROR;
		}

		// Check if the size information is available in Block Header.
		// If it is, check if the sizes are small enough that we don't
		// need to worry *too* much about integer overflows later in
		// the code. If these conditions are not met, we must use the
		// single-threaded direct mode.
		if (is_direct_mode_needed(coder->block_options.compressed_size)
				|| is_direct_mode_needed(
				coder->block_options.uncompressed_size)) {
			coder->sequence = SEQ_BLOCK_DIRECT_INIT;
			break;
		}

		// Calculate the amount of memory needed for the input and
		// output buffers in threaded mode.
		//
		// These cannot overflow because we already checked that
		// the sizes are small enough using is_direct_mode_needed().
		coder->mem_next_in = comp_blk_size(coder);
		const uint64_t mem_buffers = coder->mem_next_in
				+ lzma_outq_outbuf_memusage(
				coder->block_options.uncompressed_size);

		// Add the amount needed by the filters.
		// Avoid integer overflows.
		if (UINT64_MAX - mem_buffers < coder->mem_next_filters) {
			// Use direct mode if the memusage would overflow.
			// This is a theoretical case that shouldn't happen
			// in practice unless the input file is weird (broken
			// or malicious).
			coder->sequence = SEQ_BLOCK_DIRECT_INIT;
			break;
		}

		// Amount of memory needed to decode this Block in
		// threaded mode:
		coder->mem_next_block = coder->mem_next_filters + mem_buffers;

		// If this alone would exceed memlimit_threading, then we must
		// use the single-threaded direct mode.
		if (coder->mem_next_block > coder->memlimit_threading) {
			coder->sequence = SEQ_BLOCK_DIRECT_INIT;
			break;
		}

		// Use the threaded mode. Free the direct mode decoder in
		// case it has been initialized.
		lzma_next_end(&coder->block_decoder, allocator);
		coder->mem_direct_mode = 0;

		// Since we already know what the sizes are supposed to be,
		// we can already add them to the Index hash. The Block
		// decoder will verify the values while decoding.
		const lzma_ret ret = lzma_index_hash_append(coder->index_hash,
				lzma_block_unpadded_size(
					&coder->block_options),
				coder->block_options.uncompressed_size);
		if (ret != LZMA_OK) {
			if (coder->pending_error == LZMA_OK)
				coder->pending_error = ret;

			coder->sequence = SEQ_ERROR;
			break;
		}

		coder->sequence = SEQ_BLOCK_THR_INIT;
	}

	// Fall through

	case SEQ_BLOCK_THR_INIT: {
		// We need to wait for a multiple conditions to become true
		// until we can initialize the Block decoder and let a worker
		// thread decode it:
		//
		//   - Wait for the memory usage of the active threads to drop
		//     so that starting the decoding of this Block won't make
		//     us go over memlimit_threading.
		//
		//   - Wait for at least one free output queue slot.
		//
		//   - Wait for a free worker thread.
		//
		// While we wait, we must copy decompressed data to the out
		// buffer and catch possible decoder errors.
		//
		// read_output_and_wait() does all the above.
		bool block_can_start = false;

		return_if_error(read_output_and_wait(coder, allocator,
				out, out_pos, out_size,
				&block_can_start, true,
				&wait_abs, &has_blocked));

		if (coder->pending_error != LZMA_OK) {
			coder->sequence = SEQ_ERROR;
			break;
		}

		if (!block_can_start) {
			// It's not a timeout because return_if_error handles
			// it already. Output queue cannot be empty either
			// because in that case block_can_start would have
			// been true. Thus the output buffer must be full and
			// the queue isn't empty.
			assert(*out_pos == out_size);
			assert(!lzma_outq_is_empty(&coder->outq));
			return LZMA_OK;
		}

		// We know that we can start decoding this Block without
		// exceeding memlimit_threading. However, to stay below
		// memlimit_threading may require freeing some of the
		// cached memory.
		//
		// Get a local copy of variables that require locking the
		// mutex. It is fine if the worker threads modify the real
		// values after we read these as those changes can only be
		// towards more favorable conditions (less memory in use,
		// more in cache).
		uint64_t mem_in_use;
		uint64_t mem_cached;
		struct worker_thread *thr;

		mythread_sync(coder->mutex) {
			mem_in_use = coder->mem_in_use;
			mem_cached = coder->mem_cached;
			thr = coder->threads_free;
		}

		// The maximum amount of memory that can be held by other
		// threads and cached buffers while allowing us to start
		// decoding the next Block.
		const uint64_t mem_max = coder->memlimit_threading
				- coder->mem_next_block;

		// If the existing allocations are so large that starting
		// to decode this Block might exceed memlimit_threads,
		// try to free memory from the output queue cache first.
		//
		// NOTE: This math assumes the worst case. It's possible
		// that the limit wouldn't be exceeded if the existing cached
		// allocations are reused.
		if (mem_in_use + mem_cached + coder->outq.mem_allocated
				> mem_max) {
			// Clear the outq cache except leave one buffer in
			// the cache if its size is correct. That way we
			// don't free and almost immediately reallocate
			// an identical buffer.
			lzma_outq_clear_cache2(&coder->outq, allocator,
				coder->block_options.uncompressed_size);
		}

		// If there is at least one worker_thread in the cache and
		// the existing allocations are so large that starting to
		// decode this Block might exceed memlimit_threads, free
		// memory by freeing cached Block decoders.
		//
		// NOTE: The comparison is different here than above.
		// Here we don't care about cached buffers in outq anymore
		// and only look at memory actually in use. This is because
		// if there is something in outq cache, it's a single buffer
		// that can be used as is. We ensured this in the above
		// if-block.
		uint64_t mem_freed = 0;
		if (thr != NULL && mem_in_use + mem_cached
				+ coder->outq.mem_in_use > mem_max) {
			// Don't free the first Block decoder if its memory
			// usage isn't greater than what this Block will need.
			// Typically the same filter chain is used for all
			// Blocks so this way the allocations can be reused
			// when get_thread() picks the first worker_thread
			// from the cache.
			if (thr->mem_filters <= coder->mem_next_filters)
				thr = thr->next;

			while (thr != NULL) {
				lzma_next_end(&thr->block_decoder, allocator);
				mem_freed += thr->mem_filters;
				thr->mem_filters = 0;
				thr = thr->next;
			}
		}

		// Update the memory usage counters. Note that coder->mem_*
		// may have changed since we read them so we must substract
		// or add the changes.
		mythread_sync(coder->mutex) {
			coder->mem_cached -= mem_freed;

			// Memory needed for the filters and the input buffer.
			// The output queue takes care of its own counter so
			// we don't touch it here.
			//
			// NOTE: After this, coder->mem_in_use +
			// coder->mem_cached might count the same thing twice.
			// If so, this will get corrected in get_thread() when
			// a worker_thread is picked from coder->free_threads
			// and its memory usage is substracted from mem_cached.
			coder->mem_in_use += coder->mem_next_in
					+ coder->mem_next_filters;
		}

		// Allocate memory for the output buffer in the output queue.
		return_if_error(lzma_outq_prealloc_buf(
				&coder->outq, allocator,
				coder->block_options.uncompressed_size));

		// Set up coder->thr.
		return_if_error(get_thread(coder, allocator));

		// The new Block decoder memory usage is already counted in
		// coder->mem_in_use. Store it in the thread too.
		coder->thr->mem_filters = coder->mem_next_filters;

		// Initialize the Block decoder.
		coder->thr->block_options = coder->block_options;
		const lzma_ret ret = lzma_block_decoder_init(
					&coder->thr->block_decoder, allocator,
					&coder->thr->block_options);

		// Free the allocated filter options since they are needed
		// only to initialize the Block decoder.
		cleanup_filters(coder->filters, allocator);
		coder->thr->block_options.filters = NULL;

		// Check if memory usage calculation and Block encoder
		// initialization succeeded.
		if (ret != LZMA_OK) {
			if (coder->pending_error == LZMA_OK)
				coder->pending_error = ret;

			coder->sequence = SEQ_ERROR;
			break;
		}

		// Allocate the input buffer.
		coder->thr->in_size = coder->mem_next_in;
		coder->thr->in = lzma_alloc(coder->thr->in_size, allocator);
		if (coder->thr->in == NULL)
			return LZMA_MEM_ERROR;

		// Get the preallocated output buffer.
		coder->thr->outbuf = lzma_outq_get_buf(
				&coder->outq, coder->thr);

		// Start the decoder.
		mythread_sync(coder->thr->mutex) {
			assert(coder->thr->state == THR_IDLE);
			coder->thr->state = THR_RUN;
			mythread_cond_signal(&coder->thr->cond);
		}

		// Enable output from the thread that holds the oldest output
		// buffer in the output queue (if such a thread exists).
		mythread_sync(coder->mutex) {
			lzma_outq_enable_partial_output(&coder->outq,
					&worker_enable_partial_update);
		}

		coder->sequence = SEQ_BLOCK_THR_RUN;
	}

	// Fall through

	case SEQ_BLOCK_THR_RUN: {
		// Copy input to the worker thread.
		size_t cur_in_filled = coder->thr->in_filled;
		lzma_bufcpy(in, in_pos, in_size, coder->thr->in,
				&cur_in_filled, coder->thr->in_size);

		// Tell the thread how much we copied.
		mythread_sync(coder->thr->mutex) {
			coder->thr->in_filled = cur_in_filled;

			// NOTE: Most of the time we are copying input faster
			// than the thread can decode so most of the time
			// calling mythread_cond_signal() is useless but
			// we cannot make it conditional because thr->in_pos
			// is updated without a mutex. And the overhead should
			// be very much negligible anyway.
			mythread_cond_signal(&coder->thr->cond);
		}

		// Read output from the output queue. Just like in
		// SEQ_BLOCK_HEADER, we wait to fill the output buffer
		// only if waiting_allowed was set to true in the beginning
		// of this function (see the comment there).
		return_if_error(read_output_and_wait(coder, allocator,
				out, out_pos, out_size,
				NULL, waiting_allowed,
				&wait_abs, &has_blocked));

		if (coder->pending_error != LZMA_OK) {
			coder->sequence = SEQ_ERROR;
			break;
		}

		// Return if the input didn't contain the whole Block.
		if (coder->thr->in_filled < coder->thr->in_size) {
			assert(*in_pos == in_size);
			return LZMA_OK;
		}

		// The whole Block has been copied to the thread-specific
		// buffer. Continue from the next Block Header or Index.
		coder->thr = NULL;
		coder->sequence = SEQ_BLOCK_HEADER;
		break;
	}

	case SEQ_BLOCK_DIRECT_INIT: {
		// Wait for the threads to finish and that all decoded data
		// has been copied to the output. That is, wait until the
		// output queue becomes empty.
		//
		// NOTE: No need to check for coder->pending_error as
		// we aren't consuming any input until the queue is empty
		// and if there is a pending error, read_output_and_wait()
		// will eventually return it before the queue is empty.
		return_if_error(read_output_and_wait(coder, allocator,
				out, out_pos, out_size,
				NULL, true, &wait_abs, &has_blocked));
		if (!lzma_outq_is_empty(&coder->outq))
			return LZMA_OK;

		// Free the cached output buffers.
		lzma_outq_clear_cache(&coder->outq, allocator);

		// Get rid of the worker threads, including the coder->threads
		// array.
		threads_end(coder, allocator);

		// Initialize the Block decoder.
		const lzma_ret ret = lzma_block_decoder_init(
				&coder->block_decoder, allocator,
				&coder->block_options);

		// Free the allocated filter options since they are needed
		// only to initialize the Block decoder.
		cleanup_filters(coder->filters, allocator);
		coder->block_options.filters = NULL;

		// Check if Block decoder initialization succeeded.
		if (ret != LZMA_OK)
			return ret;

		// Make the memory usage visible to _memconfig().
		coder->mem_direct_mode = coder->mem_next_filters;

		coder->sequence = SEQ_BLOCK_DIRECT_RUN;
	}

	// Fall through

	case SEQ_BLOCK_DIRECT_RUN: {
		const size_t in_old = *in_pos;
		const size_t out_old = *out_pos;
		const lzma_ret ret = coder->block_decoder.code(
				coder->block_decoder.coder, allocator,
				in, in_pos, in_size, out, out_pos, out_size,
				action);
		coder->progress_in += *in_pos - in_old;
		coder->progress_out += *out_pos - out_old;

		if (ret != LZMA_STREAM_END)
			return ret;

		// Block decoded successfully. Add the new size pair to
		// the Index hash.
		return_if_error(lzma_index_hash_append(coder->index_hash,
				lzma_block_unpadded_size(
					&coder->block_options),
				coder->block_options.uncompressed_size));

		coder->sequence = SEQ_BLOCK_HEADER;
		break;
	}

	case SEQ_INDEX_WAIT_OUTPUT:
		// Flush the output from all worker threads so that we can
		// decode the Index without thinking about threading.
		return_if_error(read_output_and_wait(coder, allocator,
				out, out_pos, out_size,
				NULL, true, &wait_abs, &has_blocked));

		if (!lzma_outq_is_empty(&coder->outq))
			return LZMA_OK;

		coder->sequence = SEQ_INDEX_DECODE;

	// Fall through

	case SEQ_INDEX_DECODE: {
		// If we don't have any input, don't call
		// lzma_index_hash_decode() since it would return
		// LZMA_BUF_ERROR, which we must not do here.
		if (*in_pos >= in_size)
			return LZMA_OK;

		// Decode the Index and compare it to the hash calculated
		// from the sizes of the Blocks (if any).
		const size_t in_old = *in_pos;
		const lzma_ret ret = lzma_index_hash_decode(coder->index_hash,
				in, in_pos, in_size);
		coder->progress_in += *in_pos - in_old;
		if (ret != LZMA_STREAM_END)
			return ret;

		coder->sequence = SEQ_STREAM_FOOTER;
	}

	// Fall through

	case SEQ_STREAM_FOOTER: {
		// Copy the Stream Footer to the internal buffer.
		const size_t in_old = *in_pos;
		lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
				LZMA_STREAM_HEADER_SIZE);
		coder->progress_in += *in_pos - in_old;

		// Return if we didn't get the whole Stream Footer yet.
		if (coder->pos < LZMA_STREAM_HEADER_SIZE)
			return LZMA_OK;

		coder->pos = 0;

		// Decode the Stream Footer. The decoder gives
		// LZMA_FORMAT_ERROR if the magic bytes don't match,
		// so convert that return code to LZMA_DATA_ERROR.
		lzma_stream_flags footer_flags;
		const lzma_ret ret = lzma_stream_footer_decode(
				&footer_flags, coder->buffer);
		if (ret != LZMA_OK)
			return ret == LZMA_FORMAT_ERROR
					? LZMA_DATA_ERROR : ret;

		// Check that Index Size stored in the Stream Footer matches
		// the real size of the Index field.
		if (lzma_index_hash_size(coder->index_hash)
				!= footer_flags.backward_size)
			return LZMA_DATA_ERROR;

		// Compare that the Stream Flags fields are identical in
		// both Stream Header and Stream Footer.
		return_if_error(lzma_stream_flags_compare(
				&coder->stream_flags, &footer_flags));

		if (!coder->concatenated)
			return LZMA_STREAM_END;

		coder->sequence = SEQ_STREAM_PADDING;
	}

	// Fall through

	case SEQ_STREAM_PADDING:
		assert(coder->concatenated);

		// Skip over possible Stream Padding.
		while (true) {
			if (*in_pos >= in_size) {
				// Unless LZMA_FINISH was used, we cannot
				// know if there's more input coming later.
				if (action != LZMA_FINISH)
					return LZMA_OK;

				// Stream Padding must be a multiple of
				// four bytes.
				return coder->pos == 0
						? LZMA_STREAM_END
						: LZMA_DATA_ERROR;
			}

			// If the byte is not zero, it probably indicates
			// beginning of a new Stream (or the file is corrupt).
			if (in[*in_pos] != 0x00)
				break;

			++*in_pos;
			++coder->progress_in;
			coder->pos = (coder->pos + 1) & 3;
		}

		// Stream Padding must be a multiple of four bytes (empty
		// Stream Padding is OK).
		if (coder->pos != 0) {
			++*in_pos;
			++coder->progress_in;
			return LZMA_DATA_ERROR;
		}

		// Prepare to decode the next Stream.
		return_if_error(stream_decoder_reset(coder, allocator));
		break;

	case SEQ_ERROR:
		// Let the application get all data before the point where
		// the error was detected. This matches the behavior of
		// single-threaded use.
		//
		// FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
		// they are returned immediately. Thus in rare cases the
		// output will be less than in single-threaded mode. But
		// maybe this doesn't matter much in practice.
		return_if_error(read_output_and_wait(coder, allocator,
				out, out_pos, out_size,
				NULL, true, &wait_abs, &has_blocked));

		// We get here only if the error happened in the main thread,
		// for example, unsupported Block Header.
		if (!lzma_outq_is_empty(&coder->outq))
			return LZMA_OK;

		return coder->pending_error;

	default:
		assert(0);
		return LZMA_PROG_ERROR;
	}

	// Never reached
}


static void
stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
{
	struct lzma_stream_coder *coder = coder_ptr;

	threads_end(coder, allocator);
	lzma_outq_end(&coder->outq, allocator);

	lzma_next_end(&coder->block_decoder, allocator);
	cleanup_filters(coder->filters, allocator);
	lzma_index_hash_end(coder->index_hash, allocator);

	lzma_free(coder, allocator);
	return;
}


static lzma_check
stream_decoder_mt_get_check(const void *coder_ptr)
{
	const struct lzma_stream_coder *coder = coder_ptr;
	return coder->stream_flags.check;
}


static lzma_ret
stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage,
		uint64_t *old_memlimit, uint64_t new_memlimit)
{
	// NOTE: This function gets/sets memlimit_stop. For now,
	// memlimit_threading cannot be modified after initialization.
	struct lzma_stream_coder *coder = coder_ptr;

	mythread_sync(coder->mutex) {
		*memusage = coder->mem_direct_mode + coder->mem_in_use
				+ coder->outq.mem_in_use; // FIXME?
	}

	// If no filter chains are allocated, *memusage may be zero.
	// Always return at least LZMA_MEMUSAGE_BASE.
	if (*memusage < LZMA_MEMUSAGE_BASE)
		*memusage = LZMA_MEMUSAGE_BASE;

	*old_memlimit = coder->memlimit_stop;

	if (new_memlimit != 0) {
		if (new_memlimit < *memusage) // FIXME?
			return LZMA_MEMLIMIT_ERROR;

		coder->memlimit_stop = new_memlimit;
	}

	return LZMA_OK;
}


static void
stream_decoder_mt_get_progress(void *coder_ptr,
		uint64_t *progress_in, uint64_t *progress_out)
{
	struct lzma_stream_coder *coder = coder_ptr;

	// Lock coder->mutex to prevent finishing threads from moving their
	// progress info from the worker_thread structure to lzma_stream_coder.
	mythread_sync(coder->mutex) {
		*progress_in = coder->progress_in;
		*progress_out = coder->progress_out;

		for (size_t i = 0; i < coder->threads_initialized; ++i) {
			mythread_sync(coder->threads[i].mutex) {
				*progress_in += coder->threads[i].progress_in;
				*progress_out += coder->threads[i]
						.progress_out;
			}
		}
	}

	return;
}


static lzma_ret
stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
		       const lzma_mt *options)
{
	struct lzma_stream_coder *coder;

	if (options->threads == 0 || options->threads > LZMA_THREADS_MAX)
		return LZMA_OPTIONS_ERROR;

	if (options->flags & ~LZMA_SUPPORTED_FLAGS)
		return LZMA_OPTIONS_ERROR;

	lzma_next_coder_init(&stream_decoder_mt_init, next, allocator);

	coder = next->coder;
	if (!coder) {
		coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator);
		if (coder == NULL)
			return LZMA_MEM_ERROR;

		next->coder = coder;

		if (mythread_mutex_init(&coder->mutex)) {
			lzma_free(coder, allocator);
			return LZMA_MEM_ERROR;
		}

		if (mythread_cond_init(&coder->cond)) {
			mythread_mutex_destroy(&coder->mutex);
			lzma_free(coder, allocator);
			return LZMA_MEM_ERROR;
		}

		next->code = &stream_decode_mt;
		next->end = &stream_decoder_mt_end;
		next->get_check = &stream_decoder_mt_get_check;
		next->memconfig = &stream_decoder_mt_memconfig;
		next->get_progress = &stream_decoder_mt_get_progress;

		memzero(coder->filters, sizeof(coder->filters));
		memzero(&coder->outq, sizeof(coder->outq));

		coder->block_decoder = LZMA_NEXT_CODER_INIT;
		coder->mem_direct_mode = 0;

		coder->index_hash = NULL;
		coder->threads = NULL;
		coder->threads_free = NULL;
		coder->threads_initialized = 0;
	}

	// Cleanup old filter chain if one remains after unfinished decoding
	// of a previous Stream.
	cleanup_filters(coder->filters, allocator);

	// By allocating threads from scratch we can start memory-usage
	// accounting from scratch, too. Changes in filter and block sizes may
	// affect number of threads.
	//
	// FIXME? Reusing should be easy but unlike the single-threaded
	// decoder, with some types of input file combinations reusing
	// could leave quite a lot of memory allocated but unused (first
	// file could allocate a lot, the next files could use fewer
	// threads and some of the allocations from the first file would not
	// get freed unless memlimit_threading forces us to clear caches).
	//
	// NOTE: The direct mode decoder isn't freed here if one exists.
	// It will be reused or freed as needed in the main loop.
	threads_end(coder, allocator);

	// All memusage counters start at 0 (including mem_direct_mode).
	// The little extra that is needed for the structs in this file
	// get accounted well enough by the filter chain memory usage
	// which adds LZMA_MEMUSAGE_BASE for each chain. However,
	// stream_decoder_mt_memconfig() has to handle this specially so that
	// it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
	coder->mem_in_use = 0;
	coder->mem_cached = 0;
	coder->mem_next_block = 0;

	coder->progress_in = 0;
	coder->progress_out = 0;

	coder->sequence = SEQ_STREAM_HEADER;
	coder->thread_error = LZMA_OK;
	coder->pending_error = LZMA_OK;
	coder->thr = NULL;

	coder->timeout = options->timeout;

	coder->memlimit_threading = my_max(1, options->memlimit_threading);
	coder->memlimit_stop = my_max(1, options->memlimit_stop);
	if (coder->memlimit_threading > coder->memlimit_stop)
		coder->memlimit_threading = coder->memlimit_stop;

	coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0;
	coder->tell_unsupported_check
			= (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
	coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0;
	coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0;
	coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0;

	coder->first_stream = true;
	coder->out_was_filled = false;
	coder->pos = 0;

	coder->threads_max = options->threads;

	return_if_error(lzma_outq_init(&coder->outq, allocator,
				       coder->threads_max));

	return stream_decoder_reset(coder, allocator);
}


extern LZMA_API(lzma_ret)
lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options)
{
	lzma_next_strm_init(stream_decoder_mt_init, strm, options);

	strm->internal->supported_actions[LZMA_RUN] = true;
	strm->internal->supported_actions[LZMA_FINISH] = true;

	return LZMA_OK;
}